Faster F p -arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves

Size: px
Start display at page:

Download "Faster F p -arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves"

Transcription

1 Faster F p -arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves Junfeng Fan, Frederik Vercauteren and Ingrid Verbauwhede Katholieke Universiteit Leuven, COSIC May 18,

2 Outline What is pairing? Why pairing? Fast computation of pairing Barreto-Naehrig (BN) curves Fast multiplication in F p Hardware implementation Conclusion 2

3 Outline What is pairing? Why pairing? Fast computation of pairing Barreto-Naehrig (BN) curves Fast multiplication in Fp Hardware implementation Conclusion 3

4 Diffie-Hellman key exchange [DH78] a, p a, p Random x a x mod p Alice key = (a y ) x a y mod p Random y key = (ax ) y Bob Computational Diffie-Hellman Problem (CDHP) : Consider a cyclic group G and generator a, {a,, a x, a y } a xy Discrete Logarithm Problem (DLP) : Consider a cyclic group G and generator a, {a, a x } x 4

5 Elliptic Curve Cryptography [Mil85,Kob87] Q R Z= kp = P P k y 2 =x 3-13x-3 Q+R Elliptic Curve Diffie-Hellman (ECDH): Elliptic curve E : Consider an elliptic E: y 2 + curve a 1 xy + E aand 3 y = a xpoint 3 + a 2 P, x 2 + a 4 x + a 6 {P, xp, yp} (xy)p Elliptic Curve Discrete Logarithm Problem (DLP) : Consider an elliptic curve E and a point P, {P, kp} k 5

6 DH v.s. ECDH q = a x mod p Q = kr G 1024-bit prime p security Elliptic Curve E on F p 163-bit prime p Performance Payload Power 6

7 Bilinear Pairing Additive group G 1 Additive group G 2 φ: G 1 G 2 G T Multiplicative group G T Bilinear P G 1, Q G 2, then φ(ap,bq)= φ(p,q) ab. Non-degenerate P G 1 \0, Q G 2, such that φ(p,q) 1. Computable 7

8 Application One round Triparitite Diffie-Hellman [Joux00] Alice a φ(bp,cp) a ap bp Bob b φ(ap,cp) b cp Shared key: φ(p,p) abc Charlie c φ(ap,bp) c Bilinear Diffie-Hellman Problem (BDHP) : Given P, ap, bp and cp in group G, compute φ(p,p) abc {P, ap, bp, cp} φ(p,p) abc 8

9 Application Identity-based encryption [BF01] Identity-based signature [Lynn02] MOV attack on ECC [MOV93] 9

10 Outline What is pairing? Why pairing? Fast computation of pairing Barreto-Naehrig (BN) curves Fast multiplication in F p Hardware implementation Conclusion 10

11 Tate pairing Definition Finite field F p, Elliptic curve E(F p ). Let r #E(F k p ), let k be the embedding degree, namely r p -1. Let E(F p )[r] denote the r-torsion group. Define G 1 = E(F p )[r], G 2 = E(F p k)[r]/re(f p k) and G T =μμ r F p k. Tate pairing: e(p,q)=(f r, P (Q)) (pk -1)/r, P G 1 and Q G 2 G 1 = E(F p )[r] G 2 = E(F p k)[r]/re(f p k) DLP should be intractable φ: G 1 G in 2 G G 1, G T 2, G T G T = μ r F p k 11

12 Pairing-Friendly Curves [FST07] G 1 = E(F p )[r] G 2 = E(F p k)[r]/re(f p k) φ: G 1 G 2 G T G T = μ r F p k E(F p ) has large prime-order subgroup, namely, ρ= logp/logr is small. Embedding degree k is small. Security level (in bits) Subgroup size r (in bits) Extension field size q k (in bits) Embedding Degree k ρ 1 ρ ,

13 Barreto-Naehrig Curves E:y y 2 = x 3 + b over F p,where p(z) = 36z z z 2 + 6z + 1, r(z) = 36z z z 2 +6z+1 + 1, t(z) = 6z Some nice features: r = #E(F( p ) k = 12 13

14 Pairing computation Pairing ate pairing R-ate pairing Optimal pairing Miller s operation o [BMX04] F p 12 F p 6 F p 2 [Scott08] F p -arithmetic p [This talk] 14

15 Outline What is pairing? Why pairing? Fast computation of pairing Barreto-Naehrig (BN) curves Fast multiplication in F p Hardware implementation Conclusion 15

16 Modular multiplication Target: Compute ab mod p Existing methods Schoolbook Montgomery [Mon85] Barrett [Bar86] Chung-Hasan [CH07] 16

17 Schoolbook method Target: Compute ab mod p Step 1: c = ab Step 2: q = c/p Step 3: r = c - qp 17

18 Schoolbook method improved Choose p = 2 m Step 1: c = ab Step 2: r = c mod p = c mod 2 m Choose p = 2 m -1 Step 1: c = ab Step 2: q = c/p = c/2 m ± δ, δ 1 when m>1. Step 3: r = c - qp Choose p = 2 m -s, where s is small. Step 1: c = ab Step 2: q = c/p = c/2 m ± δ,, δ is small. Step 3: r = c - qp 18

19 Montgomery method The essential idea: c/p c/2 Given p < 2 m and a,b< p, output ab2 - m mod p. Precompute p = p = -p - 1 mod mod 2 m /2 m Step 1: c = ab c c μ Step 2: μ = c mod 2 m Step 3: q = μp mod 2 m Step 4: r = ( c+qp ) / 2 m Step 5: r = r-p if r>p + qp c+qp / 2 m = ab2 -m mod p μ- μ qp mod 2 m = ( μp mod 2 m ) p mod 2 m = μp p mod 2 m = - μ 19 0

20 Montgomery method The essential idea: c/p c/2 Given p < 2 m and a,b< p, output ab2 - m mod p. Precompute p = Step 1: c = ab p = -p - 1 mod Step 2: μ = c mod 2 m Step 3: q = μp mod 2 m Step 4: r = ( c+qp ) / 2 m Step 5: r = r-p if r>p mod 2 m /2 m m-bit multiplication m-bit multiplication m-bit multiplication 20

21 What special for BN Curves E:y y 2 = x 3 + b over F p,where p(z) = 36z z z 2 + 6z + 1, When choose z= 0x f2d, we generate a 256-bit prime p(z)= 0xB ECBF9E F C206F BF. Some observations on p: Not 2 m Not 2 m -s for small s However, p(z) has small coefficients p - 1 (z) = 324z 4-36z 3-12z 2 +6z-1 mod z 5 p - 1 (z) = 1 mod z 21

22 Montgomery multiplication In integer ring Given p, a and b,, output In polynomial ring Given p(z) = 36z z 3 + ab2 - m mod p. 24z 2 + 6z + 1, a(z) ) and b(z), Precompute p = -p - 1 mod 2 m Step 1: c = ab Step 2: μ = c mod 2 m Step 3: q = μp mod 2 m Step 4: r = ( c+qp ) / 2 m Step 5: r = r-p if r>p output a(z)b(z)z - 5 mod mod p(z). p (z) ( ) = 324z 4-36z 3-12z 2 +6z-1 Step 1: c(z) = a(z)b(z) Step 2: μ(z) = c(z) mod z 5 Step 3: q(z) = -p p (z)μ(z) mod z 5 Step 4: r(z) = (c(z)+ q(z)p(z)/ z 5 22

23 There is one problem Given p(z) = 36z z z 2 + 6z + 1, a(z) and b(z), Given output a(z)b(z)z - 5 mod mod p(z). p (z) = 324z 4-36z 3-12z 2 +6z-1 Step 1: c(z) = a(z)b(z) Step 2: μ(z) = c(z) mod z 5 Step 3: q(z) = -p p (z)μ(z) mod z 5 Step 4: r(z) = (c(z)+ μ(z)p(z)/ z 5 Choose z= z=137, Input a(z) = 35z z 3 + 7z 2 + 6z b(z) = 5z z z 2 + 9z + 5 Step 1: c(z) = 175z 175z z z z z z z z Step 2: μ(z) = 2068z 2068z z z z Step 3: Step 4: r(z) ( ) = 2243z z z z z 3 23

24 Coefficient reduction The result we got: r(z) = 2243z z z z , But we need r i <z r(z) = -28z z z z z + 12 Thus, division i i by z is needed. d 24

25 New parameters for BN Curves E:y y 2 = x 3 + b over F p,where p(z) = 36z z z 2 + 6z + 1, r(z) = 36z z z 2 +6z+1 + 1, t(z) = 6t We can choose z= 2 m +s s, where s is small and p(z) is prime r(z) is prime (sufficiently large) and for high performance t(z) is has low Hamming-Weight (ate pairing) r(z) is has low Hamming-Weight (Tate pairing) 25

26 An example (128-bit security) E:y y 2 = x 3 + b over F p,where p(z) = 36z z z 2 + 6z + 1, r(z) = 36z z z 2 +6z+1 + 1, t(z) = 6t When choose z= s s, where s= and p(z) is 258-bit prime r(z) is 258-bit prime HW(t(z)) = 20 HW(r(z)) = 71 26

27 Outline What is pairing? Why pairing? Fast computation of pairing Barreto-Naehrig (BN) curves Fast multiplication in F p Hardware implementation Conclusion 27

28 Multiplier c(z) = a(z)b i No carry Propagation! c(z) + q(z)p(z) Coefficient Reduction 28

29 Hardware implementation 29

30 Results & Comparison 30

31 Other F p? For any irreducible p(z) defined as p(z) = p n z n + p n-1 z n p 1 z+1, When p i, is integer, we have p - 1 (z) mod z n has integer coefficients, and p - 1 (z) = 1 mod z. 31

32 Conclusion A new method to perform in F p multiplication for BN-curves Montgomery multiplication in polynomial ring z=2 n +s, where s is small This algorithm works for all irreducible ibl p(z) ( ) if p(z) = p n z n + p n-1 z n p 1 z+1 32

33 Thanks! 33

Représentation RNS des nombres et calcul de couplages

Représentation RNS des nombres et calcul de couplages Représentation RNS des nombres et calcul de couplages Sylvain Duquesne Université Rennes 1 Séminaire CCIS Grenoble, 7 Février 2013 Sylvain Duquesne (Rennes 1) RNS et couplages Grenoble, 07/02/13 1 / 29

More information

Constructing Pairing-Friendly Elliptic Curves for Cryptography

Constructing Pairing-Friendly Elliptic Curves for Cryptography Constructing Pairing-Friendly Elliptic Curves for Cryptography University of California, Berkeley, USA 2nd KIAS-KMS Summer Workshop on Cryptography Seoul, Korea 30 June 2007 Outline 1 Pairings in Cryptography

More information

Katherine Stange. ECC 2007, Dublin, Ireland

Katherine Stange. ECC 2007, Dublin, Ireland in in Department of Brown University http://www.math.brown.edu/~stange/ in ECC Computation of ECC 2007, Dublin, Ireland Outline in in ECC Computation of in ECC Computation of in Definition A integer sequence

More information

Efficient Implementation of Cryptographic pairings. Mike Scott Dublin City University

Efficient Implementation of Cryptographic pairings. Mike Scott Dublin City University Efficient Implementation of Cryptographic pairings Mike Scott Dublin City University First Steps To do Pairing based Crypto we need two things l Efficient algorithms l Suitable elliptic curves We have

More information

An Algorithm for the η T Pairing Calculation in Characteristic Three and its Hardware Implementation

An Algorithm for the η T Pairing Calculation in Characteristic Three and its Hardware Implementation An Algorithm for the η T Pairing Calculation in Characteristic Three and its Hardware Implementation Jean-Luc Beuchat 1 Masaaki Shirase 2 Tsuyoshi Takagi 2 Eiji Okamoto 1 1 Graduate School of Systems and

More information

Pairings for Cryptography

Pairings for Cryptography Pairings for Cryptography Michael Naehrig Technische Universiteit Eindhoven Ñ ÐÖÝÔØÓ ºÓÖ Nijmegen, 11 December 2009 Pairings A pairing is a bilinear, non-degenerate map e : G 1 G 2 G 3, where (G 1, +),

More information

SM9 identity-based cryptographic algorithms Part 1: General

SM9 identity-based cryptographic algorithms Part 1: General SM9 identity-based cryptographic algorithms Part 1: General Contents 1 Scope... 1 2 Terms and definitions... 1 2.1 identity... 1 2.2 master key... 1 2.3 key generation center (KGC)... 1 3 Symbols and abbreviations...

More information

A brief overwiev of pairings

A brief overwiev of pairings Bordeaux November 22, 2016 A brief overwiev of pairings Razvan Barbulescu CNRS and IMJ-PRG R. Barbulescu Overview pairings 0 / 37 Plan of the lecture Pairings Pairing-friendly curves Progress of NFS attacks

More information

A Dierential Power Analysis attack against the Miller's Algorithm

A Dierential Power Analysis attack against the Miller's Algorithm A Dierential Power Analysis attack against the Miller's Algorithm Nadia El Mrabet (1), G. Di Natale (2) and M.L. Flottes (2) (1) Team Arith, (2) Team CCSI/LIRMM, Université Montpellier 2 Prime 2009, UCC,

More information

A Relation between Group Order of Elliptic Curve and Extension Degree of Definition Field

A Relation between Group Order of Elliptic Curve and Extension Degree of Definition Field A Relation between Group Order of Elliptic Curve and Extension Degree of Definition Field Taichi Sumo, Yuki Mori (Okayama University) Yasuyuki Nogami (Graduate School of Okayama University) Tomoko Matsushima

More information

On the complexity of computing discrete logarithms in the field F

On the complexity of computing discrete logarithms in the field F On the complexity of computing discrete logarithms in the field F 3 6 509 Francisco Rodríguez-Henríquez CINVESTAV-IPN Joint work with: Gora Adj Alfred Menezes Thomaz Oliveira CINVESTAV-IPN University of

More information

Parshuram Budhathoki FAU October 25, Ph.D. Preliminary Exam, Department of Mathematics, FAU

Parshuram Budhathoki FAU October 25, Ph.D. Preliminary Exam, Department of Mathematics, FAU Parshuram Budhathoki FAU October 25, 2012 Motivation Diffie-Hellman Key exchange What is pairing? Divisors Tate pairings Miller s algorithm for Tate pairing Optimization Alice, Bob and Charlie want to

More information

Definition of a finite group

Definition of a finite group Elliptic curves Definition of a finite group (G, * ) is a finite group if: 1. G is a finite set. 2. For each a and b in G, also a * b is in G. 3. There is an e in G such that for all a in G, a * e= e *

More information

Elliptic curves: Theory and Applications. Day 4: The discrete logarithm problem.

Elliptic curves: Theory and Applications. Day 4: The discrete logarithm problem. Elliptic curves: Theory and Applications. Day 4: The discrete logarithm problem. Elisa Lorenzo García Université de Rennes 1 14-09-2017 Elisa Lorenzo García (Rennes 1) Elliptic Curves 4 14-09-2017 1 /

More information

The Elliptic Curve in https

The Elliptic Curve in https The Elliptic Curve in https Marco Streng Universiteit Leiden 25 November 2014 Marco Streng (Universiteit Leiden) The Elliptic Curve in https 25-11-2014 1 The s in https:// HyperText Transfer Protocol

More information

Asymmetric Pairings. Alfred Menezes (joint work with S. Chatterjee, D. Hankerson & E. Knapp)

Asymmetric Pairings. Alfred Menezes (joint work with S. Chatterjee, D. Hankerson & E. Knapp) Asymmetric Pairings Alfred Menezes (joint work with S. Chatterjee, D. Hankerson & E. Knapp) 1 Overview In their 2006 paper "Pairings for cryptographers", Galbraith, Paterson and Smart identified three

More information

Background of Pairings

Background of Pairings Background of Pairings Tanja Lange Department of Mathematics and Computer Science Technische Universiteit Eindhoven The Netherlands tanja@hyperelliptic.org 04.09.2007 Tanja Lange Background of Pairings

More information

Analysis of Optimum Pairing Products at High Security Levels

Analysis of Optimum Pairing Products at High Security Levels Analysis of Optimum Pairing Products at High Security Levels Xusheng Zhang and Dongdai Lin Institute of Software, Chinese Academy of Sciences Institute of Information Engineering, Chinese Academy of Sciences

More information

Aspects of Pairing Inversion

Aspects of Pairing Inversion Applications of Aspects of ECC 2007 - Dublin Aspects of Applications of Applications of Aspects of Applications of Pairings Let G 1, G 2, G T be groups of prime order r. A pairing is a non-degenerate bilinear

More information

Arithmetic Operators for Pairing-Based Cryptography

Arithmetic Operators for Pairing-Based Cryptography Arithmetic Operators for Pairing-Based Cryptography Jean-Luc Beuchat Laboratory of Cryptography and Information Security Graduate School of Systems and Information Engineering University of Tsukuba 1-1-1

More information

Pairings at High Security Levels

Pairings at High Security Levels Pairings at High Security Levels Michael Naehrig Eindhoven University of Technology michael@cryptojedi.org DoE CRYPTODOC Darmstadt, 21 November 2011 Pairings are efficient!... even at high security levels.

More information

CSC 774 Advanced Network Security

CSC 774 Advanced Network Security CSC 774 Advanced Network Security Topic 2.6 ID Based Cryptography #2 Slides by An Liu Outline Applications Elliptic Curve Group over real number and F p Weil Pairing BasicIdent FullIdent Extensions Escrow

More information

CSC 774 Advanced Network Security

CSC 774 Advanced Network Security CSC 774 Advanced Network Security Topic 2.6 ID Based Cryptography #2 Slides by An Liu Outline Applications Elliptic Curve Group over real number and F p Weil Pairing BasicIdent FullIdent Extensions Escrow

More information

Introduction to Elliptic Curve Cryptography. Anupam Datta

Introduction to Elliptic Curve Cryptography. Anupam Datta Introduction to Elliptic Curve Cryptography Anupam Datta 18-733 Elliptic Curve Cryptography Public Key Cryptosystem Duality between Elliptic Curve Cryptography and Discrete Log Based Cryptography Groups

More information

Arithmetic operators for pairing-based cryptography

Arithmetic operators for pairing-based cryptography 7. Kryptotag November 9 th, 2007 Arithmetic operators for pairing-based cryptography Jérémie Detrey Cosec, B-IT, Bonn, Germany jdetrey@bit.uni-bonn.de Joint work with: Jean-Luc Beuchat Nicolas Brisebarre

More information

Non-generic attacks on elliptic curve DLPs

Non-generic attacks on elliptic curve DLPs Non-generic attacks on elliptic curve DLPs Benjamin Smith Team GRACE INRIA Saclay Île-de-France Laboratoire d Informatique de l École polytechnique (LIX) ECC Summer School Leuven, September 13 2013 Smith

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

An Introduction to Pairings in Cryptography

An Introduction to Pairings in Cryptography An Introduction to Pairings in Cryptography Craig Costello Information Security Institute Queensland University of Technology INN652 - Advanced Cryptology, October 2009 Outline 1 Introduction to Pairings

More information

Efficient Implementation of Cryptographic pairings. Mike Scott Dublin City University

Efficient Implementation of Cryptographic pairings. Mike Scott Dublin City University Efficient Implementation of Cryptographic pairings Mike Scott Dublin City University First Steps To do Pairing based Crypto we need two things Efficient algorithms Suitable elliptic curves We have got

More information

Elliptic Curves I. The first three sections introduce and explain the properties of elliptic curves.

Elliptic Curves I. The first three sections introduce and explain the properties of elliptic curves. Elliptic Curves I 1.0 Introduction The first three sections introduce and explain the properties of elliptic curves. A background understanding of abstract algebra is required, much of which can be found

More information

Katherine Stange. Pairing, Tokyo, Japan, 2007

Katherine Stange. Pairing, Tokyo, Japan, 2007 via via Department of Mathematics Brown University http://www.math.brown.edu/~stange/ Pairing, Tokyo, Japan, 2007 Outline via Definition of an elliptic net via Definition (KS) Let R be an integral domain,

More information

Constructing Abelian Varieties for Pairing-Based Cryptography

Constructing Abelian Varieties for Pairing-Based Cryptography for Pairing-Based CWI and Universiteit Leiden, Netherlands Workshop on Pairings in Arithmetic Geometry and 4 May 2009 s MNT MNT Type s What is pairing-based cryptography? Pairing-based cryptography refers

More information

Efficient Finite Field Multiplication for Isogeny Based Post Quantum Cryptography

Efficient Finite Field Multiplication for Isogeny Based Post Quantum Cryptography Efficient Finite Field Multiplication for Isogeny Based Post Quantum Cryptography Angshuman Karmakar 1 Sujoy Sinha Roy 1 Frederik Vercauteren 1,2 Ingrid Verbauwhede 1 1 COSIC, ESAT KU Leuven and iminds

More information

Faster pairing computation in Edwards coordinates

Faster pairing computation in Edwards coordinates Faster pairing computation in Edwards coordinates PRISM, Université de Versailles (joint work with Antoine Joux) Journées de Codage et Cryptographie 2008 Edwards coordinates Á Thm: (Bernstein and Lange,

More information

Montgomery Algorithm for Modular Multiplication with Systolic Architecture

Montgomery Algorithm for Modular Multiplication with Systolic Architecture Montgomery Algorithm for Modular Multiplication with ystolic Architecture MRABET Amine LIAD Paris 8 ENIT-TUNI EL MANAR University A - MP - Gardanne PAE 016 1 Plan 1 Introduction for pairing Montgomery

More information

Optimised versions of the Ate and Twisted Ate Pairings

Optimised versions of the Ate and Twisted Ate Pairings Optimised versions of the Ate and Twisted Ate Pairings Seiichi Matsuda 1, Naoki Kanayama 1, Florian Hess 2, and Eiji Okamoto 1 1 University of Tsukuba, Japan 2 Technische Universität Berlin, Germany Abstract.

More information

Cryptography IV: Asymmetric Ciphers

Cryptography IV: Asymmetric Ciphers Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7 David Aspinall School of Informatics University of Edinburgh 31st January 2011 Outline Background RSA Diffie-Hellman ElGamal Summary Outline

More information

Generating more Kawazoe-Takahashi Genus 2 Pairing-friendly Hyperelliptic Curves

Generating more Kawazoe-Takahashi Genus 2 Pairing-friendly Hyperelliptic Curves Generating more Kawazoe-Takahashi Genus 2 Pairing-friendly Hyperelliptic Curves Ezekiel J Kachisa School of Computing Dublin City University Ireland ekachisa@computing.dcu.ie Abstract. Constructing pairing-friendly

More information

Implementing Pairing-Based Cryptosystems

Implementing Pairing-Based Cryptosystems Implementing Pairing-Based Cryptosystems Zhaohui Cheng and Manos Nistazakis School of Computing Science, Middlesex University White Hart Lane, London N17 8HR, UK. {m.z.cheng, e.nistazakis}@mdx.ac.uk Abstract:

More information

A gentle introduction to isogeny-based cryptography

A gentle introduction to isogeny-based cryptography A gentle introduction to isogeny-based cryptography Craig Costello Tutorial at SPACE 2016 December 15, 2016 CRRao AIMSCS, Hyderabad, India Part 1: Motivation Part 2: Preliminaries Part 3: Brief SIDH sketch

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography The State of the Art of Elliptic Curve Cryptography Ernst Kani Department of Mathematics and Statistics Queen s University Kingston, Ontario Elliptic Curve Cryptography 1 Outline 1. ECC: Advantages and

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 13 March 3, 2013 CPSC 467b, Lecture 13 1/52 Elliptic Curves Basics Elliptic Curve Cryptography CPSC

More information

Ate Pairing on Hyperelliptic Curves

Ate Pairing on Hyperelliptic Curves Ate Pairing on Hyperelliptic Curves R. Granger, F. Hess, R. Oyono, N. Thériault F. Vercauteren EUROCRYPT 2007 - Barcelona Pairings Pairings Let G 1, G 2, G T be groups of prime order l. A pairing is a

More information

Chapter 10 Elliptic Curves in Cryptography

Chapter 10 Elliptic Curves in Cryptography Chapter 10 Elliptic Curves in Cryptography February 15, 2010 10 Elliptic Curves (ECs) can be used as an alternative to modular arithmetic in all applications based on the Discrete Logarithm (DL) problem.

More information

Generating more MNT elliptic curves

Generating more MNT elliptic curves Generating more MNT elliptic curves Michael Scott 1 and Paulo S. L. M. Barreto 2 1 School of Computer Applications Dublin City University Ballymun, Dublin 9, Ireland. mike@computing.dcu.ie 2 Universidade

More information

Implementing the Weil, Tate and Ate pairings using Sage software

Implementing the Weil, Tate and Ate pairings using Sage software Sage days 10, Nancy, France Implementing the Weil, Tate and Ate pairings using Sage software Nadia EL MRABET LIRMM, I3M, Université Montpellier 2 Saturday 11 th October 2008 Outline of the presentation

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Elliptic Curves An elliptic curve is a cubic equation of the form: y + axy + by = x 3 + cx + dx + e where a, b, c, d and e are real numbers. A special addition operation is

More information

Optimal TNFS-secure pairings on elliptic curves with even embedding degree

Optimal TNFS-secure pairings on elliptic curves with even embedding degree Optimal TNFS-secure pairings on elliptic curves with even embedding degree Georgios Fotiadis 1 and Chloe Martindale 2 1 University of the Aegean, Greece gfotiadis@aegean.gr 2 Technische Universiteit Eindhoven,

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer 1 Lecture 13 October 16, 2017 (notes revised 10/23/17) 1 Derived from lecture notes by Ewa Syta. CPSC 467, Lecture 13 1/57 Elliptic Curves

More information

Finite Fields and Elliptic Curves in Cryptography

Finite Fields and Elliptic Curves in Cryptography Finite Fields and Elliptic Curves in Cryptography Frederik Vercauteren - Katholieke Universiteit Leuven - COmputer Security and Industrial Cryptography 1 Overview Public-key vs. symmetric cryptosystem

More information

8 Elliptic Curve Cryptography

8 Elliptic Curve Cryptography 8 Elliptic Curve Cryptography 8.1 Elliptic Curves over a Finite Field For the purposes of cryptography, we want to consider an elliptic curve defined over a finite field F p = Z/pZ for p a prime. Given

More information

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Peter Schwabe October 21 and 28, 2011 So far we assumed that Alice and Bob both have some key, which nobody else has. How

More information

Introduction to Elliptic Curve Cryptography

Introduction to Elliptic Curve Cryptography Indian Statistical Institute Kolkata May 19, 2017 ElGamal Public Key Cryptosystem, 1984 Key Generation: 1 Choose a suitable large prime p 2 Choose a generator g of the cyclic group IZ p 3 Choose a cyclic

More information

One can use elliptic curves to factor integers, although probably not RSA moduli.

One can use elliptic curves to factor integers, although probably not RSA moduli. Elliptic Curves Elliptic curves are groups created by defining a binary operation (addition) on the points of the graph of certain polynomial equations in two variables. These groups have several properties

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Identity-Based Cryptography T-79.5502 Advanced Course in Cryptology Billy Brumley billy.brumley at hut.fi Helsinki University of Technology Identity-Based Cryptography 1/24 Outline Classical ID-Based Crypto;

More information

Elliptic Curve Cryptography with Derive

Elliptic Curve Cryptography with Derive Elliptic Curve Cryptography with Derive Johann Wiesenbauer Vienna University of Technology DES-TIME-2006, Dresden General remarks on Elliptic curves Elliptic curces can be described as nonsingular algebraic

More information

Number Theory in Cryptology

Number Theory in Cryptology Number Theory in Cryptology Abhijit Das Department of Computer Science and Engineering Indian Institute of Technology Kharagpur October 15, 2011 What is Number Theory? Theory of natural numbers N = {1,

More information

A gentle introduction to elliptic curve cryptography

A gentle introduction to elliptic curve cryptography A gentle introduction to elliptic curve cryptography Craig Costello Summer School on Real-World Crypto and Privacy June 5, 2017 Šibenik, Croatia Part 1: Motivation Part 2: Elliptic Curves Part 3: Elliptic

More information

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015 L7. Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang, 5 March 2015 1 Outline The basic foundation: multiplicative group modulo prime The basic Diffie-Hellman (DH) protocol The discrete logarithm

More information

Short Signature Scheme From Bilinear Pairings

Short Signature Scheme From Bilinear Pairings Sedat Akleylek, Barış Bülent Kırlar, Ömer Sever, and Zaliha Yüce Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey {akleylek,kirlar}@metu.edu.tr,severomer@yahoo.com,zyuce@stm.com.tr

More information

An Introduction to Elliptic Curve Cryptography

An Introduction to Elliptic Curve Cryptography Harald Baier An Introduction to Elliptic Curve Cryptography / Summer term 2013 1/22 An Introduction to Elliptic Curve Cryptography Harald Baier Hochschule Darmstadt, CASED, da/sec Summer term 2013 Harald

More information

Fast, twist-secure elliptic curve cryptography from Q-curves

Fast, twist-secure elliptic curve cryptography from Q-curves Fast, twist-secure elliptic curve cryptography from Q-curves Benjamin Smith Team GRACE INRIA Saclay Île-de-France Laboratoire d Informatique de l École polytechnique (LIX) ECC #17, Leuven September 16,

More information

Elliptic Curve Cryptosystems

Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems Santiago Paiva santiago.paiva@mail.mcgill.ca McGill University April 25th, 2013 Abstract The application of elliptic curves in the field of cryptography has significantly improved

More information

Fast Formulas for Computing Cryptographic Pairings

Fast Formulas for Computing Cryptographic Pairings Fast Formulas for Computing Cryptographic Pairings Craig Costello craig.costello@qut.edu.au Queensland University of Technology May 28, 2012 1 / 47 Thanks: supervisors and co-authors Prof. Colin Boyd Dr.

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography AIMS-VOLKSWAGEN STIFTUNG WORKSHOP ON INTRODUCTION TO COMPUTER ALGEBRA AND APPLICATIONS Douala, Cameroon, October 12, 2017 Elliptic Curve Cryptography presented by : BANSIMBA Gilda Rech BANSIMBA Gilda Rech

More information

Arithmétique et Cryptographie Asymétrique

Arithmétique et Cryptographie Asymétrique Arithmétique et Cryptographie Asymétrique Laurent Imbert CNRS, LIRMM, Université Montpellier 2 Journée d inauguration groupe Sécurité 23 mars 2010 This talk is about public-key cryptography Why did mathematicians

More information

The Number Field Sieve for Barreto-Naehrig Curves: Smoothness of Norms

The Number Field Sieve for Barreto-Naehrig Curves: Smoothness of Norms The Number Field Sieve for Barreto-Naehrig Curves: Smoothness of Norms by Michael Shantz A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

You could have invented Supersingular Isogeny Diffie-Hellman

You could have invented Supersingular Isogeny Diffie-Hellman You could have invented Supersingular Isogeny Diffie-Hellman Lorenz Panny Technische Universiteit Eindhoven Πλατανιάς, Κρήτη, 11 October 2017 1 / 22 Shor s algorithm 94 Shor s algorithm quantumly breaks

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

Elliptic Nets How To Catch an Elliptic Curve Katherine Stange USC Women in Math Seminar November 7,

Elliptic Nets How To Catch an Elliptic Curve Katherine Stange USC Women in Math Seminar November 7, Elliptic Nets How To Catch an Elliptic Curve Katherine Stange USC Women in Math Seminar November 7, 2007 http://www.math.brown.edu/~stange/ Part I: Elliptic Curves are Groups Elliptic Curves Frequently,

More information

during transmission safeguard information Cryptography: used to CRYPTOGRAPHY BACKGROUND OF THE MATHEMATICAL

during transmission safeguard information Cryptography: used to CRYPTOGRAPHY BACKGROUND OF THE MATHEMATICAL THE MATHEMATICAL BACKGROUND OF CRYPTOGRAPHY Cryptography: used to safeguard information during transmission (e.g., credit card number for internet shopping) as opposed to Coding Theory: used to transmit

More information

Efficient Computation of Tate Pairing in Projective Coordinate Over General Characteristic Fields

Efficient Computation of Tate Pairing in Projective Coordinate Over General Characteristic Fields Efficient Computation of Tate Pairing in Projective Coordinate Over General Characteristic Fields Sanjit Chatterjee, Palash Sarkar and Rana Barua Cryptology Research Group Applied Statistics Unit Indian

More information

Pairing-Friendly Elliptic Curves of Prime Order

Pairing-Friendly Elliptic Curves of Prime Order Pairing-Friendly Elliptic Curves of Prime Order Paulo S. L. M. Barreto 1 Michael Naehrig 2 1 University of São Paulo pbarreto@larc.usp.br 2 RWTH Aachen University mnaehrig@ti.rwth-aachen.de SAC 2005 Outline

More information

G Advanced Cryptography April 10th, Lecture 11

G Advanced Cryptography April 10th, Lecture 11 G.30-001 Advanced Cryptography April 10th, 007 Lecturer: Victor Shoup Lecture 11 Scribe: Kristiyan Haralambiev We continue the discussion of public key encryption. Last time, we studied Hash Proof Systems

More information

Hyperelliptic-curve cryptography. D. J. Bernstein University of Illinois at Chicago

Hyperelliptic-curve cryptography. D. J. Bernstein University of Illinois at Chicago Hyperelliptic-curve cryptography D. J. Bernstein University of Illinois at Chicago Thanks to: NSF DMS 0140542 NSF ITR 0716498 Alfred P. Sloan Foundation Two parts to this talk: 1. Elliptic curves; modern

More information

Topics in Cryptography. Lecture 5: Basic Number Theory

Topics in Cryptography. Lecture 5: Basic Number Theory Topics in Cryptography Lecture 5: Basic Number Theory Benny Pinkas page 1 1 Classical symmetric ciphers Alice and Bob share a private key k. System is secure as long as k is secret. Major problem: generating

More information

Efficient Tate Pairing Computation Using Double-Base Chains

Efficient Tate Pairing Computation Using Double-Base Chains Efficient Tate Pairing Computation Using Double-Base Chains Chang an Zhao, Fangguo Zhang and Jiwu Huang 1 Department of Electronics and Communication Engineering, Sun Yat-Sen University, Guangzhou 510275,

More information

An introduction to supersingular isogeny-based cryptography

An introduction to supersingular isogeny-based cryptography An introduction to supersingular isogeny-based cryptography Craig Costello Summer School on Real-World Crypto and Privacy June 8, 2017 Šibenik, Croatia Towards quantum-resistant cryptosystems from supersingular

More information

6. ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

6. ELLIPTIC CURVE CRYPTOGRAPHY (ECC) 6. ELLIPTIC CURVE CRYPTOGRAPHY (ECC) 6.0 Introduction Elliptic curve cryptography (ECC) is the application of elliptic curve in the field of cryptography.basically a form of PKC which applies over the

More information

Hardware implementations of ECC

Hardware implementations of ECC Hardware implementations of ECC The University of Electro- Communications Introduction Public- key Cryptography (PKC) The most famous PKC is RSA and ECC Used for key agreement (Diffie- Hellman), digital

More information

Cyclic Groups in Cryptography

Cyclic Groups in Cryptography Cyclic Groups in Cryptography p. 1/6 Cyclic Groups in Cryptography Palash Sarkar Indian Statistical Institute Cyclic Groups in Cryptography p. 2/6 Structure of Presentation Exponentiation in General Cyclic

More information

Solving Discrete Logarithms on a 170-bit MNT Curve by Pairing Reduction

Solving Discrete Logarithms on a 170-bit MNT Curve by Pairing Reduction Solving Discrete Logarithms on a 170-bit MNT Curve by Pairing Reduction Aurore Guillevic and François Morain and Emmanuel Thomé University of Calgary, PIMS CNRS, LIX École Polytechnique, Inria, Loria SAC,

More information

ElGamal type signature schemes for n-dimensional vector spaces

ElGamal type signature schemes for n-dimensional vector spaces ElGamal type signature schemes for n-dimensional vector spaces Iwan M. Duursma and Seung Kook Park Abstract We generalize the ElGamal signature scheme for cyclic groups to a signature scheme for n-dimensional

More information

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems Other Public-Key Cryptosystems Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

More information

Public-key Cryptography and elliptic curves

Public-key Cryptography and elliptic curves Public-key Cryptography and elliptic curves Dan Nichols University of Massachusetts Amherst nichols@math.umass.edu WINRS Research Symposium Brown University March 4, 2017 Cryptography basics Cryptography

More information

Secure Bilinear Diffie-Hellman Bits

Secure Bilinear Diffie-Hellman Bits Secure Bilinear Diffie-Hellman Bits Steven D. Galbraith 1, Herbie J. Hopkins 1, and Igor E. Shparlinski 2 1 Mathematics Department, Royal Holloway University of London Egham, Surrey, TW20 0EX, UK Steven.Galbraith@rhul.ac.uk,

More information

Elliptic Curve Cryptography and Security of Embedded Devices

Elliptic Curve Cryptography and Security of Embedded Devices Elliptic Curve Cryptography and Security of Embedded Devices Ph.D. Defense Vincent Verneuil Institut de Mathématiques de Bordeaux Inside Secure June 13th, 2012 V. Verneuil - Elliptic Curve Cryptography

More information

Public-key Cryptography and elliptic curves

Public-key Cryptography and elliptic curves Public-key Cryptography and elliptic curves Dan Nichols nichols@math.umass.edu University of Massachusetts Oct. 14, 2015 Cryptography basics Cryptography is the study of secure communications. Here are

More information

Discrete logarithm and related schemes

Discrete logarithm and related schemes Discrete logarithm and related schemes Martin Stanek Department of Computer Science Comenius University stanek@dcs.fmph.uniba.sk Cryptology 1 (2017/18) Content Discrete logarithm problem examples, equivalent

More information

Tampering attacks in pairing-based cryptography. Johannes Blömer University of Paderborn September 22, 2014

Tampering attacks in pairing-based cryptography. Johannes Blömer University of Paderborn September 22, 2014 Tampering attacks in pairing-based cryptography Johannes Blömer University of Paderborn September 22, 2014 1 / 16 Pairings Definition 1 A pairing is a bilinear, non-degenerate, and efficiently computable

More information

PUBLIC-KEY cryptography (PKC), a concept introduced

PUBLIC-KEY cryptography (PKC), a concept introduced 1 Speeding Up Barrett and Montgomery Modular Multiplications Miroslav Knežević, Student Member, IEEE, Frederik Vercauteren, and Ingrid Verbauwhede, Senior Member, IEEE Abstract This paper proposes two

More information

Constructing Families of Pairing-Friendly Elliptic Curves

Constructing Families of Pairing-Friendly Elliptic Curves Constructing Families of Pairing-Friendly Elliptic Curves David Freeman Information Theory Research HP Laboratories Palo Alto HPL-2005-155 August 24, 2005* cryptography, pairings, elliptic curves, embedding

More information

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Digital Signatures. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay Digital Signatures Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 24, 2018 1 / 29 Group Theory Recap Groups Definition A set

More information

Modular Multiplication in GF (p k ) using Lagrange Representation

Modular Multiplication in GF (p k ) using Lagrange Representation Modular Multiplication in GF (p k ) using Lagrange Representation Jean-Claude Bajard, Laurent Imbert, and Christophe Nègre Laboratoire d Informatique, de Robotique et de Microélectronique de Montpellier

More information

Computational Number Theory. Adam O Neill Based on

Computational Number Theory. Adam O Neill Based on Computational Number Theory Adam O Neill Based on http://cseweb.ucsd.edu/~mihir/cse207/ Secret Key Exchange - * Is Alice Ka Public Network Ka = KB O KB 0^1 Eve should have a hard time getting information

More information

Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves

Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves CT-RSA 2012 February 29th, 2012 Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves Joint work with: Nicolas Estibals CARAMEL project-team, LORIA, Université de Lorraine / CNRS / INRIA,

More information

Selecting Elliptic Curves for Cryptography Real World Issues

Selecting Elliptic Curves for Cryptography Real World Issues Selecting Elliptic Curves for Cryptography Real World Issues Michael Naehrig Cryptography Research Group Microsoft Research UW Number Theory Seminar Seattle, 28 April 2015 Elliptic Curve Cryptography 1985:

More information

Efficient Implementations of Pairing-Based Cryptography on Embedded Systems

Efficient Implementations of Pairing-Based Cryptography on Embedded Systems Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 12-4-2015 Efficient Implementations of Pairing-Based Cryptography on Embedded Systems Rajeev Verma rv4560@rit.edu

More information

Security Analysis of Some Batch Verifying Signatures from Pairings

Security Analysis of Some Batch Verifying Signatures from Pairings International Journal of Network Security, Vol.3, No.2, PP.138 143, Sept. 2006 (http://ijns.nchu.edu.tw/) 138 Security Analysis of Some Batch Verifying Signatures from Pairings Tianjie Cao 1,2,3, Dongdai

More information

Evidence that the Diffie-Hellman Problem is as Hard as Computing Discrete Logs

Evidence that the Diffie-Hellman Problem is as Hard as Computing Discrete Logs Evidence that the Diffie-Hellman Problem is as Hard as Computing Discrete Logs Jonah Brown-Cohen 1 Introduction The Diffie-Hellman protocol was one of the first methods discovered for two people, say Alice

More information