ADOMIAN DECOMPOSITION METHOD APPLIED TO LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

Size: px
Start display at page:

Download "ADOMIAN DECOMPOSITION METHOD APPLIED TO LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS"

Transcription

1 International Journal of Pure and Applied Mathematics Volume 118 No , ISSN: (printed version); ISSN: (on-line version) url: doi: /ijpam.v118i3.1 PAijpam.eu ADOMIAN DECOMPOSITION METHOD APPLIED TO LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS Abdelouahab Bibi 1, Fateh Merahi 2 Département de Mathématiques Université Constantine UMC1 ALGERIA Abstract: The paper deals with an application of Adomian Decomposition Method for solving linear stochastic differential equations. We derive new formulas such as the analytical approximate solution which convergces rapidely to the exact solution. The numerical experiments which are obtained show the efficiency of this method in the field of stochastic differential equations. AMS Subject Classification: 4A5, 4A25, 45G5 Key Words: Adomian Decomposition Method, Brownian motion, Linear stochastic differential equations, Approximate solution. 1. Introduction Adomian Decomposition Method (ADM) is widely used to solve linear and nonlinearequations ofvariouskind[3, 2,17]. Thesolution isfoundasaninfinite series wich converges quickly towards an accurate solution, and its terms can be easily determined. The convergence of the ADM has been discussed by many authors, in particular Cherruault [8] is the first who proved the convergence, after that Abbaoui and Cherruault [1, 2], Himoun, et al. [11, 12], Hosseini and Nasabzadeh [13], Lesnic [14, 15], and Rach [17, 18]. El-Kalla [9] gave the Received: Revised: Published: April 1, 218 c 218 Academic Publications, Ltd. url: Correspondence author

2 52 A. Bibi, F. Merahi error analysis of the method, Babolian and Biazar [5], Boumenir and Gordon [6] discussed the order and rate of convergence for ADM respectively. Theaim of this work is to extend theadm for solving stochastic differential (SDE) which play an important role in various field such as finance, automatic control and physics, chemistry, astronomy, engineering, biology and others, the SDE are the fundamental tool to solve some problems in mathematics and finance stochastic modeling. The continuous-time models can be interpreted as a solution of SDE, these models are often assumed to be linear and may be Gaussian and continue to gain a growing interest of researchers (see for instance Brockwell [7] and the references therein). On the other hand, SDE are the more general framework of study and analysis of continuous-time random process. The rest of paper is organized as follows. Having defined the linear SDE and their properties. ADM is given in Section 3. The numerical experiments are provided in Section 4 and conclusion is in Section Linear Stochastic Differential Equations We consider the process (X(t)) t R generated by the following linear SDE dx(t) = (α 1 X(t)+α )dt+σdw(t) (1) where (w(t)) t is the standard Brownian motion (Bm) in R defined on some basic probability space (Ω,A,P), α 1,α and σ are constants, with σ >. The initial state X() = X is a random variable, defined on (Ω,A,P), independent of w such that E{X()} = m() and Var{X()} = V(). The existence and uniqueness of the solution process (X(t)) t of equation (1) is ensured by the general results on stochastic differential equations [4] and under the above conditions. So, the solution of equation (1) is interpreted as satisfying the following integral equation X(t) X() = (α 1 X(s)+α )ds+σw(t) (2) The term (α 1 X(s) + α ) is referred to as instantaneous mean of the process, and σ the instantaneous standard deviation.the solution of (1) can be written as X(t) = e α1t X()+α e α1(t s) ds+σ e α1(t s) dw(s) (3) Let the mean of X(t) be denoted by m(t). It satisfies the equation m(t) = α α 1 (e α 1t 1)+e α 1t m(). (4)

3 ADOMIAN DECOMPOSITION METHOD APPLIED R(t,s) is the covariance of X(t) given by R(t,s) = e α 1(t s) V(s), for all t s (5) where V(s) denotes the varians of X(s) given by We can approach by s V(s) = e 2α1s V()+σ 2 e 2α1(s u) du, for all s. (6) X(t+h) = X(t) Euler Approximation +h t (α 1 X(t)+α )ds+σ +h t dw(s), (7) X(t j+1 ) X(t j )+(α 1 X(t j )+α )h+σ(w(t j+1 ) w(t j )), (8) where h = t j+1 t j. The Euler approximation suppose that the integrals are constant over theinterval ofintegration. Sincethevariables(w(t j+1 ) w(t j ))are independent and normal with variance h, we obtain the scheme X (j+1)h = X jh +(α 1 X jh +α )h+σ hz j (9) where(z j ) j N isagaussianwhitenoiseprocesswithmeanandfinitevariance. Phillips [16] showed that the exact discrete model corresponding to (1) is given by X (j+1)h = e α 1h X jh + α α 1 (e α 1h 1)+σ 1 e 2α 1h 2α 1 Z j. (1) 3. First Application of Adomian Decomposition Method Adomian s method consists in calculating the solution X(t) of (1) in a series form X(t) = X j (t) (11) j= j= Putting equation (11) into (1) gives ( X j (t) = X()+α t+l 1 α 1 X j (t) +L 1 σ dw(t) ), (12) dt j=

4 54 A. Bibi, F. Merahi where L = d dt is the derivative of 1-order, then the corresponding L 1 operator can be written in the form L 1 [.] = (.)ds. The iterates are determined by following recursive way and n, we get X 1 (t) = α 1 tx()+ α 1α 2 t2 +σα 1 X 2 (t) = α 2 t X()+ α2 1 α 6 t3 +σα 2 1 X 3 (t) = α 3 t X()+ α3 1 α 24 t4 +σα 3 1. X n (t) = α n 1 X (t) = X()+α t+σw(t) (13) X n+1 (t) = α 1 L 1 [X n (t)], (14) w(t)dt w(t)dtdt w(t)dtdtdt t n n! X()+ αn 1 α (n+1)! tn+1 +σα n 1 }{{} n fold Finally, we approximate the solution by the truncated series N 1,Φ N (t) = N 1 n= w(t)dt }{{} dt n fold X n (t). (15) In order to show the convergence almost sure (a.s) of the series to the exact solution we need the following Theorem which is given and proved by I. El-Kalla [1]. Theorem 3.1 (Theorem 1, I. El-Kalla [1] ). If q(t) is integrable and at least the derivative of 1-order of r(t) exists then we can prove that e r(t) e r(t) q(t)dt = dr(t) dr(t) ( 1) k dt }{{} dt k= q(t)dtdt }{{} dt. (k+1) fold In particular, if dq dt exists then we have e r(t) e r(t) dq(t) = dt k= ( 1) k dr(t) dr(t) }{{} dt q(t)dtdt }{{} dt.

5 ADOMIAN DECOMPOSITION METHOD APPLIED Proof. See the proof of Theorem 1 in [1]. Then the convergence of the approximate solution Φ N (t) to the exact solution process is given by the folowing theorem : Theorem 3.2. Let Φ N (t) is the approximate solution given by Adomian decomposition method of the linear SDE (1), then we have with probability 1 Proof. First, Φ N (t) can be written as follow lim Φ N(t) = X(t) (16) N + N 1 Φ N (t) = X() k= (α 1 t) k k! + α α 1 N (α 1 t) k k! N 1 +σ α k 1 k= }{{} w(t)dt }{{} dt (17) and apply Theorem 3.1 on the third term of (17) we get k= Then we obtain α k 1 }{{} lim Φ N(t) = X() N + (α 1 t) k k= w(t)dt }{{} dt = k! + α α 1 = X()e α 1t + α α 1 (e α 1t 1)+σ and the proof is complete. (α 1 t) k +σ k! e α 1(t u) dw(u) (18) e α 1(t u) dw(u) e α 1(t u) dw(u) = X(t). 4. Second Application of Adomian Decomposition Method In this section we give another approximate solution of the linear SDE (1). This approach follows from the fact that a normalized Brownian motion w(t) can be written in the form w(t) = Z 2π t+ 2 π Z k sin(kt) for t [,π] k

6 56 A. Bibi, F. Merahi where Z,Z 1,... be mutually independent random variables with identical normal distributions N (, 1). Then The iterates are determined by following recursive way χ (t) = X()+α t+σ Z 2π t+σ 2 π Z k sin(kt) (19) k and n, χ n+1 (t) = α 1 L 1 [χ n (t)], (2) we obtain 2 π Z k t 3 2 2π 6 +α2 1σ π Z k χ 1 (t) = α 1 tx()+ α 1α 2 t2 +α 1 σ Z 2π t 2 2 +α 1σ χ 2 (t) = α 2 t X()+ α2 1 α 6 t3 +α 2 1σ Z χ 3 (t) = α 3 t X()+ α3 1 α 24 t4 +α 3 1σ Z t 4 2π 24 +α3 1σ. χ n (t) = (α 1t) n X()+ α (α 1 t) n+1 n! α 1 (n+1)! + σ Z (α 1 t) n+1 α 1 2π (n+1)! ( ) 2 +α n 1σ π Z ( 1) [n 2 ] k sin(kt) if n is even kn+1 χ n (t) = (α 1t) n X()+ α (α 1 t) n+1 n! α 1 (n+1)! + σ Z (α 1 t) n+1 α 1 2π (n+1)! ( ) 2 +α n 1σ π Z ( 1) [n 2 ]+1 k k n+1 cos(kt) if n is odd Finally, we approximate the solution by the truncated series N 1, Ψ N (t) = N 1 n= ( 1) k 2 cos(kt) ( 1) k 3 sin(kt) 2 π Z ( 1) 2 k k 4 cos(kt) χ n (t). (21)

7 ADOMIAN DECOMPOSITION METHOD APPLIED Numerical Experiments The obtained results for various values of the parameters α,α 1 and σ where compared with the exact solution X and where shown graphicaly. Assume the process X(t) is observed in the interval [,T] at points (t 1,t 2,...,t m ), where h = t i+1 t i is the fixed space scale. Then we have the sequence of m observations X h,x 2h,...,X mh. In our experiment we choose T = 1. We use two kinds of approximated solution Φ 1 (t) = X which is an approximation with one term, and Φ 2 (t) = X +X 1 using a two terms of approximation. We can prove that the discrete models corresponding to Φ 1 (t) and Φ 2 (t) are given respectively by and Φ 1 (t j+1 ) = Φ 1 (t j )+α h+σ hz j, Φ 2 (t j+1 ) = Φ 2 (t j )+(α +α 1 X())h+ α α 1 2 (2j +1)h2 +σ(α 1 j +1) hz j, for all j with t = and (Z j ) j N is a Gaussian white noise process with mean and finite variance equal to 1. The table 1 shows the results from t =.1 to t = 1 with an increment h =.1 where we compute the absolute error of the both approximate solutions Φ 1 (t) and Φ 2 (t) with the parameters α =.2, α 1 =.5 and σ = 1. t X(t) Φ 1 (t) Φ 2 (t) Φ 1 (t) X(t) Φ 2 (t) X(t) Table 1: Absolut error of Φ 1 and Φ 2, with α =.2, α 1 =.5, σ = 1, h =.1.

8 58 A. Bibi, F. Merahi The table 2 shows the results from t =.1 to t = 1 but with an increment h =.1, we compute the absolute error of the approximate solutions Φ 1 (t) and Φ 2 (t) with the parameters α =, α 1 =.1 and σ = 1. Finally, in oredr to show that Adomian series is a rapidly converging to the exact solution process X(t). Figure 1, 2 present the plots of Φ 1 (t) and Φ 2 (t) with the parameters α =, α 1 =.1 and σ = 1. t X(t) Φ 1 (t) Φ 2 (t) Φ 1 (t) X(t) Φ 2 (t) X(t) Table 2: Absolut error of Φ 1 and Φ 2, with α =, α 1 =.1, σ = 1, h = Conclusion In this paper we propose an extension of the ADM for solving linear SDE. The numerical results for different values of parameters confirm the theoretical results obtained and illustrate the powerful of this method. We use Matlab for the computations associated with the section of numerical experiments in this

9 ADOMIAN DECOMPOSITION METHOD APPLIED Figure 1: Exact solution X and approximate solution Φ 1 for α =, α 1 =.1, σ = 1, h =.1. Figure 2: Exact solution X and approximate solution Φ 2 for α =, α 1 =.1, σ = 1, h =.1. work.

10 51 A. Bibi, F. Merahi References [1] K. Abbaoui, Y. Cherruault, Convergence of Adomians method applied to nonlinear equations, Math. Comput. Modelling, 2 (9) (1994) [2] K. Abbaoui, Y. Cherruault, Convergence of adomians method applied to differential equations, Math. Comput. Modelling Comp Math Appl 28 (1994), [3] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Dordrecht, (1994). [4] L. Arnold, Stochastic differential equations, theory and applications, J. Wiley, New york, (1974). [5] E. Babolian and J, On the order of convergence of Adomian method,appl Math Comput 13 (22), [6] A. Boumenir and M. Gordon, The rate of convergence for the decomposition method,numer Funct Anal Optim 25 (24), [7] P. J. Brockwell, (21). Continuous-time ARMA processes. Handbook of statistics. 19, North holland, Amsterdam. [8] Y. Cherruault, Convergence of Adomians method, Kybernetes, 18 (1989), [9] I. El-Kalla, Error analysis of adomian series solution to a class of nonlinear differential equations,applmath E-Notes 7 (27), [1] I. El-Kalla, New results on the analytic summation of Adomian series for some classes of differential and integral equations,applied Mathematics and Computation 217 (21), [11] N. Himoun, K. Abbaoui, and Y. Cherruault, New results of convergence of Adomians method, Kybernetes, 28 (1999), [12] N. Himoun, K. Abbaoui, and Y. Cherruault, Short new results on Adomian method, Kybernetes, 32 (23), [13] M. Hosseini and H. Nasabzadeh, On the convergence of Adomian decomposition method, Appl. Math. Comput 182 (26), [14] D. Lesnic, Convergence of Adomians decomposition method: periodic temperatures,comp Math Appl. 44 (22), [15] D. Lesnic,The decomposition method for initial value problems,appl Math Comp.181 (26), [16] P.C.B. Phillips, The Structural Estimation of a Stochastic Differential Equation System, Econometrica,4, (1972) [17] R. Rach,On the Adomian decomposition method and comparisons with Picards method,j Math Anal Appl 128 (1987), [18] R. Rach, A new definition of the Adomian polynomians,kybernetes 37 (28),

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc 153 Kragujevac J. Math. 26 (2004) 153 164. ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD Mustafa Inc Department of Mathematics, Firat University, 23119 Elazig Turkiye

More information

Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient

Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient Applied Mathematical Sciences, Vol. 4, 1, no. 49, 431-444 Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient Mohammad Ghoreishi School of Mathematical Sciences,

More information

A Numerical Method to Compute the Complex Solution of Nonlinear Equations

A Numerical Method to Compute the Complex Solution of Nonlinear Equations Journal of Mathematical Extension Vol. 11, No. 2, (2017), 1-17 ISSN: 1735-8299 Journal of Mathematical Extension URL: http://www.ijmex.com Vol. 11, No. 2, (2017), 1-17 ISSN: 1735-8299 URL: http://www.ijmex.com

More information

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 6, 2012, no. 10, 487-497 Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations A. R. Vahidi a and B. Jalalvand b (a) Department

More information

Solution of Quadratic Integral Equations by the Adomian Decomposition Method

Solution of Quadratic Integral Equations by the Adomian Decomposition Method Copyright 213 Tech Science Press CMES, vol.92, no.4, pp.369-385, 213 Solution of Quadratic Integral Equations by the Adomian Decomposition Method Shou-Zhong Fu 1, Zhong Wang 1 and Jun-Sheng Duan 1,2,3

More information

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method

Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method Australian Journal of Basic and Applied Sciences, 3(3): 2249-2254, 2009 ISSN 1991-8178 Different Approaches to the Solution of Damped Forced Oscillator Problem by Decomposition Method A.R. Vahidi Department

More information

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation J. Basic. Appl. Sci. Res., 2(12)12236-12241, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Adomian Decomposition Method with Laguerre

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat xxx ) xxx xxx Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: wwwelseviercom/locate/cnsns A note on the use of Adomian

More information

Picard,Adomian and Predictor-Corrector methods for integral equations of fractional order

Picard,Adomian and Predictor-Corrector methods for integral equations of fractional order Picard,Adomian and Predictor-Corrector methods for integral equations of fractional order WKZahra 1, MAShehata 2 1 Faculty of Engineering, Tanta University, Tanta, Egypt 2 Faculty of Engineering, Delta

More information

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.227-234 Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition

More information

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind Applied Mathematical Sciences, Vol. 5, 211, no. 16, 799-84 On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind A. R. Vahidi Department

More information

A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels

A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels Applied Mathematical Sciences, Vol. 8, 2014, no. 7, 321-336 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39495 A Comparison of Adomian and Generalized Adomian Methods in Solving the

More information

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems Weonbae Kim a and Changbum Chun b a Department of Mathematics, Daejin University, Pocheon, Gyeonggi-do

More information

Adomian s Decomposition Method for Solving Singular System of Transistor Circuits

Adomian s Decomposition Method for Solving Singular System of Transistor Circuits Applied Mathematical Sciences, Vol. 6, 2012, no. 37, 1819-1826 Adomian s Decomposition Method for Solving Singular System of Transistor Circuits K. Krishnaveni veni.fairy@gmail.com S. Raja Balachandar

More information

Solution for the nonlinear relativistic harmonic oscillator via Laplace-Adomian decomposition method

Solution for the nonlinear relativistic harmonic oscillator via Laplace-Adomian decomposition method arxiv:1606.03336v1 [math.ca] 27 May 2016 Solution for the nonlinear relativistic harmonic oscillator via Laplace-Adomian decomposition method O. González-Gaxiola a, J. A. Santiago a, J. Ruiz de Chávez

More information

PAijpam.eu SECOND KIND CHEBYSHEV WAVELET METHOD FOR SOLVING SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS

PAijpam.eu SECOND KIND CHEBYSHEV WAVELET METHOD FOR SOLVING SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS International Journal of Pure and Applied Mathematics Volume No. 7, 9- ISSN: 3-88 (printed version); ISSN: 3-3395 (on-line version) url: http://www.ijpam.eu doi:.73/ijpam.vi.8 PAijpam.eu SECOND KIND CHEBYSHEV

More information

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD International Journal of Pure and Applied Mathematics Volume 84 No. 4 2013, 307-319 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i4.1

More information

THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS

THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS MEHDI DEHGHAN AND MEHDI TATARI Received 16 March 25; Revised 9 August 25; Accepted 12 September 25 Dedication to Professor

More information

COMPARISON BETWEEN ADOMIAN METHOD AND LAST SQUARE METHOD FOR SOLVING HIV/AIDS NON-LINEAR SYSTEM

COMPARISON BETWEEN ADOMIAN METHOD AND LAST SQUARE METHOD FOR SOLVING HIV/AIDS NON-LINEAR SYSTEM www.arpapress.com/volumes/vol15issue2/ijrras_15_2_17.pdf COMPARISON BETWEEN ADOMIAN METHOD AND LAST SQUARE METHOD FOR SOLVING HIV/AIDS NON-LINEAR SYSTEM Meraihi Mouna & Rahmani Fouad Lazhar Department

More information

Stochastic perspective and parameter estimation for RC and RLC electrical circuits

Stochastic perspective and parameter estimation for RC and RLC electrical circuits Int. J. Nonlinear Anal. Appl. 6 (5 No., 53-6 ISSN: 8-68 (electronic http://www.ijnaa.semnan.ac.ir Stochastic perspective and parameter estimation for C and LC electrical circuits P. Nabati a,,. Farnoosh

More information

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 6, 212, no. 3, 1463-1469 Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations P. Pue-on 1 and N. Viriyapong 2 Department

More information

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Australian Journal of Basic Applied Sciences, 3(4): 4397-4407, 2009 ISSN 1991-8178 A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Dr. Abbas Y. AL_ Bayati Dr. Ann

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations

Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Mean-square Stability Analysis of an Extended Euler-Maruyama Method for a System of Stochastic Differential Equations Ram Sharan Adhikari Assistant Professor Of Mathematics Rogers State University Mathematical

More information

THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION

THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION International Journal of Computer Mathematics Vol. 00, No. 0, Month 004, pp. 1 6 THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION D. J. EVANS a and K. R. RASLAN b, a Faculty of

More information

A Maple program for computing Adomian polynomials

A Maple program for computing Adomian polynomials International Mathematical Forum, 1, 2006, no. 39, 1919-1924 A Maple program for computing Adomian polynomials Jafar Biazar 1 and Masumeh Pourabd Department of Mathematics, Faculty of Science Guilan University

More information

MORE NUMERICAL RADIUS INEQUALITIES FOR OPERATOR MATRICES. Petra University Amman, JORDAN

MORE NUMERICAL RADIUS INEQUALITIES FOR OPERATOR MATRICES. Petra University Amman, JORDAN International Journal of Pure and Applied Mathematics Volume 118 No. 3 018, 737-749 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.173/ijpam.v118i3.0

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Journal of mathematics and computer Science 7 (23) 38-43 Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Article history: Received March 23 Accepted Apri

More information

An approximation to the solution of Klein-Gordon equation with initial or boundary value condition

An approximation to the solution of Klein-Gordon equation with initial or boundary value condition International Mathematical Forum, 1, 6, no 9, 1433-1439 An approximation to the solution of Klein-Gordon equation with initial or boundary value condition J Biazar and H Ebrahimi Department of Mathematics

More information

AN IMPROVED POISSON TO APPROXIMATE THE NEGATIVE BINOMIAL DISTRIBUTION

AN IMPROVED POISSON TO APPROXIMATE THE NEGATIVE BINOMIAL DISTRIBUTION International Journal of Pure and Applied Mathematics Volume 9 No. 3 204, 369-373 ISSN: 3-8080 printed version); ISSN: 34-3395 on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/0.2732/ijpam.v9i3.9

More information

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Adv. Studies Theor. Phys., Vol. 3, 29, no. 11, 429-437 Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Gh. Asadi Cordshooli Department of Physics, Shahr-e-Rey Branch,

More information

An approximation to the solution of parabolic equation by Adomian decomposition method and comparing the result with Crank-Nicolson method

An approximation to the solution of parabolic equation by Adomian decomposition method and comparing the result with Crank-Nicolson method International Mathematical Forum, 1, 26, no. 39, 1925-1933 An approximation to the solution of parabolic equation by Adomian decomposition method and comparing the result with Crank-Nicolson method J.

More information

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(21) No.4,pp.414-421 Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 1-12 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 An Efficient Numerical Method for Solving the Fractional

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 1. Recap: SDE. Euler Maruyama. Lecture 2, Part 1: Euler Maruyama

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 1. Recap: SDE. Euler Maruyama. Lecture 2, Part 1: Euler Maruyama Numerical Simulation of Stochastic Differential Equations: Lecture, Part 1 Des Higham Department of Mathematics Universit of Strathclde Lecture, Part 1: Euler Maruama Definition of Euler Maruama Method

More information

MIXED SAMPLING PLANS WHEN THE FRACTION DEFECTIVE IS A FUNCTION OF TIME. Karunya University Coimbatore, , INDIA

MIXED SAMPLING PLANS WHEN THE FRACTION DEFECTIVE IS A FUNCTION OF TIME. Karunya University Coimbatore, , INDIA International Journal of Pure and Applied Mathematics Volume 86 No. 6 2013, 1013-1018 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v86i6.14

More information

University of Education Lahore 54000, PAKISTAN 2 Department of Mathematics and Statistics

University of Education Lahore 54000, PAKISTAN 2 Department of Mathematics and Statistics International Journal of Pure and Applied Mathematics Volume 109 No. 2 2016, 223-232 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v109i2.5

More information

Extended Adomian s polynomials for solving. non-linear fractional differential equations

Extended Adomian s polynomials for solving. non-linear fractional differential equations Theoretical Mathematics & Applications, vol.5, no.2, 25, 89-4 ISSN: 792-9687 (print), 792-979 (online) Scienpress Ltd, 25 Extended Adomian s polynomials for solving non-linear fractional differential equations

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method Int. J. Contemp. Mat. Sciences, Vol. 2, 27, no. 2, 983-989 An Approximation to te Solution of te Brusselator System by Adomian Decomposition Metod and Comparing te Results wit Runge-Kutta Metod J. Biazar

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

The Foam Drainage Equation with Time- and Space-Fractional Derivatives Solved by The Adomian Method

The Foam Drainage Equation with Time- and Space-Fractional Derivatives Solved by The Adomian Method Electronic Journal of Qualitative Theory of Differential Equations 2008, No. 30, 1-10; http://www.math.u-szeged.hu/ejqtde/ The Foam Drainage Equation with Time- and Space-Fractional Derivatives Solved

More information

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method International Differential Equations Volume 2012, Article ID 975829, 12 pages doi:10.1155/2012/975829 Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method Sachin Bhalekar

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

APPROXIMATION OF GENERALIZED BINOMIAL BY POISSON DISTRIBUTION FUNCTION

APPROXIMATION OF GENERALIZED BINOMIAL BY POISSON DISTRIBUTION FUNCTION International Journal of Pure and Applied Mathematics Volume 86 No. 2 2013, 403-410 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v86i2.14

More information

The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method

The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method Mathematics and Statistics 1(3): 113-118, 213 DOI: 1.13189/ms.213.133 hp://www.hrpub.org The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method Parivash

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS

A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS ao DOI:.2478/s275-3-9-2 Math. Slovaca 63 (23), No. 3, 469 478 A COMPLETELY MONOTONIC FUNCTION INVOLVING THE TRI- AND TETRA-GAMMA FUNCTIONS Bai-Ni Guo* Jiao-Lian Zhao** Feng Qi* (Communicated by Ján Borsík

More information

Application of Adomian Decomposition Method in Solving Second Order Nonlinear Ordinary Differential Equations

Application of Adomian Decomposition Method in Solving Second Order Nonlinear Ordinary Differential Equations International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 4 Issue 11 November 2015 PP.60-65 Application of Adomian Decomposition Method in Solving

More information

Application of the Decomposition Method of Adomian for Solving

Application of the Decomposition Method of Adomian for Solving Application of the Decomposition Method of Adomian for Solving the Pantograph Equation of Order m Fatemeh Shakeri and Mehdi Dehghan Department of Applied Mathematics, Faculty of Mathematics and Computer

More information

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation M. M. KHADER Faculty of Science, Benha University Department of Mathematics Benha EGYPT mohamedmbd@yahoo.com N. H. SWETLAM

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

On the Numerical Solutions of Heston Partial Differential Equation

On the Numerical Solutions of Heston Partial Differential Equation Math Sci Lett 4, No 1, 63-68 (215) 63 Mathematical Sciences Letters An International Journal http://dxdoiorg/112785/msl/4113 On the Numerical Solutions of Heston Partial Differential Equation Jafar Biazar,

More information

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD R. C. Mittal 1 and Ruchi Nigam 2 1 Department of Mathematics, I.I.T. Roorkee, Roorkee, India-247667. Email: rcmmmfma@iitr.ernet.in

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations

Computers and Mathematics with Applications. A modified variational iteration method for solving Riccati differential equations Computers and Mathematics with Applications 6 (21) 1868 1872 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A modified

More information

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations Telescoping Decomposition Method or Solving First Order Nonlinear Dierential Equations 1 Mohammed Al-Reai 2 Maysem Abu-Dalu 3 Ahmed Al-Rawashdeh Abstract The Telescoping Decomposition Method TDM is a new

More information

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH

ON THE SOLUTIONS OF NON-LINEAR TIME-FRACTIONAL GAS DYNAMIC EQUATIONS: AN ANALYTICAL APPROACH International Journal of Pure and Applied Mathematics Volume 98 No. 4 2015, 491-502 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v98i4.8

More information

THE RELATION AMONG EULER S PHI FUNCTION, TAU FUNCTION, AND SIGMA FUNCTION

THE RELATION AMONG EULER S PHI FUNCTION, TAU FUNCTION, AND SIGMA FUNCTION International Journal of Pure and Applied Mathematics Volume 118 No. 3 018, 675-684 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.173/ijpam.v118i3.15

More information

On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber

On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber ISSN 1749-3889 (print) 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.4pp.485-492 On the Solutions of Time-fractional Bacterial Chemotaxis in a Diffusion Gradient Chamber

More information

Discretization of SDEs: Euler Methods and Beyond

Discretization of SDEs: Euler Methods and Beyond Discretization of SDEs: Euler Methods and Beyond 09-26-2006 / PRisMa 2006 Workshop Outline Introduction 1 Introduction Motivation Stochastic Differential Equations 2 The Time Discretization of SDEs Monte-Carlo

More information

APPLICATION OF THE KALMAN-BUCY FILTER IN THE STOCHASTIC DIFFERENTIAL EQUATIONS FOR THE MODELING OF RL CIRCUIT

APPLICATION OF THE KALMAN-BUCY FILTER IN THE STOCHASTIC DIFFERENTIAL EQUATIONS FOR THE MODELING OF RL CIRCUIT Int. J. Nonlinear Anal. Appl. 2 (211) No.1, 35 41 ISSN: 28-6822 (electronic) http://www.ijnaa.com APPICATION OF THE KAMAN-BUCY FITER IN THE STOCHASTIC DIFFERENTIA EQUATIONS FOR THE MODEING OF R CIRCUIT

More information

Journal of Computational and Applied Mathematics. Higher-order semi-implicit Taylor schemes for Itô stochastic differential equations

Journal of Computational and Applied Mathematics. Higher-order semi-implicit Taylor schemes for Itô stochastic differential equations Journal of Computational and Applied Mathematics 6 (0) 009 0 Contents lists available at SciVerse ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

Variation of Parameters Method for Solving Fifth-Order. Boundary Value Problems

Variation of Parameters Method for Solving Fifth-Order. Boundary Value Problems Applied Mathematics & Information Sciences 2(2) (28), 135 141 An International Journal c 28 Dixie W Publishing Corporation, U. S. A. Variation of Parameters Method for Solving Fifth-Order Boundary Value

More information

Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method

Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method Copyright 214 Tech Science Press CMES, vol.1, no.6, pp.463-475, 214 Solution of Two-Dimensional Viscous Flow in a Rectangular Domain by the Modified Decomposition Method Lei Lu 1,2,3, Jun-Sheng Duan 2

More information

Newton-homotopy analysis method for nonlinear equations

Newton-homotopy analysis method for nonlinear equations Applied Mathematics and Computation 188 (2007) 1794 1800 www.elsevier.com/locate/amc Newton-homotopy analysis method for nonlinear equations S. Abbasbandy a, *, Y. Tan b, S.J. Liao b a Department of Mathematics,

More information

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION

AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION 1. INTRODUCTION AN EXTREME-VALUE ANALYSIS OF THE LIL FOR BROWNIAN MOTION DAVAR KHOSHNEVISAN, DAVID A. LEVIN, AND ZHAN SHI ABSTRACT. We present an extreme-value analysis of the classical law of the iterated logarithm LIL

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition Applied Mathematical Sciences, Vol 6, 202, no 59, 2935-2944 Solving Fuzzy Duffing s Equation by the Laplace Transform Decomposition, Mustafa, J and Nor,3,4 Department of Science and Mathematics, Faculty

More information

Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian Decomposition Method

Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian Decomposition Method World Applied Sciences Journal 19 (1): 171-17, 1 ISSN 1818? 95 IDOSI Publications, 1 DOI: 1.589/idosi.was.1.19.1.581 Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian

More information

PAijpam.eu NEW SELF-STARTING APPROACH FOR SOLVING SPECIAL THIRD ORDER INITIAL VALUE PROBLEMS

PAijpam.eu NEW SELF-STARTING APPROACH FOR SOLVING SPECIAL THIRD ORDER INITIAL VALUE PROBLEMS International Journal of Pure and Applied Mathematics Volume 118 No. 3 218, 511-517 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 1.12732/ijpam.v118i3.2

More information

Numerical Integration of SDEs: A Short Tutorial

Numerical Integration of SDEs: A Short Tutorial Numerical Integration of SDEs: A Short Tutorial Thomas Schaffter January 19, 010 1 Introduction 1.1 Itô and Stratonovich SDEs 1-dimensional stochastic differentiable equation (SDE) is given by [6, 7] dx

More information

Summary of the Ph.D. Thesis

Summary of the Ph.D. Thesis Summary of the Ph.D. Thesis Katalin Varga Institute of Mathematics and Informatics Debrecen University Pf. 2, H 4 Debrecen, Hungary Introduction In the dissertation stable and nearly unstable multidimensional

More information

A Short Introduction to Diffusion Processes and Ito Calculus

A Short Introduction to Diffusion Processes and Ito Calculus A Short Introduction to Diffusion Processes and Ito Calculus Cédric Archambeau University College, London Center for Computational Statistics and Machine Learning c.archambeau@cs.ucl.ac.uk January 24,

More information

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S.

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S. International Journal of Pure and Applied Mathematics Volume 11 No 1 017, 3-10 ISSN: 1311-8080 (printed version); ISSN: 1314-335 (on-line version) url: http://wwwijpameu doi: 10173/ijpamv11i17 PAijpameu

More information

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS APPLICATIONES MATHEMATICAE 29,4 (22), pp. 387 398 Mariusz Michta (Zielona Góra) OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS Abstract. A martingale problem approach is used first to analyze

More information

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 212 (212), No. 234, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation

Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Applied Mathematics Volume 22, Article ID 39876, 9 pages doi:.55/22/39876 Research Article Numerical Solution of the Inverse Problem of Determining an Unknown Source Term in a Heat Equation Xiuming Li

More information

Full terms and conditions of use:

Full terms and conditions of use: This article was downloaded by:[smu Cul Sci] [Smu Cul Sci] On: 28 March 2007 Access Details: [subscription number 768506175] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model Int. Journal of Math. Analysis, Vol. 6, 2012, no. 16, 753-759 A Study of the Variational Iteration Method for Solving Three Species Food Web Model D. Venu Gopala Rao Home: Plot No.159, Sector-12, M.V.P.Colony,

More information

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007 Stochastic processes review 3. Data Analysis Techniques in Oceanography OCP668 April, 27 Stochastic processes review Denition Fixed ζ = ζ : Function X (t) = X (t, ζ). Fixed t = t: Random Variable X (ζ)

More information

EXISTENCE AND APPROXIMATION OF SOLUTIONS OF SECOND ORDER NONLINEAR NEUMANN PROBLEMS

EXISTENCE AND APPROXIMATION OF SOLUTIONS OF SECOND ORDER NONLINEAR NEUMANN PROBLEMS Electronic Journal of Differential Equations, Vol. 2005(2005), No. 03, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

More information

Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother

Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother Prediction of ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother Simo Särkkä, Aki Vehtari and Jouko Lampinen Helsinki University of Technology Department of Electrical and Communications

More information

Adomian decomposition method for fuzzy differential equations with linear differential operator

Adomian decomposition method for fuzzy differential equations with linear differential operator ISSN 1746-7659 England UK Journal of Information and Computing Science Vol 11 No 4 2016 pp243-250 Adomian decomposition method for fuzzy differential equations with linear differential operator Suvankar

More information

Iterative Methods for Single Variable Equations

Iterative Methods for Single Variable Equations International Journal of Mathematical Analysis Vol 0, 06, no 6, 79-90 HII Ltd, wwwm-hikaricom http://dxdoiorg/0988/ijma065307 Iterative Methods for Single Variable Equations Shin Min Kang Department of

More information

Applications of Homotopy Perturbation Transform Method for Solving Newell-Whitehead-Segel Equation

Applications of Homotopy Perturbation Transform Method for Solving Newell-Whitehead-Segel Equation General Letters in Mathematics Vol, No, Aug 207, pp5-4 e-issn 259-9277, p-issn 259-929 Available online at http:// wwwrefaadcom Applications of Homotopy Perturbation Transform Method for Solving Newell-Whitehead-Segel

More information

Stochastic Numerical Analysis

Stochastic Numerical Analysis Stochastic Numerical Analysis Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Stoch. NA, Lecture 3 p. 1 Multi-dimensional SDEs So far we have considered scalar SDEs

More information

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 19, No. 4, December 26 GIRSANOV THEOREM FOR GAUSSIAN PROCESS WITH INDEPENDENT INCREMENTS Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim *** Abstract.

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Approximation of random dynamical systems with discrete time by stochastic differential equations: I. Theory

Approximation of random dynamical systems with discrete time by stochastic differential equations: I. Theory Random Operators / Stochastic Eqs. 15 7, 5 c de Gruyter 7 DOI 1.1515 / ROSE.7.13 Approximation of random dynamical systems with discrete time by stochastic differential equations: I. Theory Yuri A. Godin

More information

Introduction to Diffusion Processes.

Introduction to Diffusion Processes. Introduction to Diffusion Processes. Arka P. Ghosh Department of Statistics Iowa State University Ames, IA 511-121 apghosh@iastate.edu (515) 294-7851. February 1, 21 Abstract In this section we describe

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information