Pixel Recurrent Neural Networks

Size: px
Start display at page:

Download "Pixel Recurrent Neural Networks"

Transcription

1 Pixel Recurret Neural Networks Aa ro va de Oord, Nal Kalchbreer, Koray Kavukcuoglu Google DeepMid August 2016 Preseter - Neha M

2 Example problem (completig a image) Give the first half of the image, create the secod half that is masked out. Origial image Masked image 2

3 Example problem (completig a image) Give the first half of the image, create the secod half that is masked out. Origial image Masked image Example geerated images 3

4 Geerative modellig Modelig distributio of atural images is a ladmark problem i usupervised learig. May Applicatios: Image compressio, deblurrig, geerate sythetic images, text to image ad so o. VAE GAN Autoregressive models

5

6 Why RNN? A pixel depeds o the previously geerated pixels i the image. PixelRNN is a deep eural etwork that sequetially predicts the pixels i a image alog two spatial dimesios. Log rage depedecies withi pixels i a image OR RNN Log rage depedecies withi differet frames i video

7 Geeratig a image pixel by pixel Previous approaches use cotiuous distributio pixel values i the image Pixels have discrete values from multiomial distributio implemeted with softmax layer. Each pixel is determied by three values: R,G,B.

8 Geeratig a image pixel by pixel Probability of pixel x i give all the previous pixels x 1,..., x i 1 = P( x i x <i )

9 = P( x i x <i ) Every coditioal distributio i equatio 2 is a multiomial that is modeled with a softmax layer.

10 Models Pixel RNN with Row LSTM layer Pixel RNN with Diagoal BiLSTM layer PixelCNN Multiscale Pixel-RNN

11 LSTM Traied pixelwise, oe pixel at a time. Really slow give the amout of pixels the dataset will have Hidde state(i, j) = LSTM( Hidde state(i-1, j), Hidde state( i, j-1 ), p( i, j )) No parallelisatio as all pixels are iterdepedet

12 Row LSTM Iput a etire row to predict the ext row. Decreases the traiig time (traiig oe row at a time istead of oe pixel) Moreover, traiig of pixels ca be parallelized. Hidde state(i, j) = LSTM( Hidde state(i-1, j-1), Hidde state( i-1, j+1 ), Hidde state(i-1, j), p( i, j )) parallelisatio as all pixels are ot iterdepedet

13 Row LSTM Cotext of 2 pixels per row is lost recursively Gives rise to a triagular cotext. Hidde state(i, j) = LSTM( Hidde state(i-1, j-1), Hidde state( i-1, j+1 ), Hidde state(i-1, j), p( i, j ))

14 Diagoal BiLSTM Desiged to capture the etire available cotext for ay image size. Each of the two directios of the layer scas the image i a diagoal fashio startig from a corer at the top ad reachig the opposite corer at the bottom.

15 Residual coectios Pixel RNNs are traied to up to 12 layers of depth. To icrease covergece speed ad propagate sigals more directly through the etwork, residual coectios are deployed.

16 Pixel CNN Row ad Diagoal LSTM layers log rage depedecies i the images. Learig of depedecies comes at a computatioal cost as each state eeds to be computed sequetially. Stadard covolutioal layers ca capture a bouded receptive field ad compute features for all pixel positios at oce. PixelCNN uses multiple covolutioal layers that preserve spatial resolutio; poolig layers are ot used. Masks are adopted i covolutios to avoid seeig future cotext.

17 Masked Covolutios Zero-out all the pixel values that are ot supposed to be available to the model Pixel x i depeds o pixels x 1...x i 1 so we have to esure it wo t access all subsequet pixels: x i+1.x ^2

18 Masked Covolutio

19 Models

20 Compariso

21 Assume we kow p(.) How to geerate a sigle pixel? 1 Grey-scale to simplify figure (color works too) 21

22 Assume we kow p(.) How to geerate a sigle pixel? 1 Grey-scale to simplify figure (color works too) 22

23 Assume we kow p(.) How to geerate a sigle pixel? Model p(x) 1 p(x) Grey-scale to simplify figure (color works too) 23

24 Assume we kow p(.) How to geerate a sigle pixel? Predicted itesity probabilities 90 Model p(x) p(x) Grey-scale to simplify figure (color works too) Predict the grayscale value 24

25 How to geerate a sigle pixel? Predicted itesity probabilities Predicted itesity 90 Model p(x) p(x) Grey-scale to simplify figure (color works too) Predict the grayscale value 25

26 How to geerate a sigle pixel? Predicted itesity probabilities Predicted itesity 90 Model p(x) usig a CNN to get probabilities for all pixels p(x) Grey-scale to simplify figure (color works too) Predict the grayscale value 26

27 How to geerate a image? Forward pass through traied CNN p(x) 1 Grey-scale to simplify figure (color works too) 256 Predict the grayscale value 27

28 How to geerate a image? Probability of grayscale value for that pixel (high values at tales) Start with all 0's (or could sample some value) Cosider the first pixel Forward pass through traied CNN p(x) 1 Grey-scale to simplify figure (color works too) 256 Predict the grayscale value 28

29 Probability of grayscale value for that pixel How to geerate a image? Start with all 0's (or could sample some value) Assig the first pixel Choose the predictio/argmax (or could sample) Forward pass through traied CNN p(x) 1 Grey-scale to simplify figure (color works too) 256 Predict the grayscale value 29

30 How to geerate a image? Probability of grayscale value for that pixel (distributio chages) Start with all 0's (or could sample some value) Cosider the secod pixel (usig ifo about the first) Forward pass through traied CNN p(x) 1 Grey-scale to simplify figure (color works too) 256 Predict the grayscale value 30

31 Probability of grayscale value for that pixel How to geerate a image? Start with all 0's (or could sample some value) Assig the secod pixel Choose the argmax (or could sample) Forward pass through traied CNN p(x) 1 Grey-scale to simplify figure (color works too) 256 Predict the grayscale value 31

32 Probability of grayscale value for that pixel How to geerate a image? Cosider the ith pixel Forward pass through traied CNN p(x) 1 Grey-scale to simplify figure (color works too) 256 Predict the grayscale value 32

33 How to lear p(x)? Cosider the ith pixel p(x) Grey-scale to simplify figure (color works too) Forward pass through traied CNN Predict the grayscale value 33

34 How to lear p(x)? PixelRNN: (recurret eural etwork) models log rage depedecies. Works well but very slow to trai. p(x) Cosider the ith pixel Grey-scale to simplify figure (color works too) Forward pass through traied CNN Predict the grayscale value 34

35 How to lear p(x)? PixelRNN: (recurret eural etwork) models log rage depedecies. Works well but very slow to trai. PixelCNN: (covolutioal eural etwork) captures local properties. Fast to trai (local covolutios), but work less well. p(x) Cosider the ith pixel Grey-scale to simplify figure (color works too) Forward pass through traied CNN Predict the grayscale value 35

36 How to lear p(x)? PixelRNN: (recurret eural etwork) models log rage depedecies. Works well but very slow to trai. PixelCNN: (covolutioal eural etwork) captures local properties. Fast to trai (local covolutios), but work less well. PixelRNN: hard to parallelize traiig cosiders all the pixels before it. PixelCNN: ca parallelize durig traiig If we are very careful about the covolutio widows 36

37 Blid Spots i Pixel CNN

38 This is a image with 5x5 pixels. Each cotais a umber (represeted usig letters) a b c d e f g h i j k l m o p q r s t u v w z y This is a filter of size 3x3. Each elemet cotais a umber (weight)

39 This is a image with 5x5 pixels. Each cotais a umber (represeted usig letters) a b c d e f g h i j k l m o p q r s t u v w z y Images are ofte zero-padded so the etire iput ca be covolved ad the output will be the same size zero-paddig 39

40 This is a image with 5x5 pixels. Each cotais a umber (represeted usig letters) Red idicates the respose (or a feature map) after covolutio a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y Red idicates the value we wat to predict (our ukow) zero-paddig 40

41 This is a image with 5x5 pixels. Each cotais a umber (represeted usig letters) Red idicates the respose (or a feature map) after covolutio a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y Red idicates the value we wat to predict (our ukow) This filter is bad sice a caot kow about b,f,g! (sice they come after a) zero-paddig 41

42 This is a image with 5x5 pixels. Each cotais a umber (represeted usig letters) Red idicates the value we predict (or a feature map) after covolutio a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y This filter is bad sice a caot kow about b,f,g! (sice they come after a) zero-paddig Solutio: mask the filter (i.e., fix to 0) for elemets that a caot kow about

43 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y Note that it's coditioig o all zero's for the first elemet (as desired) zero-paddig 43

44 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y Blue idicates elemets that are observed, so we ca coditio o them zero-paddig 44

45 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y zero-paddig 45

46 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y zero-paddig 46

47 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y zero-paddig 47

48 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y zero-paddig 48

49 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y zero-paddig 49

50 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y q is a fuctio of k,l,m,p a b c d e f g h i j k l m o p q r s t u v w x y zero-paddig 50

51 a b c d e f g h i j k l m o p q r s t u v w z y a b c d e f g h i j k l m o p q r s t u v w x y a b c d e f g h i j k l m o p q r s t u v w x y q is a fuctio of k,l,m,p which are a fuctio of f,g,h,i, which are a fuctio of a,b,c,d,e Deeper layers will better model this but q has "blid spots" as it does ot cosider j,,o zero-paddig 51

52 Evaluatio Datasets - MNIST, CIFAR-10, ad ImageNet Models are traied ad evaluated o the log likelihood loss fuctio Maximizig log likelihood = miimizig "egative log likelihood" (NLL)

53 Experimets

54 Image completios

55 Refereces Gated Pixel CNN, dit#slide=id.g1aa6f048ae_0_4226

56 Questios?

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Multilayer perceptrons

Multilayer perceptrons Multilayer perceptros If traiig set is ot liearly separable, a etwork of McCulloch-Pitts uits ca give a solutio If o loop exists i etwork, called a feedforward etwork (else, recurret etwork) A two-layer

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3

Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 No-Parametric Techiques Jacob Hays Amit Pillay James DeFelice 4.1, 4.2, 4.3 Parametric vs. No-Parametric Parametric Based o Fuctios (e.g Normal Distributio) Uimodal Oly oe peak Ulikely real data cofies

More information

Vector Quantization: a Limiting Case of EM

Vector Quantization: a Limiting Case of EM . Itroductio & defiitios Assume that you are give a data set X = { x j }, j { 2,,, }, of d -dimesioal vectors. The vector quatizatio (VQ) problem requires that we fid a set of prototype vectors Z = { z

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

11 Hidden Markov Models

11 Hidden Markov Models Hidde Markov Models Hidde Markov Models are a popular machie learig approach i bioiformatics. Machie learig algorithms are preseted with traiig data, which are used to derive importat isights about the

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Pattern Classification, Ch4 (Part 1)

Pattern Classification, Ch4 (Part 1) Patter Classificatio All materials i these slides were take from Patter Classificatio (2d ed) by R O Duda, P E Hart ad D G Stork, Joh Wiley & Sos, 2000 with the permissio of the authors ad the publisher

More information

Conditional Image Generation with PixelCNN Decoders

Conditional Image Generation with PixelCNN Decoders Conditional Image Generation with PixelCNN Decoders Aaron van den Oord 1 Nal Kalchbrenner 1 Oriol Vinyals 1 Lasse Espeholt 1 Alex Graves 1 Koray Kavukcuoglu 1 1 Google DeepMind NIPS, 2016 Presenter: Beilun

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Deep Neural Networks CMSC 422 MARINE CARPUAT. Deep learning slides credit: Vlad Morariu

Deep Neural Networks CMSC 422 MARINE CARPUAT. Deep learning slides credit: Vlad Morariu Deep Neural Networks CMSC 422 MARINE CARPUAT marie@cs.umd.edu Deep learig slides credit: Vlad Morariu Traiig (Deep) Neural Networks Computatioal graphs Improvemets to gradiet descet Stochastic gradiet

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Spectral Analysis. This week in lab. Next classes: 3/26 and 3/28. Your next experiment Homework is to prepare

Spectral Analysis. This week in lab. Next classes: 3/26 and 3/28. Your next experiment Homework is to prepare Spectral Aalysis This week i lab Your ext experimet Homework is to prepare Next classes: 3/26 ad 3/28 Aero Testig, Fracture Toughess Testig Read the Experimets 5 ad 7 sectios of the course maual Spectral

More information

Machine Learning. Ilya Narsky, Caltech

Machine Learning. Ilya Narsky, Caltech Machie Learig Ilya Narsky, Caltech Lecture 4 Multi-class problems. Multi-class versios of Neural Networks, Decisio Trees, Support Vector Machies ad AdaBoost. Reductio of a multi-class problem to a set

More information

RAINFALL PREDICTION BY WAVELET DECOMPOSITION

RAINFALL PREDICTION BY WAVELET DECOMPOSITION RAIFALL PREDICTIO BY WAVELET DECOMPOSITIO A. W. JAYAWARDEA Departmet of Civil Egieerig, The Uiversit of Hog Kog, Hog Kog, Chia P. C. XU Academ of Mathematics ad Sstem Scieces, Chiese Academ of Scieces,

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Math 113 Exam 4 Practice

Math 113 Exam 4 Practice Math Exam 4 Practice Exam 4 will cover.-.. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for

More information

Nonlinear regression

Nonlinear regression oliear regressio How to aalyse data? How to aalyse data? Plot! How to aalyse data? Plot! Huma brai is oe the most powerfull computatioall tools Works differetly tha a computer What if data have o liear

More information

SNAP Centre Workshop. Basic Algebraic Manipulation

SNAP Centre Workshop. Basic Algebraic Manipulation SNAP Cetre Workshop Basic Algebraic Maipulatio 8 Simplifyig Algebraic Expressios Whe a expressio is writte i the most compact maer possible, it is cosidered to be simplified. Not Simplified: x(x + 4x)

More information

Linear Associator Linear Layer

Linear Associator Linear Layer Hebbia Learig opic 6 Note: lecture otes by Michael Negevitsky (uiversity of asmaia) Bob Keller (Harvey Mudd College CA) ad Marti Haga (Uiversity of Colorado) are used Mai idea: learig based o associatio

More information

ME 539, Fall 2008: Learning-Based Control

ME 539, Fall 2008: Learning-Based Control ME 539, Fall 2008: Learig-Based Cotrol Neural Network Basics 10/1/2008 & 10/6/2008 Uiversity Orego State Neural Network Basics Questios??? Aoucemet: Homework 1 has bee posted Due Friday 10/10/08 at oo

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading :

Week 1, Lecture 2. Neural Network Basics. Announcements: HW 1 Due on 10/8 Data sets for HW 1 are online Project selection 10/11. Suggested reading : ME 537: Learig-Based Cotrol Week 1, Lecture 2 Neural Network Basics Aoucemets: HW 1 Due o 10/8 Data sets for HW 1 are olie Proect selectio 10/11 Suggested readig : NN survey paper (Zhag Chap 1, 2 ad Sectios

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

Roberto s Notes on Series Chapter 2: Convergence tests Section 7. Alternating series

Roberto s Notes on Series Chapter 2: Convergence tests Section 7. Alternating series Roberto s Notes o Series Chapter 2: Covergece tests Sectio 7 Alteratig series What you eed to kow already: All basic covergece tests for evetually positive series. What you ca lear here: A test for series

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

1 Hash tables. 1.1 Implementation

1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

. (24) If we consider the geometry of Figure 13 the signal returned from the n th scatterer located at x, y is

. (24) If we consider the geometry of Figure 13 the signal returned from the n th scatterer located at x, y is .5 SAR SIGNA CHARACTERIZATION I order to formulate a SAR processor we first eed to characterize the sigal that the SAR processor will operate upo. Although our previous discussios treated SAR cross-rage

More information

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam

Introduction to Artificial Intelligence CAP 4601 Summer 2013 Midterm Exam Itroductio to Artificial Itelligece CAP 601 Summer 013 Midterm Exam 1. Termiology (7 Poits). Give the followig task eviromets, eter their properties/characteristics. The properties/characteristics of the

More information

2D DSP Basics: 2D Systems

2D DSP Basics: 2D Systems - Digital Image Processig ad Compressio D DSP Basics: D Systems D Systems T[ ] y = T [ ] Liearity Additivity: If T y = T [ ] The + T y = y + y Homogeeity: If The T y = T [ ] a T y = ay = at [ ] Liearity

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

Quadratic Functions. Before we start looking at polynomials, we should know some common terminology.

Quadratic Functions. Before we start looking at polynomials, we should know some common terminology. Quadratic Fuctios I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively i mathematical

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Math 116 Second Midterm November 13, 2017

Math 116 Second Midterm November 13, 2017 Math 6 Secod Midterm November 3, 7 EXAM SOLUTIONS. Do ot ope this exam util you are told to do so.. Do ot write your ame aywhere o this exam. 3. This exam has pages icludig this cover. There are problems.

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b Logistic Regressio Step : Fuctio Set We wat to fid P w,b C x σ z = + exp z If P w,b C x.5, output C Otherwise, output C 2 z P w,b C x = σ z z = w x + b = w i x i + b i z Fuctio set: f w,b x = P w,b C x

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University Istructor: Achievig Statioary Distributios i Markov Chais Moday, November 1, 008 Rice Uiversity Dr. Volka Cevher STAT 1 / ELEC 9: Graphical Models Scribe: Rya E. Guerra, Tahira N. Saleem, Terrace D. Savitsky

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Report on Private Information Retrieval over Unsynchronized Databases

Report on Private Information Retrieval over Unsynchronized Databases Report o Private Iformatio Retrieval over Usychroized Databases Lembit Valgma Supervised by Vitaly Skachek May 25, 217 1 Problem Statemet There are may challeges cocerig olie privacy. Private iformatio

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

Lecture 10: Universal coding and prediction

Lecture 10: Universal coding and prediction 0-704: Iformatio Processig ad Learig Sprig 0 Lecture 0: Uiversal codig ad predictio Lecturer: Aarti Sigh Scribes: Georg M. Goerg Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

Lecture 9: Hierarchy Theorems

Lecture 9: Hierarchy Theorems IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc)

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc) Classificatio of problem & problem solvig strategies classificatio of time complexities (liear, arithmic etc) Problem subdivisio Divide ad Coquer strategy. Asymptotic otatios, lower boud ad upper boud:

More information

Numerical Methods in Fourier Series Applications

Numerical Methods in Fourier Series Applications Numerical Methods i Fourier Series Applicatios Recall that the basic relatios i usig the Trigoometric Fourier Series represetatio were give by f ( x) a o ( a x cos b x si ) () where the Fourier coefficiets

More information

A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata

A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata A Simple Optimum-Time FSSP Algorithm for Multi-Dimesioal Cellular Automata HIROSHI UMEO Uiversity of Osaka Electro-Commuicatio umeo@cyt.osakac.ac.jp KINUO NISHIDE Uiversity of Osaka Electro-Commuicatio

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classificatio Ucertaity & robability Baye's rule Choosig Hypotheses- Maximum a posteriori Maximum Likelihood - Baye's cocept learig Maximum Likelihood of real valued fuctio Bayes optimal Classifier

More information

Some examples of vector spaces

Some examples of vector spaces Roberto s Notes o Liear Algebra Chapter 11: Vector spaces Sectio 2 Some examples of vector spaces What you eed to kow already: The te axioms eeded to idetify a vector space. What you ca lear here: Some

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead)

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead) Lecture 4 Homework Hw 1 ad 2 will be reoped after class for every body. New deadlie 4/20 Hw 3 ad 4 olie (Nima is lead) Pod-cast lecture o-lie Fial projects Nima will register groups ext week. Email/tell

More information

Bayesian networks are graphical models that characterize how variables are independent of each other.

Bayesian networks are graphical models that characterize how variables are independent of each other. Ali Tomescu, http://people.csail.mit.edu/~aliush 6.867 Machie learig Prof. Tommi Jaakkola Week 12, Tuesday, November 19th, 2013 Lecture 21 Lecture 21: Hidde Markov Models Fial exam: Eveig of December 10

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2017

SCORE. Exam 2. MA 114 Exam 2 Fall 2017 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

Series Review. a i converges if lim. i=1. a i. lim S n = lim i=1. 2 k(k + 2) converges. k=1. k=1

Series Review. a i converges if lim. i=1. a i. lim S n = lim i=1. 2 k(k + 2) converges. k=1. k=1 Defiitio: We say that the series S = Series Review i= a i is the sum of the first terms. i= a i coverges if lim S exists ad is fiite, where The above is the defiitio of covergece for series. order to see

More information

Statistical Fundamentals and Control Charts

Statistical Fundamentals and Control Charts Statistical Fudametals ad Cotrol Charts 1. Statistical Process Cotrol Basics Chace causes of variatio uavoidable causes of variatios Assigable causes of variatio large variatios related to machies, materials,

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Disjoint set (Union-Find)

Disjoint set (Union-Find) CS124 Lecture 7 Fall 2018 Disjoit set (Uio-Fid) For Kruskal s algorithm for the miimum spaig tree problem, we foud that we eeded a data structure for maitaiig a collectio of disjoit sets. That is, we eed

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

2.4 Sequences, Sequences of Sets

2.4 Sequences, Sequences of Sets 72 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.4 Sequeces, Sequeces of Sets 2.4.1 Sequeces Defiitio 2.4.1 (sequece Let S R. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For each

More information

A Unified Approach on Fast Training of Feedforward and Recurrent Networks Using EM Algorithm

A Unified Approach on Fast Training of Feedforward and Recurrent Networks Using EM Algorithm 2270 IEEE TRASACTIOS O SIGAL PROCESSIG, VOL. 46, O. 8, AUGUST 1998 [12] Q. T. Zhag, K. M. Wog, P. C. Yip, ad J. P. Reilly, Statistical aalysis of the performace of iformatio criteria i the detectio of

More information

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES

OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES OPTIMAL ALGORITHMS -- SUPPLEMENTAL NOTES Peter M. Maurer Why Hashig is θ(). As i biary search, hashig assumes that keys are stored i a array which is idexed by a iteger. However, hashig attempts to bypass

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information