An Introduction to Pairings in Cryptography

Size: px
Start display at page:

Download "An Introduction to Pairings in Cryptography"

Transcription

1 An Introduction to Pairings in Cryptography Craig Costello Information Security Institute Queensland University of Technology INN652 - Advanced Cryptology, October 2009

2 Outline 1 Introduction to Pairings Why do we love pairings? What are pairings? 2 Pairings in cryptography Using pairings ID-based cryptography 3 Groups involved in pairings Pairing types 4 Conclusion

3 Why do we love pairings? The pairing explosion: Why cryptographers love pairings? 1991: MOV attack used pairings on ECC 2001: Boneh-Franklin - identity-based encryption - (open problem since mid 80 s) 2001: Joux - one round tripartite key-agreement 2004: Boneh, Lynn and Shacham - short signatures 2000 now: A heap of other researchers - a heap of other things (ring signatures, key agreements, certificateless PKC, heirarchical) 2004: (QUT) Boyd, Dawson et al. - Key Issuing

4 Why do we love pairings? Why do I love pairings? One of the most active and exciting areas in public key crypto All the juicy ingredients: Number theory, algebraic geometry, abelian varieties, finite fields,... Good balance between some in-depth mathematical theory and how pairings behave in practice Because they re very interesting and fun Because I have to...

5 What are pairings? What are pairings? A bilinear pairing e is just a mapping where 2 inputs pair to result in a value e(p, Q) = t The bilinearity property is as follows: e(ap, bq) = t ab = e(bp, aq) Behold the magic of bilinearity (a quick key exchange). TA holds master secret s. Alice s identity is A. Bob s is B. TA issues Alice sa. TA issues Bob sb. Alice e(sa, B) = e(a, B) s = e(a, sb) Bob

6 What are pairings? Why Elliptic Curves? There is only one known mathematical setting where desirable bilinear pairings exist: (hyper)elliptic curves (last week) Therefore in e(p, Q), P and Q are points on an elliptic curve LAST WEEK: Attacks on elliptic curves are much slower than on finite fields (160 bit group order for elliptic curves comparable to 1024 bit security in finite fields) Lucky for elliptic curves The fact that elliptic curves just happen to be more efficient than finite fields is a happy coincidence... we need them to pair with regardless

7 What are pairings? ECC vs PBC Pairing based cryptography (PBC) is different to elliptic curve cryptography (ECC): both use elliptic curves and rely on ECDLP but PBC has many many more computational problems that we build interesting protocols with...

8 What are pairings? How deep will we go into pairings today? We will get a feel for the power of the bilinearity property We will see some of its most notable achievements in the protocol world We will discuss some (mainly one) of the hard problems that pairing-based protocols are based on We will (at a very abstract level) briefly discuss the groups that are involved in pairing computations... but we WILL NOT be discussing any theory on how to compute a pairing (divisor theory, Weil reciprocity, Miller s algorithm) and why this gives bilinearity

9 What are pairings? Basic properties of pairings A mapping e : G 1 G 2 G T such that: 1 Groups G 1, G 2 and G T are all of prime order r (at least for this lecture). We write G 1 and G 2 with additive notation (points on elliptic curve) and G T with multiplicative notation. 2 Bilinear: linear in both arguments e(p + Q, R) = e(p, R) e(q, R) e(p, R + S) = e(p, R) e(p, S) e(ap, br) = e(p, R) ab = e(bp, ar) 3 Non-degenerate: e(p, R) 1 for some P G 1 and Q G 2. 4 Computability: e(p, R) can be efficiently computed.

10 What are pairings? Bilinearity: the pairing mechanism up close e(ap, br) = e(p, R) ab = e(bp, ar) = e(ap, R) b = e(p, ar) b = e(bp, R) a = e(p, br) a = e(p, abr)... etc The point multiples jump in and out of the index into either argument, i.e. they switch between the arguments. From two points P and Q we can get e(p, Q) (this is trivially computing the pairing value) From two points P and Q and an integer r Z we can trivially get e(p, Q) r by exponentiating

11 What are pairings? Bilinearity: the pairing mechanism up close (cont) If we don t want someone to know r (which may be our secret key), it is still possible for them to compute e(p, Q) r provided they also know P and Q Send them rp or rq and they can compute e(rp, Q) = e(p, Q) r or e(p, rq) = e(p, Q) r. They would have to solve an instance of ECDLP to recover the secret r... or would they???

12 What are pairings? Two Discrete Log Problems to Attack Recall from a couple of slides ago: TA issues Alice sa. Alice computes e(sa, B) = e(a, B) s. Alice can compute t = e(a, B) from public identities. Alice has sa, A E(F q ), as well as t s, t F q k. To find master secret s, Alice can attack whichever discrete log problem is easiest Pairing based cryptography is a balancing act 1 Hard ECDLP in G 1, G 2 2 Hard DLP in G T 3 Efficient algorithms across all groups We can achieve good balance if we can be flexible with k

13 What are pairings? The embedding degree General Pairings e : G 1 G 2 G T G 1 is almost always a subgroup of E(F q ). G 2 is almost always a subgroup of E(F q k ). G T is the multiplication group of a finite field F q k called the embedding degree). (k is The embedding degree k is called the embedding degree and plays a big role in pairing-based crypto...

14 What are pairings? Pairing-friendly elliptic curves Elliptic curve arithmetic occurs in F q (the base field) Pairing arithmetic occurs in F q k (the extension field) This means protocol users have to deal with arithmetic in both F q and F q k Attackers would want both (or either field) to be as small as possible for potential attacks... We want the fields to be out of the attackers reach to be safe... but not too big (we have to work there) The embedding degree helps us balance out the difficulty of both attacks (simultaneously) and the difficulty of us operating in these fields

15 What are pairings? Pairing-friendly elliptic curves (cont)... Definition: the embedding degree Let E be an elliptic curve defined over F q with order divisible by large prime r. The embedding degree of E with respect to r is the smallest positive integer k with r q k 1. In general k r and F q k would be too large to deal with There are many clever ways to construct so-called pairing-friendly elliptic curves (FST - A taxonomy of pairing-friendly elliptic curves ) Moral of the story: k must be small, but not too small...

16 What are pairings? Complexity of Discrete Logs It is substantially easier to compute discrete logs in the finite field F q k (subexponential complexity) than it is in E(F q ) (exponential complexity) The number of points on E, denoted #E(F q ) q (see last week s tutorial) For 2 80 (80-bit) security, #E(F q ) whilst F q k therefore k... For (128-bit) security, #E(F q ) whilst F q k therefore k... For (256-bit) security, #E(F q ) whilst F q k therefore k... #E grows (exponentially) at same rate as security, but F q k grows must faster (lucky we can be flexible with k)

17 Using pairings 1991: The MOV attack on ECC Menezes-Okamoto-Vanstone attacked ECC using pairings in 1991 (MOV - Reducing elliptic curve logarithms to logarithms in a finite field ) Given P, Q G, the discrete log problem on the elliptic curve is to find a such that Q = ap. (ECDLP) Let g = e(p, R) 1 for some R G. Let h = e(q, R) = e(ap, R) = e(p, R) a = g a. Therefore attacker can look at the discrete log problem in the finite field G T (obtaining a from g and h) This attack only works for symmetric pairings on supersingular curves (we will see why later) which have low embedding degree (arghhhh!)

18 Using pairings DDH is easy Decision Diffie-Hellman DDH problem in G is to distinguish between the distributions P, ap, bp, abp and P, ap, bp, cp where a, b, c are chosen randomly in Z r and P is chosen randomly in G. Assume a symmetric pairing e : G G G T. Since e(ap, bp) = e(p, P) ab it is easy to decide DDH by checking if e(ap, bp) = e(p, cp)? Therefore DDH is easy in G, even though CDH is still hard.

19 Using pairings Bilinear Diffie-Hellman (BDH) Assumption Bilinear Diffie-Hellman Problem Suppose e : G G G T is a symmetric pairing. Given P, ap, bp, cp G for a, b, c Z r, the BDH problem is to compute e(p, P) abc. The BDH assumption says that there exists no efficient algorithm to solve the BDH problem with non-negligible probability Can t really force three arguments into the pairing to get all three integers into the exponent...

20 Using pairings Joux s Three-Party Key Exchange Protocol (2000) Fix generator P G with e : G G G T Parties A, B, C respectively choose random a, b, c Z r A broadcasts ap, B broadcasts bp, C broadcasts cp All three parties can now compute the shared secret e(p, P) abc = e(bp, cp) a = e(ap, cp) b = e(ap, bp) c Attacker gets a look at P, ap, bp, cp... (locked inside the BDH problem/assumption) Basically three party version of Diffie-Hellman key exchange (but happens simultaneously)

21 ID-based cryptography ID-based cryptography - what and why? In ordinary public key cryptography, public keys are random strings Certificates are required to authenticate public keys Certificate management is a huge problem (issuing, path discovery, verification, revocation...)

22 ID-based cryptography Identities as public keys Shamir in 1984 proposed ID-based cryptography: make the public key equal to the identity of the owner In traditional PKI you need three items: identity, public key, certificate In ID-based cryptography these are all replaced by one item: the identity Identity string can be anything... huh?

23 ID-based cryptography Key generation in ID-based cryptography A Trusted Authority (TA) issues private keys to users during a registration process Users cannot generate their own keys ID-based cryptography has inherent key escrow of private keys TA keys can be shared to distribute trust What about key revocation? Partial solution is to include validity period in identity string.

24 ID-based cryptography Workflow ID-based public keys can be defined and used before the private key even exists. This property can be used to control the order of certain system events (workflow). Sending secrets into the future include validity start period as part of identity string; TA should only issue decryption key after validity start period Access control Include access control information as part of identity string TA should only issue decryption key on production of authorisation information

25 ID-based cryptography Boneh-Franklin IBE First ID-based encryption scheme with proof of security, published (SOK scheme in 2001 is roughly the same, but no security proof, and published in Japanese) Boneh-Franklin also give security model for IBE Basic version provides CPA security, enhanced version provides CCA security This paper was the main trigger for a flood of research in pairing-based cryptography As of today, 2264 citations on Google scholar

26 ID-based cryptography IBE - the four stages 1 Setup: the system parameters are set up 2 Extract: any identity sends identity string to TA and TA issues private key back to identity 3 Encrypt: users encrypt! 4 Decrypt: users decrypt!

27 ID-based cryptography Boneh Franklin IBE: SETUP 1 Generate parameters G, G T, e, where eg G G T is a symmetric pairing on groups of prime order r 2 Select two hash functions H 1 : {0, 1} G, H 2 : G T {0, 1} n, where n is the length of the plaintexts. 3 Choose an arbitrary generator P G 4 Select a master-key s uniformly at random from Z r and set P 0 = sp. 5 Public parameters are G, G T, e, r, P, P 0, H 1, H 2

28 ID-based cryptography Boneh Franklin IBE: Extract, Encrypt, Decrypt 1 Extract: Given an identity ID {0, 1}, set d ID = sh 1 (ID) as the private key of the identity. 2 Encrypt: Inputs are the message M and a target identity ID. 1 Choose random t Z r 2 Compute the ciphertext C = tp, M H 2 (e(h 1 (ID), P 0 ) t ). 3 Decrypt: Given a ciphertext U, V and a private key d ID, compute: M = V H 2 (e(d ID, U)).

29 ID-based cryptography Boneh Franklin IBE Analogous to ElGamal encryption, can also be related to Joux s protocol. Both sender (who has t) and reciever (who has d ID ) can compute e(h 1 (ID), P) st (let s see?)

30 ID-based cryptography Informal Security of Boneh Franklin IBE Adversary sees message XORed with hash of e(h 1 (ID), P 0 ) t Adversary also sees P 0 = sp and U = tp Write H 1 (ID = zp for some (unknown) z. Then e(h 1 (ID), P 0 ) t = e(p, P) stz. Because H 2 is modeled as a random oracle, adversary needs to compute e(p, P) stz when given as inputs sp, tp, zp. This is an instance of the BDH problem.

31 What do we want in a pairing General Pairings e : G 1 G 2 G T 1 We want to be able to efficiently hash random strings to G 1 and G 2 2 We (usually) want an efficiently computable isomorphism ψ : G 2 G 1 3 We want to be flexible in our choice of the embedding degree k Unfortunately, achieving all three of these properties simultaneously is not currently possible Prior to this being well known, cryptographers often made incorrect assumptions

32 The r-torsion The points P and Q in the pairing come from the r-torsion E[r] = Z r Z r. The green subgroup is usually chosen as G 1 for efficiency... all we need is another subgroup G 2 to pair elements of G 1 with. We can get out of the blue subgroups (trace map), but we can t hash into them Ironically, the only other subgroup we can hash to (the red subgroup), is the only one we can t map back out of.

33 Supersingular Curves The only time we can simultaneously do these two things is unfortunately on supersingular curves where our embedding degree k = 2, 3, 6 is restricted. This inability to satisfy all desired properties forces us to define different types of pairings, each with its own pros and cons

34 Pairing types Type 1 Pairings Can efficiently hash both P and Q onto the base field subgroup Use the distorsion map to send Q into a linearly independent subgroup Pairing defined over same group so isomorphism exists BUT... Supersingular curves only (k = 2 for large characteristic)

35 Pairing types Type 2 Pairings Can efficiently hash P onto the base field subgroup The trace map will map Q back to the base field subgroup Available over all curves and embedding degrees BUT... cannot randomly sample from this blue group without knowing the discrete logarithm

36 Pairing types Type 3 Pairings Can hash P and Q to their subgroups Available over all curves and embedding degrees BUT... no map from this Q s group back to P s group

37 Pairing types Type 4 Pairings Can hash both P and Q onto their subgroups Available over all curves and embedding degrees There will always be a map back (the trace map) Cannot hash points into the same subgroup (no discrete log between two Q s)

38 Pairing types Pairings in Protocols There have been schemes published that incorrectly assume that all properties of pairings can be utilised simultaneously Cryptographers must be careful when developing protocols that the pairings they need actually exist

39 Summary from last week We (cryptographers) need groups to work with Elliptic curves are a powerful (but weird-looking) group We can use elliptic curve group law to define protocols that existed on other groups like Z p This is ECC Elliptic curves are (coincidentally) the only place we can construct cryptographically useful pairings...

40 Summary from this week Pairings are bilinear maps Bilinear maps are extremely useful Therefore pairings are extremely useful We only looked at one hard problem/assumption (BDH). There are a heap more. (Google Pairing-based crypto lounge ) We only looked at a couple of protocols. There are a heap more. (Google Pairing-based crypto lounge )... or wait for me to upload the tutorial questions

41 Conclusion Elliptic curves are awesome Pairings are awesome Come and do a Ph.D in one of these topics

Pairing-Based Cryptography An Introduction

Pairing-Based Cryptography An Introduction ECRYPT Summer School Samos 1 Pairing-Based Cryptography An Introduction Kenny Paterson kenny.paterson@rhul.ac.uk May 4th 2007 ECRYPT Summer School Samos 2 The Pairings Explosion Pairings originally used

More information

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks

ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ID-based Encryption Scheme Secure against Chosen Ciphertext Attacks ongxing Lu and Zhenfu Cao Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.. China {cao-zf,

More information

Cryptography from Pairings

Cryptography from Pairings DIAMANT/EIDMA Symposium, May 31st/June 1st 2007 1 Cryptography from Pairings Kenny Paterson kenny.paterson@rhul.ac.uk May 31st 2007 DIAMANT/EIDMA Symposium, May 31st/June 1st 2007 2 The Pairings Explosion

More information

CSC 774 Advanced Network Security

CSC 774 Advanced Network Security CSC 774 Advanced Network Security Topic 2.6 ID Based Cryptography #2 Slides by An Liu Outline Applications Elliptic Curve Group over real number and F p Weil Pairing BasicIdent FullIdent Extensions Escrow

More information

CSC 774 Advanced Network Security

CSC 774 Advanced Network Security CSC 774 Advanced Network Security Topic 2.6 ID Based Cryptography #2 Slides by An Liu Outline Applications Elliptic Curve Group over real number and F p Weil Pairing BasicIdent FullIdent Extensions Escrow

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Identity-Based Cryptography T-79.5502 Advanced Course in Cryptology Billy Brumley billy.brumley at hut.fi Helsinki University of Technology Identity-Based Cryptography 1/24 Outline Classical ID-Based Crypto;

More information

G Advanced Cryptography April 10th, Lecture 11

G Advanced Cryptography April 10th, Lecture 11 G.30-001 Advanced Cryptography April 10th, 007 Lecturer: Victor Shoup Lecture 11 Scribe: Kristiyan Haralambiev We continue the discussion of public key encryption. Last time, we studied Hash Proof Systems

More information

Recent Advances in Identity-based Encryption Pairing-based Constructions

Recent Advances in Identity-based Encryption Pairing-based Constructions Fields Institute Workshop on New Directions in Cryptography 1 Recent Advances in Identity-based Encryption Pairing-based Constructions Kenny Paterson kenny.paterson@rhul.ac.uk June 25th 2008 Fields Institute

More information

Applied cryptography

Applied cryptography Applied cryptography Identity-based Cryptography Andreas Hülsing 19 November 2015 1 / 37 The public key problem How to obtain the correct public key of a user? How to check its authenticity? General answer:

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security

Outline. The Game-based Methodology for Computational Security Proofs. Public-Key Cryptography. Outline. Introduction Provable Security The Game-based Methodology for Computational s David Pointcheval Ecole normale supérieure, CNRS & INRIA Computational and Symbolic Proofs of Security Atagawa Heights Japan April 6th, 2009 1/39 2/39 Public-Key

More information

Aspects of Pairing Inversion

Aspects of Pairing Inversion Applications of Aspects of ECC 2007 - Dublin Aspects of Applications of Applications of Aspects of Applications of Pairings Let G 1, G 2, G T be groups of prime order r. A pairing is a non-degenerate bilinear

More information

T Advanced Course in Cryptology. March 28 th, ID-based authentication frameworks and primitives. Mikko Kiviharju

T Advanced Course in Cryptology. March 28 th, ID-based authentication frameworks and primitives. Mikko Kiviharju March 28 th, 2006 ID-based authentication frameworks and primitives Helsinki University of Technology mkivihar@cc.hut.fi 1 Overview Motivation History and introduction of IB schemes Mathematical basis

More information

One can use elliptic curves to factor integers, although probably not RSA moduli.

One can use elliptic curves to factor integers, although probably not RSA moduli. Elliptic Curves Elliptic curves are groups created by defining a binary operation (addition) on the points of the graph of certain polynomial equations in two variables. These groups have several properties

More information

Boneh-Franklin Identity Based Encryption Revisited

Boneh-Franklin Identity Based Encryption Revisited Boneh-Franklin Identity Based Encryption Revisited David Galindo Institute for Computing and Information Sciences Radboud University Nijmegen P.O.Box 9010 6500 GL, Nijmegen, The Netherlands. d.galindo@cs.ru.nl

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Introduction to Elliptic Curve Cryptography. Anupam Datta

Introduction to Elliptic Curve Cryptography. Anupam Datta Introduction to Elliptic Curve Cryptography Anupam Datta 18-733 Elliptic Curve Cryptography Public Key Cryptosystem Duality between Elliptic Curve Cryptography and Discrete Log Based Cryptography Groups

More information

Verifiable Security of Boneh-Franklin Identity-Based Encryption. Federico Olmedo Gilles Barthe Santiago Zanella Béguelin

Verifiable Security of Boneh-Franklin Identity-Based Encryption. Federico Olmedo Gilles Barthe Santiago Zanella Béguelin Verifiable Security of Boneh-Franklin Identity-Based Encryption Federico Olmedo Gilles Barthe Santiago Zanella Béguelin IMDEA Software Institute, Madrid, Spain 5 th International Conference on Provable

More information

Elliptic curves: Theory and Applications. Day 4: The discrete logarithm problem.

Elliptic curves: Theory and Applications. Day 4: The discrete logarithm problem. Elliptic curves: Theory and Applications. Day 4: The discrete logarithm problem. Elisa Lorenzo García Université de Rennes 1 14-09-2017 Elisa Lorenzo García (Rennes 1) Elliptic Curves 4 14-09-2017 1 /

More information

Background of Pairings

Background of Pairings Background of Pairings Tanja Lange Department of Mathematics and Computer Science Technische Universiteit Eindhoven The Netherlands tanja@hyperelliptic.org 04.09.2007 Tanja Lange Background of Pairings

More information

Asymmetric Pairings. Alfred Menezes (joint work with S. Chatterjee, D. Hankerson & E. Knapp)

Asymmetric Pairings. Alfred Menezes (joint work with S. Chatterjee, D. Hankerson & E. Knapp) Asymmetric Pairings Alfred Menezes (joint work with S. Chatterjee, D. Hankerson & E. Knapp) 1 Overview In their 2006 paper "Pairings for cryptographers", Galbraith, Paterson and Smart identified three

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

REMARKS ON IBE SCHEME OF WANG AND CAO

REMARKS ON IBE SCHEME OF WANG AND CAO REMARKS ON IBE SCEME OF WANG AND CAO Sunder Lal and Priyam Sharma Derpartment of Mathematics, Dr. B.R.A.(Agra), University, Agra-800(UP), India. E-mail- sunder_lal@rediffmail.com, priyam_sharma.ibs@rediffmail.com

More information

[6] was based on the quadratic residuosity problem, whilst the second given by Boneh and Franklin [3] was based on the Weil pairing. Originally the ex

[6] was based on the quadratic residuosity problem, whilst the second given by Boneh and Franklin [3] was based on the Weil pairing. Originally the ex Exponent Group Signature Schemes and Ecient Identity Based Signature Schemes Based on Pairings F. Hess Dept. Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol,

More information

Constructing Pairing-Friendly Elliptic Curves for Cryptography

Constructing Pairing-Friendly Elliptic Curves for Cryptography Constructing Pairing-Friendly Elliptic Curves for Cryptography University of California, Berkeley, USA 2nd KIAS-KMS Summer Workshop on Cryptography Seoul, Korea 30 June 2007 Outline 1 Pairings in Cryptography

More information

Pairings for Cryptography

Pairings for Cryptography Pairings for Cryptography Michael Naehrig Technische Universiteit Eindhoven Ñ ÐÖÝÔØÓ ºÓÖ Nijmegen, 11 December 2009 Pairings A pairing is a bilinear, non-degenerate map e : G 1 G 2 G 3, where (G 1, +),

More information

Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05

Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05 Cryptanalysis and improvement of an ID-based ad-hoc anonymous identification scheme at CT-RSA 05 Fangguo Zhang 1 and Xiaofeng Chen 2 1 Department of Electronics and Communication Engineering, Sun Yat-sen

More information

Public-key Cryptography and elliptic curves

Public-key Cryptography and elliptic curves Public-key Cryptography and elliptic curves Dan Nichols University of Massachusetts Amherst nichols@math.umass.edu WINRS Research Symposium Brown University March 4, 2017 Cryptography basics Cryptography

More information

Cryptography IV: Asymmetric Ciphers

Cryptography IV: Asymmetric Ciphers Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7 David Aspinall School of Informatics University of Edinburgh 31st January 2011 Outline Background RSA Diffie-Hellman ElGamal Summary Outline

More information

Introduction to Cryptography. Lecture 8

Introduction to Cryptography. Lecture 8 Introduction to Cryptography Lecture 8 Benny Pinkas page 1 1 Groups we will use Multiplication modulo a prime number p (G, ) = ({1,2,,p-1}, ) E.g., Z 7* = ( {1,2,3,4,5,6}, ) Z p * Z N * Multiplication

More information

Secure Bilinear Diffie-Hellman Bits

Secure Bilinear Diffie-Hellman Bits Secure Bilinear Diffie-Hellman Bits Steven D. Galbraith 1, Herbie J. Hopkins 1, and Igor E. Shparlinski 2 1 Mathematics Department, Royal Holloway University of London Egham, Surrey, TW20 0EX, UK Steven.Galbraith@rhul.ac.uk,

More information

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Boaz Barak November 21, 2007 Cyclic groups and discrete log A group G is cyclic if there exists a generator

More information

Lecture Notes, Week 6

Lecture Notes, Week 6 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Week 6 (rev. 3) Professor M. J. Fischer February 15 & 17, 2005 1 RSA Security Lecture Notes, Week 6 Several

More information

Public Key Algorithms

Public Key Algorithms Public Key Algorithms Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-09/

More information

ID-Based Blind Signature and Ring Signature from Pairings

ID-Based Blind Signature and Ring Signature from Pairings ID-Based Blind Signature and Ring Signature from Pairings Fangguo Zhang and Kwangjo Kim International Research center for Information Security (IRIS) Information and Communications University(ICU), 58-4

More information

2.2. The Weil Pairing on Elliptic Curves If A and B are r-torsion points on some elliptic curve E(F q d ), let us denote the r-weil pairing of A and B

2.2. The Weil Pairing on Elliptic Curves If A and B are r-torsion points on some elliptic curve E(F q d ), let us denote the r-weil pairing of A and B Weil Pairing vs. Tate Pairing in IBE systems Ezra Brown, Eric Errthum, David Fu October 10, 2003 1. Introduction Although Boneh and Franklin use the Weil pairing on elliptic curves to create Identity-

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 13 March 3, 2013 CPSC 467b, Lecture 13 1/52 Elliptic Curves Basics Elliptic Curve Cryptography CPSC

More information

Public-Key Encryption: ElGamal, RSA, Rabin

Public-Key Encryption: ElGamal, RSA, Rabin Public-Key Encryption: ElGamal, RSA, Rabin Introduction to Modern Cryptography Benny Applebaum Tel-Aviv University Fall Semester, 2011 12 Public-Key Encryption Syntax Encryption algorithm: E. Decryption

More information

Project: Supersingular Curves and the Weil Pairing in Elliptic Curve Cryptography

Project: Supersingular Curves and the Weil Pairing in Elliptic Curve Cryptography Math 842: Final Project 12/15/04 Project: Supersingular Curves and the Weil Pairing in Elliptic Curve Cryptography Instructor: Nigel Boston Author: Sarah Knoop 1 Introduction Even first semester calculus

More information

Public-Key Cryptography. Public-Key Certificates. Public-Key Certificates: Use

Public-Key Cryptography. Public-Key Certificates. Public-Key Certificates: Use Public-Key Cryptography Tutorial on Dr. Associate Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur http://cse.iitkgp.ac.in/ abhij/ January 30, 2017 Short

More information

Katherine Stange. ECC 2007, Dublin, Ireland

Katherine Stange. ECC 2007, Dublin, Ireland in in Department of Brown University http://www.math.brown.edu/~stange/ in ECC Computation of ECC 2007, Dublin, Ireland Outline in in ECC Computation of in ECC Computation of in Definition A integer sequence

More information

Public-key Cryptography and elliptic curves

Public-key Cryptography and elliptic curves Public-key Cryptography and elliptic curves Dan Nichols nichols@math.umass.edu University of Massachusetts Oct. 14, 2015 Cryptography basics Cryptography is the study of secure communications. Here are

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer 1 Lecture 13 October 16, 2017 (notes revised 10/23/17) 1 Derived from lecture notes by Ewa Syta. CPSC 467, Lecture 13 1/57 Elliptic Curves

More information

Foundations. P =! NP oneway function signature schemes Trapdoor oneway function PKC, IBS IBE

Foundations. P =! NP oneway function signature schemes Trapdoor oneway function PKC, IBS IBE Foundations P =! NP oneway function signature schemes Trapdoor oneway function PKC, IBS IBE NP problems: IF, DL, Knapsack Hardness of these problems implies the security of cryptosytems? 2 Relations of

More information

Identity-based encryption

Identity-based encryption Identity-based encryption Michel Abdalla ENS & CNRS MPRI - Course 2-12-1 Michel Abdalla (ENS & CNRS) Identity-based encryption 1 / 43 Identity-based encryption (IBE) Goal: Allow senders to encrypt messages

More information

The odd couple: MQV and HMQV

The odd couple: MQV and HMQV The odd couple: MQV and HMQV Jean-Philippe Aumasson 1 / 49 Summary MQV = EC-DH-based key agreement protocol, proposed by Menezes, Qu and Vanstone (1995), improved with Law and Solinas (1998), widely standardized

More information

Multi-key Hierarchical Identity-Based Signatures

Multi-key Hierarchical Identity-Based Signatures Multi-key Hierarchical Identity-Based Signatures Hoon Wei Lim Nanyang Technological University 9 June 2010 Outline 1 Introduction 2 Preliminaries 3 Multi-key HIBS 4 Security Analysis 5 Discussion 6 Open

More information

SM9 identity-based cryptographic algorithms Part 1: General

SM9 identity-based cryptographic algorithms Part 1: General SM9 identity-based cryptographic algorithms Part 1: General Contents 1 Scope... 1 2 Terms and definitions... 1 2.1 identity... 1 2.2 master key... 1 2.3 key generation center (KGC)... 1 3 Symbols and abbreviations...

More information

On the complexity of computing discrete logarithms in the field F

On the complexity of computing discrete logarithms in the field F On the complexity of computing discrete logarithms in the field F 3 6 509 Francisco Rodríguez-Henríquez CINVESTAV-IPN Joint work with: Gora Adj Alfred Menezes Thomaz Oliveira CINVESTAV-IPN University of

More information

Secure Certificateless Public Key Encryption without Redundancy

Secure Certificateless Public Key Encryption without Redundancy Secure Certificateless Public Key Encryption without Redundancy Yinxia Sun and Futai Zhang School of Mathematics and Computer Science Nanjing Normal University, Nanjing 210097, P.R.China Abstract. Certificateless

More information

Lecture 7: Boneh-Boyen Proof & Waters IBE System

Lecture 7: Boneh-Boyen Proof & Waters IBE System CS395T Advanced Cryptography 2/0/2009 Lecture 7: Boneh-Boyen Proof & Waters IBE System Instructor: Brent Waters Scribe: Ioannis Rouselakis Review Last lecture we discussed about the Boneh-Boyen IBE system,

More information

Public Key 9/17/2018. Symmetric Cryptography Review. Symmetric Cryptography: Shortcomings (1) Symmetric Cryptography: Analogy

Public Key 9/17/2018. Symmetric Cryptography Review. Symmetric Cryptography: Shortcomings (1) Symmetric Cryptography: Analogy Symmetric Cryptography Review Alice Bob Public Key x e K (x) y d K (y) x K K Instructor: Dr. Wei (Lisa) Li Department of Computer Science, GSU Two properties of symmetric (secret-key) crypto-systems: The

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

Pairing-Based Cryptographic Protocols : A Survey

Pairing-Based Cryptographic Protocols : A Survey Pairing-Based Cryptographic Protocols : A Survey Ratna Dutta, Rana Barua and Palash Sarkar Cryptology Research Group Stat-Math and Applied Statistics Unit 203, B. T. Road, Kolkata India 700108 e-mail :{ratna

More information

Remove Key Escrow from The Identity-Based Encryption System

Remove Key Escrow from The Identity-Based Encryption System Remove Key Escrow from The Identity-Based Encryption System Zhaohui Cheng, Richard Comley and Luminita Vasiu School of Computing Science, Middlesex University, White Hart Lane, London N17 8HR, UK. {m.z.cheng,r.comley,l.vasiu}@mdx.ac.uk

More information

Short Signature Scheme From Bilinear Pairings

Short Signature Scheme From Bilinear Pairings Sedat Akleylek, Barış Bülent Kırlar, Ömer Sever, and Zaliha Yüce Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey {akleylek,kirlar}@metu.edu.tr,severomer@yahoo.com,zyuce@stm.com.tr

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography The State of the Art of Elliptic Curve Cryptography Ernst Kani Department of Mathematics and Statistics Queen s University Kingston, Ontario Elliptic Curve Cryptography 1 Outline 1. ECC: Advantages and

More information

Polynomial Interpolation in the Elliptic Curve Cryptosystem

Polynomial Interpolation in the Elliptic Curve Cryptosystem Journal of Mathematics and Statistics 7 (4): 326-331, 2011 ISSN 1549-3644 2011 Science Publications Polynomial Interpolation in the Elliptic Curve Cryptosystem Liew Khang Jie and Hailiza Kamarulhaili School

More information

Efficient Identity-Based Encryption Without Random Oracles

Efficient Identity-Based Encryption Without Random Oracles Efficient Identity-Based Encryption Without Random Oracles Brent Waters Abstract We present the first efficient Identity-Based Encryption (IBE) scheme that is fully secure without random oracles. We first

More information

MATH 158 FINAL EXAM 20 DECEMBER 2016

MATH 158 FINAL EXAM 20 DECEMBER 2016 MATH 158 FINAL EXAM 20 DECEMBER 2016 Name : The exam is double-sided. Make sure to read both sides of each page. The time limit is three hours. No calculators are permitted. You are permitted one page

More information

Faster F p -arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves

Faster F p -arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves Faster F p -arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves Junfeng Fan, Frederik Vercauteren and Ingrid Verbauwhede Katholieke Universiteit Leuven, COSIC May 18, 2009 1 Outline What is

More information

On (Hierarchical) Identity Based Encryption Protocols with Short Public Parameters (With an Exposition of Waters Artificial Abort Technique)

On (Hierarchical) Identity Based Encryption Protocols with Short Public Parameters (With an Exposition of Waters Artificial Abort Technique) On (Hierarchical) Identity Based Encryption Protocols with Short Public Parameters (With an Exposition of Waters Artificial Abort Technique) Sanjit Chatterjee and Palash Sarkar Applied Statistics Unit

More information

8 Elliptic Curve Cryptography

8 Elliptic Curve Cryptography 8 Elliptic Curve Cryptography 8.1 Elliptic Curves over a Finite Field For the purposes of cryptography, we want to consider an elliptic curve defined over a finite field F p = Z/pZ for p a prime. Given

More information

Toward Hierarchical Identity-Based Encryption

Toward Hierarchical Identity-Based Encryption Toward Hierarchical Identity-Based Encryption Jeremy Horwitz and Ben Lynn Stanford University, Stanford, CA 94305, USA, {horwitz blynn}@cs.stanford.edu Abstract. We introduce the concept of hierarchical

More information

Non-generic attacks on elliptic curve DLPs

Non-generic attacks on elliptic curve DLPs Non-generic attacks on elliptic curve DLPs Benjamin Smith Team GRACE INRIA Saclay Île-de-France Laboratoire d Informatique de l École polytechnique (LIX) ECC Summer School Leuven, September 13 2013 Smith

More information

A Dierential Power Analysis attack against the Miller's Algorithm

A Dierential Power Analysis attack against the Miller's Algorithm A Dierential Power Analysis attack against the Miller's Algorithm Nadia El Mrabet (1), G. Di Natale (2) and M.L. Flottes (2) (1) Team Arith, (2) Team CCSI/LIRMM, Université Montpellier 2 Prime 2009, UCC,

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

Public-Key Cryptosystems CHAPTER 4

Public-Key Cryptosystems CHAPTER 4 Public-Key Cryptosystems CHAPTER 4 Introduction How to distribute the cryptographic keys? Naïve Solution Naïve Solution Give every user P i a separate random key K ij to communicate with every P j. Disadvantage:

More information

Fixed Argument Pairings

Fixed Argument Pairings craig.costello@qut.edu.au Queensland University of Technology LatinCrypt 2010 Puebla, Mexico Joint work with Douglas Stebila Pairings A mapping e : G 1 G 2 G T : P G 1, Q G 2 and e(p, Q) G T : groups are

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

Introduction to Elliptic Curve Cryptography

Introduction to Elliptic Curve Cryptography Indian Statistical Institute Kolkata May 19, 2017 ElGamal Public Key Cryptosystem, 1984 Key Generation: 1 Choose a suitable large prime p 2 Choose a generator g of the cyclic group IZ p 3 Choose a cyclic

More information

Tampering attacks in pairing-based cryptography. Johannes Blömer University of Paderborn September 22, 2014

Tampering attacks in pairing-based cryptography. Johannes Blömer University of Paderborn September 22, 2014 Tampering attacks in pairing-based cryptography Johannes Blömer University of Paderborn September 22, 2014 1 / 16 Pairings Definition 1 A pairing is a bilinear, non-degenerate, and efficiently computable

More information

Pairings for Cryptographers

Pairings for Cryptographers Pairings for Cryptographers Craig Costello t-craigc@microsoft.com talk based on disjoint work (not mine) by: Steven Galbraith, Kenny Paterson, Nigel Smart August 15, 2012 1 /22 Pairing groups A pairing

More information

Elliptic Curve Cryptosystems

Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems Santiago Paiva santiago.paiva@mail.mcgill.ca McGill University April 25th, 2013 Abstract The application of elliptic curves in the field of cryptography has significantly improved

More information

CS 355: Topics in Cryptography Spring Problem Set 5.

CS 355: Topics in Cryptography Spring Problem Set 5. CS 355: Topics in Cryptography Spring 2018 Problem Set 5 Due: June 8, 2018 at 5pm (submit via Gradescope) Instructions: You must typeset your solution in LaTeX using the provided template: https://crypto.stanford.edu/cs355/homework.tex

More information

ASYMMETRIC ENCRYPTION

ASYMMETRIC ENCRYPTION ASYMMETRIC ENCRYPTION 1 / 1 Recommended Book Steven Levy. Crypto. Penguin books. 2001. A non-technical account of the history of public-key cryptography and the colorful characters involved. 2 / 1 Recall

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 11 February 21, 2013 CPSC 467b, Lecture 11 1/27 Discrete Logarithm Diffie-Hellman Key Exchange ElGamal Key Agreement Primitive Roots

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

A Strong Identity Based Key-Insulated Cryptosystem

A Strong Identity Based Key-Insulated Cryptosystem A Strong Identity Based Key-Insulated Cryptosystem Jin Li 1, Fangguo Zhang 2,3, and Yanming Wang 1,4 1 School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou, 510275, P.R.China

More information

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004

Lecture 9 Julie Staub Avi Dalal Abheek Anand Gelareh Taban. 1 Introduction. 2 Background. CMSC 858K Advanced Topics in Cryptography February 24, 2004 CMSC 858K Advanced Topics in Cryptography February 24, 2004 Lecturer: Jonathan Katz Lecture 9 Scribe(s): Julie Staub Avi Dalal Abheek Anand Gelareh Taban 1 Introduction In previous lectures, we constructed

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

Constructing Abelian Varieties for Pairing-Based Cryptography

Constructing Abelian Varieties for Pairing-Based Cryptography for Pairing-Based CWI and Universiteit Leiden, Netherlands Workshop on Pairings in Arithmetic Geometry and 4 May 2009 s MNT MNT Type s What is pairing-based cryptography? Pairing-based cryptography refers

More information

Simple SK-ID-KEM 1. 1 Introduction

Simple SK-ID-KEM 1. 1 Introduction 1 Simple SK-ID-KEM 1 Zhaohui Cheng School of Computing Science, Middlesex University The Burroughs, Hendon, London, NW4 4BT, United Kingdom. m.z.cheng@mdx.ac.uk Abstract. In 2001, Boneh and Franklin presented

More information

Lecture 17: Constructions of Public-Key Encryption

Lecture 17: Constructions of Public-Key Encryption COM S 687 Introduction to Cryptography October 24, 2006 Lecture 17: Constructions of Public-Key Encryption Instructor: Rafael Pass Scribe: Muthu 1 Secure Public-Key Encryption In the previous lecture,

More information

Pairings for Cryptographers

Pairings for Cryptographers Pairings for Cryptographers Steven D. Galbraith 1, Kenneth G. Paterson 1, and Nigel P. Smart 2 1 Information Security Group, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom.

More information

Chapter 8 Public-key Cryptography and Digital Signatures

Chapter 8 Public-key Cryptography and Digital Signatures Chapter 8 Public-key Cryptography and Digital Signatures v 1. Introduction to Public-key Cryptography 2. Example of Public-key Algorithm: Diffie- Hellman Key Exchange Scheme 3. RSA Encryption and Digital

More information

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015 L7. Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang, 5 March 2015 1 Outline The basic foundation: multiplicative group modulo prime The basic Diffie-Hellman (DH) protocol The discrete logarithm

More information

The Elliptic Curve in https

The Elliptic Curve in https The Elliptic Curve in https Marco Streng Universiteit Leiden 25 November 2014 Marco Streng (Universiteit Leiden) The Elliptic Curve in https 25-11-2014 1 The s in https:// HyperText Transfer Protocol

More information

Recent Advances in Identity-based Encryption Pairing-free Constructions

Recent Advances in Identity-based Encryption Pairing-free Constructions Fields Institute Workshop on New Directions in Cryptography 1 Recent Advances in Identity-based Encryption Pairing-free Constructions Kenny Paterson kenny.paterson@rhul.ac.uk June 25th 2008 Fields Institute

More information

Lemma 1.2. (1) If p is prime, then ϕ(p) = p 1. (2) If p q are two primes, then ϕ(pq) = (p 1)(q 1).

Lemma 1.2. (1) If p is prime, then ϕ(p) = p 1. (2) If p q are two primes, then ϕ(pq) = (p 1)(q 1). 1 Background 1.1 The group of units MAT 3343, APPLIED ALGEBRA, FALL 2003 Handout 3: The RSA Cryptosystem Peter Selinger Let (R, +, ) be a ring. Then R forms an abelian group under addition. R does not

More information

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography Lecture 19: (Diffie-Hellman Key Exchange & ElGamal Encryption) Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies

More information

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems Other Public-Key Cryptosystems Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

More information

Security Analysis of Some Batch Verifying Signatures from Pairings

Security Analysis of Some Batch Verifying Signatures from Pairings International Journal of Network Security, Vol.3, No.2, PP.138 143, Sept. 2006 (http://ijns.nchu.edu.tw/) 138 Security Analysis of Some Batch Verifying Signatures from Pairings Tianjie Cao 1,2,3, Dongdai

More information

Arithmetic operators for pairing-based cryptography

Arithmetic operators for pairing-based cryptography 7. Kryptotag November 9 th, 2007 Arithmetic operators for pairing-based cryptography Jérémie Detrey Cosec, B-IT, Bonn, Germany jdetrey@bit.uni-bonn.de Joint work with: Jean-Luc Beuchat Nicolas Brisebarre

More information

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004

Lecture 4 Chiu Yuen Koo Nikolai Yakovenko. 1 Summary. 2 Hybrid Encryption. CMSC 858K Advanced Topics in Cryptography February 5, 2004 CMSC 858K Advanced Topics in Cryptography February 5, 2004 Lecturer: Jonathan Katz Lecture 4 Scribe(s): Chiu Yuen Koo Nikolai Yakovenko Jeffrey Blank 1 Summary The focus of this lecture is efficient public-key

More information

Lecture 7: ElGamal and Discrete Logarithms

Lecture 7: ElGamal and Discrete Logarithms Lecture 7: ElGamal and Discrete Logarithms Johan Håstad, transcribed by Johan Linde 2006-02-07 1 The discrete logarithm problem Recall that a generator g of a group G is an element of order n such that

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor RSA Public Key Encryption Factoring Algorithms Lecture 7 Tel-Aviv University Revised March 1st, 2008 Reminder: The Prime Number Theorem Let π(x) denote the

More information

Chapter 4 Asymmetric Cryptography

Chapter 4 Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman [NetSec/SysSec], WS 2008/2009 4.1 Asymmetric Cryptography General idea: Use two different keys -K and +K for

More information

ElGamal type signature schemes for n-dimensional vector spaces

ElGamal type signature schemes for n-dimensional vector spaces ElGamal type signature schemes for n-dimensional vector spaces Iwan M. Duursma and Seung Kook Park Abstract We generalize the ElGamal signature scheme for cyclic groups to a signature scheme for n-dimensional

More information

Asymmetric Cryptography

Asymmetric Cryptography Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman General idea: Use two different keys -K and +K for encryption and decryption Given a

More information