Model independent extraction of the axial mass parameter from antineutrino-nucleon. scattering data. By: Jerold Young Adviser: Dr.

Size: px
Start display at page:

Download "Model independent extraction of the axial mass parameter from antineutrino-nucleon. scattering data. By: Jerold Young Adviser: Dr."

Transcription

1 Model independent extraction of the axial mass parameter from antineutrino-nucleon CCQE scattering data By: Jerold Young Adviser: Dr. Gil Paz

2 The Neutrino Created as a result of certain types of radioactive decay (β Decay), or nuclear reactions Electrically Neutral Weakly interacting elementary subatomic particle Half-integer spin 2

3 Flavors of Neutrinos 3

4 Neutrino Oscillations Quantum mechanical phenomenon Neutrino created with a specific lepton flavor (electron, muon or tau) can later be measured to have a different flavor. Probability of measuring a particular flavor for a neutrino varies periodically as it propagates Observation of the phenomenon implies that the neutrino has a non-zero mass Not part of the original Standard Model of particle physics. 4

5 MiniBooNE 5

6 Axial Mass Least Constrained form factor, F A (q 2 ) q 2 is taken to be the transfer momentum four vector where Q 2 = q 2. 6

7 Axial Mass World Averages As is evident by the values on the left there is a distinct discrepancy between values of Axial Mass. A method that produces consentient measurements is needed! World average value: M A dipole = ± GeV V. Bernard et al., J. Phys. G28, R1 (2002). Nomad: M A dipole = 1.05 ± 0.02 ± 0.06 GeV NOMAD Collaboration, EPJ C 63, 335 (2009) K2K SciFi: M A dipole = 1.20 ± 0.12 GeV K2K Collaboration, PRD (2006) MiniBooNE: M A dipole = 1.35 ± 0.17 GeV MiniBooNE Collaboration, PRD (2010) 7

8 Discrepancy's in Data Analysis of Neutrino Scattering Events As seen in the graph a value of M A =1.35 GeV is needed to fit the data which is in contradiction to the world average 8 MiniBooNE Collaboration PRD 81 (2010)

9 Model Dependent Method for Data Analysis The value of F A (0) is This method is a one parameter model which assumes that M Dipole A = M A. This method overly constrains parameters 9

10 Model Independent Method for Data Analysis z expansion When using a model dependent analysis to extract values for axial mass we see inconsistent values. However when using a model independent method such as the z expansion we obtain much more consistent values between the different experiments Value obtained using z expansion m A = GeV Taking into account the error bars we can see that this value is much more consistent with the world average, ± GeV 10 [B. Bhattacharya, R. J. Hill, and G. Paz, Phys. Rev. D 84, (2011).]

11 Neutrino and anti-neutrino scattering Events Neutrino: ν μ + n μ + p Anti-neutrino:ν μ + p μ + + n Scattering targets (n vs. p) C n H 2n+2 Scattering ( where n 20) targets material (n vs. p) Neutrons in Carbon only CH 2 target material neutrons Protons in both Carbon and Hydrogen 11 in carbon only Protons in both carbon and hydrogen

12 Results of μmm R ΡR J Τ 12

13 Goals Run C12 data using current code. Examine results and modify code in order to account for scattering from hydrogen in mineral oil Develop a statistical model to implement the free proton from hydrogen into the code. Extract m A using both dipole method and z-expansion for mineral oil 13

14 C12 Antineutrino Scattering Data Previous Analysis by former REU student has shown results of anti-neutrino C 12 m A data (m A = where Q2 max =1.00GeV 2 ) to be in agreement with neutrino results obtained by Dr. Paz and collaborators. However over the past year the data reported by MiniBooNE was changed. Thus a Reevaluation was needed. 14

15 Comparison of past and current Antineutrino C12 data analysis Summer 2013 Summer m A = Gev m A = Gev Antineutrino 15

16 Mineral Oil Analysis One of the main goals of this summers research was to obtain a statistical model that would allow for the combination of Hydrogen and Carbon s Cross Sections in order to obtain a Cross Section for Mineral Oil. 16

17 Mineral Oil Analysis The Mineral oil has a chemical formula of C n H 2n+2 ( where n 20) The Statistical model developed uses this information to produce the following formula dσ = 20σ C+42σ H (for Mineral Oil) 62 Where σ is the cross section Factors of 20,42 and 62 were obtained from number of atoms in mineral oil molecule 17

18 Mineral Oil Analysis At this Current time implementation of this model into the code has not been achieved. 18

19 Neutrino Energy Analysis First step in implementing the Statistical model is to be able to reconstruct the incident neutrino energy. This was achieved by deriving a formula for E ν in terms of scattering angle θ and the kinetic energy of the lepton T E ν = m l 2 2(T + m l )m n 2( T + m l m n T + m l 2 m l 2 cos(θ) 19

20 Conclusions When running the C12 analysis with the new data release we see that there is an agreement with previous results however there is a anomalous reading at 0.1 GeV Determined m A for C12 to be Gev which is in good agreement with value obtained by Dr. Paz and collaborators of m A = GeV Developed statistical model to implement proton from Hydrogen into the code. 20

21 Future Work Determine why 0.1 GeV 2 gives anomalous reading for C12 data Fully Integrate Statistical model into code Extract Axial Mass parameter for Mineral Oil Compare obtained value with values obtained in other analysis 21

22 Acknowledgements I would like to thank the Wayne State University department of Physics for giving me this opportunity I would like to express my sincerest gratitude to Dr. Paz for his guidance and help. 22

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering Jerold Eugene Young III Department of Physics, Western Illinois University dvisor Dr. Gil Paz Wayne State

More information

Neutrino Cross Sections and Scattering Physics

Neutrino Cross Sections and Scattering Physics Neutrino Cross Sections and Scattering Physics Bonnie Fleming Yale University, New Haven, CT. Abstract. Large flux uncertainties and small cross sections have made neutrino scattering physics a challenge.

More information

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009 Charged current single pion to quasi-elastic cross section ratio in MiniBooNE Steven Linden PAVI09 25 June 2009 Motivation Oscillation searches needed for leptonic CP violation. One approach: search for

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Introduction to Neutrino Interaction Physics NUFACT08 Summer School June 2008 Benasque, Spain Paul Soler

Introduction to Neutrino Interaction Physics NUFACT08 Summer School June 2008 Benasque, Spain Paul Soler Introduction to NUCT08 Summer School -3 June 008 Benasque, Spain Paul Soler 4. uasi-elastic, resonant, coherent and diffractive scattering 4. Motivation 4. Charged current quasi-elastic scattering 4.3

More information

Nuclear aspects of neutrino energy reconstruction in current oscillation experiments

Nuclear aspects of neutrino energy reconstruction in current oscillation experiments Nuclear aspects of neutrino energy reconstruction in current oscillation experiments Tina Leitner Oliver Buss, Luis Alvarez-Ruso, and Ulrich Mosel Institut für Theoretische Physik Universität Gießen, Germany

More information

How Big is the Proton?

How Big is the Proton? How Big is the Proton? Gil Paz Department of Physics and Astronomy, Wayne State University People Postdocs: Matthew Gonderinger Bhujyo Bhattacharya Graduate Students: Joydeep Roy Steven P. Dye Ayesh Gunawardana

More information

Charged Current Quasielastic Analysis from MINERνA

Charged Current Quasielastic Analysis from MINERνA Charged Current Quasielastic Analysis from MINERνA Anushree Ghosh CBPF - Centro Brasileiro de Pesquisas F sicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro, 22290-180, Brazil on behalf

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

Recent Results from T2K and Future Prospects

Recent Results from T2K and Future Prospects Recent Results from TK and Future Prospects Konosuke Iwamoto, on behalf of the TK Collaboration University of Rochester E-mail: kiwamoto@pas.rochester.edu The TK long-baseline neutrino oscillation experiment

More information

Neutrino Cross Section Measurements for Long-Baseline Acceleratorbased Neutrino Oscillation Experiments

Neutrino Cross Section Measurements for Long-Baseline Acceleratorbased Neutrino Oscillation Experiments Neutrino Cross Section Measurements for Long-Baseline Acceleratorbased Neutrino Oscillation Experiments Katori, T arxiv record: http://arxiv.org/abs/0805.476 For additional information about this publication

More information

Neutrino Event Tagging Based On Nucleon Energy Spectra

Neutrino Event Tagging Based On Nucleon Energy Spectra Neutrino Event Tagging Based On Nucleon Energy Spectra Joshua Gevirtz Dr. Robert Svoboda UC Davis REU Program 2009 October 20, 2009 Abstract Since they were first theorized in 1930 by Wolfgang Pauli, much

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu PHYS 5326 Lecture #2 Wednesday, Jan. 24, 2007 Dr. 1. Sources of Neutrinos 2. How is neutrino beam produced? 3. Physics with neutrino experiments 4. Characteristics of accelerator based neutrino experiments

More information

Weak Interactions & Neutral Currents

Weak Interactions & Neutral Currents Weak Interactions & Neutral Currents Until the the mid-970 s all known weak interaction processes could be described by the exchange of a charged, spin boson, the W boson. Weak interactions mediated by

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 MINOS Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 2 Overview and Current Status Beam Detectors Analyses Neutrino Charged Current

More information

Study of Strange Quark in the Nucleon with Neutrino Scattering

Study of Strange Quark in the Nucleon with Neutrino Scattering July 28, 2004 NuFact 04, Osaka Study of Strange Quark in the Nucleon with Neutrino Scattering T.-A. Shibata Tokyo Institute of Technology Contents: 3. Physics Motivation --- Quark Structure of the Nucleon

More information

THE STANDARD MODEL OF MATTER

THE STANDARD MODEL OF MATTER VISUAL PHYSICS ONLINE THE STANDARD MODEL OF MATTER The "Standard Model" of subatomic and sub nuclear physics is an intricate, complex and often subtle thing and a complete study of it is beyond the scope

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

arxiv: v1 [nucl-ex] 7 Sep 2009

arxiv: v1 [nucl-ex] 7 Sep 2009 CCπ Event Reconstruction at MiniBooNE R.H. Nelson University of Colorado, Dept. of Physics, 39 UCB, Boulder, CO 839, USA arxiv:99.238v [nucl-ex] 7 Sep 29 Abstract. We describe the development of a fitter

More information

Quasi-Elastic Scattering in MINERvA

Quasi-Elastic Scattering in MINERvA Quasi-Elastic Scattering in MINERvA Kevin S. McFarland Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA and Fermi National Accelerator Laboratory, Batavia, IL 60510

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

Neutrino cross sections for future oscillation experiments

Neutrino cross sections for future oscillation experiments Neutrino cross sections for future oscillation experiments Artur M. Ankowski SLAC, Stanford University based on A.M.A. & C. Mariani, J. Phys. G 44 (2017) 054001 Nuclear ab initio Theories and Neutrino

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Camillo Mariani Center for Neutrino Physics, Virginia Tech

Camillo Mariani Center for Neutrino Physics, Virginia Tech Camillo Mariani Center for Neutrino Physics, Virginia Tech Motivation and Contents Determination of neutrino oscillation parameters requires knowledge of neutrino energy Modern experiments use complicated

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Coherent Neutrino Nucleus Scattering

Coherent Neutrino Nucleus Scattering 1 Coherent Neutrino Nucleus Scattering E.A. Paschos a and A. Kartavtsev b (presented by E.A. Paschos) a Universität Dortmund, D 441 Dortmund, Germany b Rostov State University, Rostov on Don, Russia We

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Why understanding neutrino interactions is important for oscillation physics

Why understanding neutrino interactions is important for oscillation physics Why understanding neutrino interactions is important for oscillation physics Christopher W. Walter Department of Physics, Duke University, Durham, NC 27708 USA Unfortunately, we do not live in a world

More information

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC Aug 25, 2004 NP04, KEK Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and Y. Miyachi (Tokyo Tech) for

More information

arxiv: v2 [nucl-th] 1 Jul 2010

arxiv: v2 [nucl-th] 1 Jul 2010 Neutrino-nucleus scattering reexamined: Quasielastic scattering and pion production entanglement and implications for neutrino energy reconstruction T. Leitner and U. Mosel Institut für Theoretische Physik,

More information

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos 6-8 February 2017 Hotel do Mar Sesimbra Hands on Neutrinos Hands on Neutrinos 1 I. BRIEF HISTORY OF NEUTRINOs The neutrinowas first postulated by Wolfgang Pauli in 1930 to explain how β particles emitted

More information

Neutrino interaction at K2K

Neutrino interaction at K2K Neutrino interaction at K2K KEK Yoshinari Hayato for the K2K collaboration Contents Introduction Neutrino flux measurements and neutrino interaction studies in K2K Charged current quasi-elastic scattering

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Single π production in MiniBooNE and K2K

Single π production in MiniBooNE and K2K Single π production in MiniBooNE and K2K Yoshinari Hayato (ICRR, Univ. Tokyo) 1. Introduction 2. Study of neutral current single π 0 production at K2K 3. Study of charged current coherent π + production

More information

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6.

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6. Neutral Current Single Photon Production (NCγ) Outline physics ν Z ν N ω γ Teppei Katori Queen Mary University of London INT workshop, Seattle, USA, Dec. 12, 2013 N 1 2 NuSTEC protocol - way to avoid Donkey

More information

Long Baseline Neutrinos

Long Baseline Neutrinos Long Baseline Neutrinos GINA RAMEIKA FERMILAB SLAC SUMMER INSTITUTE AUGUST 5-6, 2010 Lecture 1 Outline Defining Long Baseline Experiment Ingredients Neutrino Beams Neutrino Interactions Neutrino Cross

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

Neutrino Oscilla8ons

Neutrino Oscilla8ons Neutrino Oscilla8ons Kathleen Tatem Columbia University Neutrino oscilla8on experiments may be seeing signs of a new fundamental par8cle, the sterile neutrino! 1 Outline Neutrinos Proper8es Sources Neutrino

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

Neutrino Physics at Short Baseline

Neutrino Physics at Short Baseline Neutrino Physics at Short Baseline E. D. Zimmerman University of Colorado Lepton-Photon 2005 Uppsala, Sweden 2 July 2005 Neutrino Physics at Short Baseline Parameter regions accessible with short baselines

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL Carlotta Giusti and Andrea Meucci Università and INFN, Pavia Neutrino-Nucleus

More information

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS PHYS 30121 NUCLEAR AND PARTICLE PHYSICS DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS Discrete symmetries are ones that do not depend on any continuous parameter. The classic example is reflection

More information

MODERN PHYSICS. A. s c B. dss C. u

MODERN PHYSICS. A. s c B. dss C. u MODERN PHYSIS Name: Date: 1. Which color of light has the greatest energy per photon? 4. The composition of a meson with a charge of 1 elementary charge could be. red. green. blue D. violet. s c. dss.

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

Neutrino Interaction Physics for Oscillation Analyses

Neutrino Interaction Physics for Oscillation Analyses Neutrino Interaction Physics for Oscillation Analyses Patrick Stowell on behalf of the T2K Neutrino Interactions Working Group NuIntUK 20th July 2015 20th July 2015 Neutrino Interaction Physics for Oscillation

More information

ECT Lecture 2. - Reactor Antineutrino Detection - The Discovery of Neutrinos. Thierry Lasserre (Saclay)

ECT Lecture 2. - Reactor Antineutrino Detection - The Discovery of Neutrinos. Thierry Lasserre (Saclay) ECT Lecture 2 - Reactor Antineutrino Detection - The Discovery of Neutrinos Thierry Lasserre (Saclay) Reactor Neutrino Detection Inverse Beta Decay p + anti-v e à e + + n cross section @2 MeV : 5 10-43

More information

Nuclear effects in neutrino scattering

Nuclear effects in neutrino scattering European Graduate School Complex Systems of Hadrons and Nuclei JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Copenhagen - Gießen - Helsinki - Jyväskylä - Torino L. Alvarez-Ruso, T. Leitner, U. Mosel Introduction

More information

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014

Hadronization model. Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014 Hadronization model model tuning 4. Impact of Hadronization model for PINGU Teppei Katori Queen Mary University of London CETUP neutrino interaction workshop, Rapid City, SD, USA, July 28, 2014 Teppei

More information

Neutrino Physics with Short Baseline Experiments

Neutrino Physics with Short Baseline Experiments XXVI Physics in Collision, Bu zios, Rio de Janeiro, 6-9 July 2006 Neutrino Physics with Short Baseline Experiments E. D. Zimmerman University of Colorado, Boulder, Colo. 80309 USA Neutrino physics with

More information

Particle Physics Lectures Outline

Particle Physics Lectures Outline Subatomic Physics: Particle Physics Lectures Physics of the Large Hadron Collider (plus something about neutrino physics) 1 Particle Physics Lectures Outline 1 - Introduction The Standard Model of particle

More information

Physics Quarknet/Service Learning

Physics Quarknet/Service Learning Physics 29000 Quarknet/Service Learning Lecture 3: Ionizing Radiation Purdue University Department of Physics February 1, 2013 1 Resources Particle Data Group: http://pdg.lbl.gov Summary tables of particle

More information

Neutrino-Nucleus Scattering at MINERvA

Neutrino-Nucleus Scattering at MINERvA 1 Neutrino-Nucleus Scattering at MINERvA Elba XIII Workshop: Neutrino Physics IV Tammy Walton Fermilab June 26, 2014 2 MINERvA Motivation Big Picture Enter an era of precision neutrino oscillation measurements.

More information

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011 PMT Signal Attenuation and Baryon Number Violation Background Studies By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011 1 The Standard Model The Standard Model is comprised of Fermions

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Lifetime of the Neutron

Lifetime of the Neutron Copyright 2018 by Sylwester Kornowski All rights reserved Lifetime of the Neutron Sylwester Kornowski Abstract: The Scale-Symmetric Theory (SST) shows that in the bottle experiments, measured mean lifetime

More information

Neutrino-Nucleus Interactions and Oscillations

Neutrino-Nucleus Interactions and Oscillations Neutrino-Nucleus Interactions and Oscillations Ulrich Mosel Long-Baseline Experiment: T2K and NOvA Future (2027): DUNE From: Diwan et al, Ann. Rev. Nucl. Part. Sci 66 (2016) DUNE, 1300 km HyperK (T2K)

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

arxiv: v1 [nucl-th] 4 Mar 2011

arxiv: v1 [nucl-th] 4 Mar 2011 Nuclear effects in neutral current quasi-elastic neutrino interactions Omar Benhar a,b, Giovanni Veneziano b arxiv:1103.0987v1 [nucl-th] 4 Mar 2011 a INFN, Sezione di Roma, I-00185 Roma, Italy b Dipartimento

More information

Lecture 5 Weak Interac/ons

Lecture 5 Weak Interac/ons Lecture 5 Weak Interac/ons M - µ ν µ 6/1/10 Par/cle Physics Lecture 5 Steve Playfer 1 Weak Charged Currents Exchange of heavy W + or W bosons (M W = 80 GeV) Lepton couplings are e ν e µ ν µ τ ν τ (or their

More information

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory Neutrino Physics Kam-Biu Luk Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory 4-15 June, 2007 Outline Brief overview of particle physics Properties of

More information

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

The Hunt for Sterile Neutrinos. H. Ray, University of Florida The Hunt for Sterile Neutrinos 1 Particle Physics is Over!..finding the Higgs arguably the most important discovery in more than a generation has left physicists without a clear roadmap of where to go

More information

A

A 1 (a) They are not fundamental particles because they consist Not: They can be sub-divided of quarks (b) Any two from: electron / positron / neutrino / antineutrino Allow: muon / tau (c) (i) 4 Ca 1 e +

More information

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration The T2K experiment Results and Perspectives PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration 1 Overview Neutrino oscillations The T2K off-axis experiment Oscillation results

More information

Flavor oscillations of solar neutrinos

Flavor oscillations of solar neutrinos Chapter 11 Flavor oscillations of solar neutrinos In the preceding chapter we discussed the internal structure of the Sun and suggested that neutrinos emitted by thermonuclear processes in the central

More information

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso Neutrino nucleus scattering Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso Institut für Theoretische Physik Universität Gießen, Germany XL. Arbeitstreffen Kernphysik, Schleching 26. Februar

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information

Physics 30: Chapter 8 Exam Nuclear

Physics 30: Chapter 8 Exam Nuclear Physics 30: Chapter 8 Exam Nuclear Name: Date: Mark: /34 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark each) 1. A 100

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Neutrino Physics at MiniBooNE

Neutrino Physics at MiniBooNE Neutrino Physics at MiniBooNE G. P. Zeller Columbia University Department of Physics 538 W. 120th St., New York, NY 10027, USA for the MiniBooNE Collaboration As its primary design goal, the MiniBooNE

More information

Particle Physics: Problem Sheet 5

Particle Physics: Problem Sheet 5 2010 Subatomic: Particle Physics 1 Particle Physics: Problem Sheet 5 Weak, electroweak and LHC Physics 1. Draw a quark level Feynman diagram for the decay K + π + π 0. This is a weak decay. K + has strange

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

Neutrino Oscillations

Neutrino Oscillations 1. Introduction 2. Status and Prospects A. Solar Neutrinos B. Atmospheric Neutrinos C. LSND Experiment D. High-Mass Neutrinos 3. Conclusions Plenary talk given at DPF 99 UCLA, January 9, 1999 Introduction

More information

Neutrinos Lecture Introduction

Neutrinos Lecture Introduction Neutrinos Lecture 16 1 Introduction Neutrino physics is discussed in some detail for several reasons. In the first place, the physics is interesting and easily understood, yet it is representative of the

More information

Neutrino Interactions

Neutrino Interactions Neutrino Interactions Natasja Ybema Nathan Mol Overview EM interaction Fermi s WI Parity violation Lefthandedness of neutrinos V-A interaction Cross sections of elastic scattering Quasi elastic scattering

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

Atomic emission & absorption spectra

Atomic emission & absorption spectra Name: Date: Modern Physics Models of the Atom The word atom comes from the Greek word atomos meaning indivisible We now know that this model of the atom is not accurate JJ Thompson Experiment and atomic

More information

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration Determination of and related results from BABAR V cb Masahiro Morii, Harvard University on behalf of the BABAR Collaboration V cb from inclusive B semileptonic decays Lepton energy moments Hadron mass

More information

Neutrinos Induced Pion Production in MINERvA

Neutrinos Induced Pion Production in MINERvA Neutrinos Induced Pion Production in MINERvA Aaron Higuera Universidad de Guanajuato, Mexico On behalf of the MINERvA collaboration Outline Neutrinos Induced Pion Production MINERvA Experiment E-938 CC

More information

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012 Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012 Outline T2K Beamline and Detectors Uncertainties from prior measurements

More information

Accelerator Neutrino Experiments News from Neutrino 2010 Athens

Accelerator Neutrino Experiments News from Neutrino 2010 Athens Accelerator Neutrino Experiments News from Neutrino 2010 Athens Ed Kearns Boston University Outline Quick overview New result 1: OPERA tau appearance New result 2: MINOS nu- e appearance Looking forward

More information

Neutrino-Nucleus Interactions. Ulrich Mosel

Neutrino-Nucleus Interactions. Ulrich Mosel Neutrino-Nucleus Interactions Ulrich Mosel Motivation Energy-Distributions of Neutrino Beams Energy must be reconstructed event by event, within these distributions Oscillation Signals as F(E n ) From:

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Oak Ridge and Neutrinos eharmony forms another perfect couple

Oak Ridge and Neutrinos eharmony forms another perfect couple Oak Ridge and Neutrinos eharmony forms another perfect couple H. Ray University of Florida 05/28/08 1 Oak Ridge Laboratory Spallation Neutron Source Accelerator based neutron source in Oak Ridge, TN 05/28/08

More information

The MINERnA Experiment

The MINERnA Experiment The MINERnA Experiment What is Minerna? Why Mienrna? n / n CCQE sections Inclusive n sections n beam and n flux Outlook INPC 2013 June 4 th 13 Alessandro Bravar for the Mienrna Collaboration The MINERnA

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS

THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS On Solar Neutrino Problem Tian Ma and Shouhong Wang July 6, 204 Preprint No.: 403 THE INSTITUTE FOR SCIENTIFIC COMPUTING AND APPLIED MATHEMATICS INDIANA UNIVERSITY ON SOLAR NEUTRINO PROBLEM TIAN MA AND

More information

HARP (Hadron Production) Experiment at CERN

HARP (Hadron Production) Experiment at CERN HARP (Hadron Production) Experiment at CERN 2nd Summer School On Particle Accelerators And Detectors 18-24 Sep 2006, Bodrum, Turkey Aysel Kayιş Topaksu Çukurova Üniversitesi, ADANA Outline The Physics

More information