An Introduction to Discrete Vector Calculus on Finite Networks

Size: px
Start display at page:

Download "An Introduction to Discrete Vector Calculus on Finite Networks"

Transcription

1 Grupo ARIDIS REU 010, UW Notes for the Lecture, June 010. An Introduction to Discrete ector Calculus on Finite Networks A. Carmona and A.M. Encinas We aim here at introducing the basic terminology and results on discrete vector calculus on finite networks. After defining the tangent space at each verte of a weighted network we introduce the basic difference operators that are the discrete counterpart of the differential operators. Specifically we define the derivative, gradient, divergence, curl and laplacian operators. Moreover we prove that the above defined operators satisfy properties that are analogues to those satisfied by their continuous counterpart. 1. Preliminaries Throughout these notes, Γ = (, E) denotes a simple connected and finite graph without loops, with verte set and edge set E. Two different vertices,, y, are called adjacent, which is represented by y, if {, y} E. In this case, the edge {, y} is also denoted as e y and the vertices and y are called incidents with e y. In addition, for any the value k() denote the number of vertices adjacent to. When, k() = k for any we say that the graph is k-regular. We denote by C( ) and C( ), the vector spaces of real functions defined on the sets that appear between brackets. If u C( ) and f C( ), uf denotes the function defined for any, y as (uf)(, y) = u()f(, y). If u C( ), the support of u is the set supp(u) = { : u() 0}. A function ν C( ) is called a weight on if ν() > 0 for all. For each weight ν on and any u C( ) we denote by u dν the value u() ν(). In particular, when ν() = 1 for any, u dν is simply denoted by u d. Throughout the paper we make use of the following subspace of C( ): C(Γ) = {f C( ) : f(, y) = 0, if y}. We call conductance on Γ a function c C(Γ) such that c(, y) > 0 iff y. We call network any triple (Γ, c, ν), where ν is a weight and c is a conductance on Γ. In what follows we consider fied the network (Γ, c) and we refer to it simply by Γ. The function κ C( ) defined as κ() = c(, y) dy for any is called the (generalized) degree of Γ. Moreover we call resistance of Γ the function r C(Γ) defined as r(, y) = 1 c(, y) when d(, y) = 1. 1

2 A. Carmona, A.M. Encinas c(,y) y Figure 1. Weighted network Net we define the tangent space at a verte of a graph. Given, we call the real vector space of formal linear combinations of the edges incident with, tangent space at and we denote it by T (Γ). So, the set of edges incident with is a basis of T (Γ), that is called coordinate basis of T (Γ) and hence, dim T (Γ) = k(). Note that, in the discrete setting, the dimension of the tangent space varies with each verte ecept when the graph is regular. Γ T (Γ) Figure. Tangent space at We call any application f : T (Γ) such that f() T (Γ) for each, vector field on Γ. The support of f is defined as the set supp(f) = { : f() 0}. The space of vector fields on Γ is denoted by X (Γ).

3 An Introduction to Discrete ector Calculus on Finite Networks 3 If f is a vector field on Γ, then f is uniquely determined by its components in the coordinate basis. Therefore, we can associate with f the function f C(Γ) such that for each, f() = f(, y) e y and hence X (Γ) can be identified with C(Γ). A vector field f is called a flow when its component function satisfies that f(, y) = f(y, ) for any, y, whereas f is called symmetric when its component function satisfies that f(, y) = f(y, ) for any, y. Given a vector field f X (Γ), we consider two vector fields, the symmetric and the antisymmetric fields associated with f, denoted by f s and f a, respectively, that are defined as the fields whose component functions are given respectively by (1) f s f(, y) + f(y, ) (, y) = and f a f(, y) f(y, ) (, y) =. Observe that f = f s + f a for any f X (Γ). If u C( ) and f X (Γ) has f C(Γ) as its component function, the field uf is defined as the field whose component function is uf. If f, g X (Γ) and f, g C(Γ) are their component functions, the epression f, g denotes the function in C( ) given by () f, g () = f(, y)g(, y)r(, y), for any. Clearly, for any,, () determines an inner product on T (Γ). The triple (Γ, c, ν), where ν is a weight on, is called weighted network. So, on a weighted network we can consider the following inner products on C( ) and on X (Γ), (3) u v dν, u, v C( ) and 1 f, g d, f, g X (Γ), where the factor 1 is due to the fact that each edge is considered twice. Lemma 1.1. Given f, g X (Γ) such that f is symmetric and g is a flow, then. Difference operators on weighted networks f, g d = 0. Our objective in this section is to define the discrete analogues of the fundamental first and second order differential operators on Riemannian manifolds, specifically the derivative, gradient, divergence, curl and the laplacian. The last one is called second order difference operator whereas the former are generically called first order difference operators. From now on we suppose fied the weighted network (Γ, c, ν) and also the associated inner products on C( ) and X (Γ). We call derivative operator the linear map d: C( ) X (Γ) that assigns to any u C( ) the flow du, called derivative of u, given by (4) du() = ( u(y) u() ) ey. We call gradient the linear map : C( ) X (Γ) that assigns to any u C( ) the flow u, called gradient of u, given by (5) u() = c(, y) ( u(y) u() ) e y. Clearly, it is verified that du = 0, or equivalently u = 0, iff u is a constant function. We define the divergence operator as div =, that is the linear map div : X (Γ) C( ) that assigns to any f X (Γ) the function div f, called divergence of f, determined by the relation (6) u div f dν = 1 u, f d, for an u C( ).

4 4 A. Carmona, A.M. Encinas Therefore, taking u constant in the above identity, we obtain that (7) div f dν = 0 for any f X (Γ). Proposition.1. If f X (Γ), for any it holds Proof. div f() = 1 ν() f a (, y). For any z consider u = ε z, the Dirac function at z. Then, from Identity (6) we get that div f(z) = 1 ε z, f d = 1 ε z, f () ν(z) ν(z) Given, we get that ε z, f () = c(, y) ( ε z (y) ε z () ) f(, y)r(, y) = y ( εz (y) ε z () ) f(, y) = f(, z) y ε z ()f(, y) and hence when z, then ε z, f () = f(, z), whereas ε z, f (z) = f(z, y). Therefore, y div f(z) = 1 ν(z) ε z, f () = 1 ν(z) y f(z, y) z f(, z) = 1 f a (z, ). ν(z) We call curl the linear map curl : X (Γ) X (Γ) that assigns to any f X (Γ) the symmetric vector field curl f, called curl of f, given by (8) curl f() = r(, y)f s (, y) e y. In the following result we show that the above defined difference operators verify properties that are mimetic to the ones verified by their differential analogues. Proposition.. curl = curl, div curl = 0 and curl = 0. Now we introduce the fundamental second order difference operator on C( ) which is obtained by composition of two first order operators. Specifically, we consider the endomorphism of C( ) given by L = div, that we call the Laplace-Beltrami operator or Laplacian of Γ. Proposition.3. For any u C( ) and for any we get that L(u)() = 1 c(, y) ( u() u(y) ) = 1 c(, y) ( u() u(y) ) dy. ν() ν() Moreover, given u, v C( ), the following properties hold: (i) First Green Identity vl(u)dν = 1 (ii) Second Green Identity u, v d = 1 vl(u)dν = c(, y) ( u() u(y) )( v() v(y) ) ddy. ul(v)dν.

5 An Introduction to Discrete ector Calculus on Finite Networks 5 (iii) Gauss Theorem L(u)dν = 0. Proof. The epression for the Laplacian of u follows from the epression of the divergence keeping in mind that u is a flow. On the other hand, given v C( ) from the definition of divergence we get that vl(u) dν = vdiv ( u) dν = 1 u, v d = 1 c(, y) ( u() u(y) )( v() v(y) ) d dy and the First Green Identity follows. The proof of the Second Green Identity and the Gauss Theorem are straightforward consequence of (i). Corollary.4. The Laplacian of Γ is self-adjoint and positive semi definite. Moreover L(u) = 0 iff u is constant. Remark: Suppose that = { 1,..., n }, assume that ν = 1 and consider c ij = c( i, j ) = c ji. Then, each u C( ) is identified with ( u( 1 ),..., u( n ) ) T IR n and the Laplacian of Γ is identified with the irreducible matri k 1 c 1 c 1n c 1 k c n L = where k i = n j=1 c n1 c n k n c ij, i = 1,..., n. Clearly, this matri is symmetric and diagonally dominant 1 and hence it is positive semi-definite. Moreover, it is singular and 0 is a simple eigenvalue whose associated eigenvectors are constant. 1

THE CURL OF A WEIGHTED NETWORK

THE CURL OF A WEIGHTED NETWORK Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu Appl. Anal. Discrete Math. 2 (2008), 241 254. doi:10.2298/aadm0802241b THE CURL OF A WEIGHTED NETWORK E. Bendito,

More information

Potential Theory for Boundary Value Problems on finite networks

Potential Theory for Boundary Value Problems on finite networks Potential Theory for Boundary Value Problems on finite networks E. Bendito, A. Carmona, A. M. Encinas and J.M. Gesto Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya. 08034 Barcelona.

More information

GREEN MATRICES OF WEIGHTED GRAPHS WITH PENDANT VERTICES. Midsummer Combinatorial Workshop XX Prague, 28 July- 1 August 2014

GREEN MATRICES OF WEIGHTED GRAPHS WITH PENDANT VERTICES. Midsummer Combinatorial Workshop XX Prague, 28 July- 1 August 2014 GREEN MATRICES OF WEIGHTED GRAPHS WITH PENDANT VERTICES Silvia Gago joint work with Angeles Carmona, Andrés M. Encinas, Margarida Mitjana Midsummer Combinatorial Workshop XX Prague, 28 July- 1 August 2014

More information

Regularization on Discrete Spaces

Regularization on Discrete Spaces Regularization on Discrete Spaces Dengyong Zhou and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany {dengyong.zhou, bernhard.schoelkopf}@tuebingen.mpg.de

More information

Characterization of symmetric M-matrices as resistive inverses

Characterization of symmetric M-matrices as resistive inverses Characterization of symmetric M-matrices as resistive inverses E. Bendito, A. Carmona, A.M. Encinas and J.M. Gesto Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya. Abstract

More information

FFTs in Graphics and Vision. The Laplace Operator

FFTs in Graphics and Vision. The Laplace Operator FFTs in Graphics and Vision The Laplace Operator 1 Outline Math Stuff Symmetric/Hermitian Matrices Lagrange Multipliers Diagonalizing Symmetric Matrices The Laplacian Operator 2 Linear Operators Definition:

More information

and finally, any second order divergence form elliptic operator

and finally, any second order divergence form elliptic operator Supporting Information: Mathematical proofs Preliminaries Let be an arbitrary bounded open set in R n and let L be any elliptic differential operator associated to a symmetric positive bilinear form B

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS

A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS Mathematical Models and Methods in Applied Sciences c World Scientific Publishing Company A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS QIANG DU Department

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

The spectral action for Dirac operators with torsion

The spectral action for Dirac operators with torsion The spectral action for Dirac operators with torsion Christoph A. Stephan joint work with Florian Hanisch & Frank Pfäffle Institut für athematik Universität Potsdam Tours, ai 2011 1 Torsion Geometry, Einstein-Cartan-Theory

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Geometry for Physicists

Geometry for Physicists Hung Nguyen-Schafer Jan-Philip Schmidt Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers 4 i Springer Contents 1 General Basis and Bra-Ket Notation 1 1.1 Introduction to

More information

Part III Symmetries, Fields and Particles

Part III Symmetries, Fields and Particles Part III Symmetries, Fields and Particles Theorems Based on lectures by N. Dorey Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often

More information

MA3025 Course Prerequisites

MA3025 Course Prerequisites MA3025 Course Prerequisites MA 3025 (4-1) MA3025 (4-1) Logic and Discrete Mathematics: Provides a rigorous foundation in logic and elementary discrete mathematics. Topics from logic include modeling English

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

Chapter 12: Iterative Methods

Chapter 12: Iterative Methods ES 40: Scientific and Engineering Computation. Uchechukwu Ofoegbu Temple University Chapter : Iterative Methods ES 40: Scientific and Engineering Computation. Gauss-Seidel Method The Gauss-Seidel method

More information

4 Divergence theorem and its consequences

4 Divergence theorem and its consequences Tel Aviv University, 205/6 Analysis-IV 65 4 Divergence theorem and its consequences 4a Divergence and flux................. 65 4b Piecewise smooth case............... 67 4c Divergence of gradient: Laplacian........

More information

Handout to Wu Characteristic Harvard math table talk Oliver Knill, 3/8/2016

Handout to Wu Characteristic Harvard math table talk Oliver Knill, 3/8/2016 Handout to Wu Characteristic Harvard math table talk Oliver Knill, 3/8/2016 Definitions Let G = (V, E) be a finite simple graph with vertex set V and edge set E. The f-vector v(g) = (v 0 (G), v 1 (G),...,

More information

Sandia National Labs SAND J. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws

Sandia National Labs SAND J. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws Archive for Rational Mechanics and Analysis manuscript No. will be inserted by the editor) Q. Du M. D. Gunzburger R. B. Lehoucq K. Zhou A nonlocal vector calculus, nonlocal volume-constrained problems,

More information

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky Homogeneous para-kähler Einstein manifolds Dmitri V. Alekseevsky Hamburg,14-18 July 2008 1 The talk is based on a joint work with C.Medori and A.Tomassini (Parma) See ArXiv 0806.2272, where also a survey

More information

arxiv: v1 [math.co] 27 Jul 2012

arxiv: v1 [math.co] 27 Jul 2012 Harnack inequalities for graphs with non-negative Ricci curvature arxiv:1207.6612v1 [math.co] 27 Jul 2012 Fan Chung University of California, San Diego S.-T. Yau Harvard University May 2, 2014 Abstract

More information

On the inverse matrix of the Laplacian and all ones matrix

On the inverse matrix of the Laplacian and all ones matrix On the inverse matrix of the Laplacian and all ones matrix Sho Suda (Joint work with Michio Seto and Tetsuji Taniguchi) International Christian University JSPS Research Fellow PD November 21, 2012 Sho

More information

Uniformly bounded sets of orthonormal polynomials on the sphere

Uniformly bounded sets of orthonormal polynomials on the sphere Uniformly bounded sets of orthonormal polynomials on the sphere J. Marzo & J. Ortega-Cerdà Universitat de Barcelona October 13, 2014 Some previous results W. Rudin (80), Inner function Conjecture : There

More information

Math 126 Lecture 8. Summary of results Application to the Laplacian of the cube

Math 126 Lecture 8. Summary of results Application to the Laplacian of the cube Math 126 Lecture 8 Summary of results Application to the Laplacian of the cube Summary of key results Every representation is determined by its character. If j is the character of a representation and

More information

Klaus Janich. Vector Analysis. Translated by Leslie Kay. With 108 Illustrations. Springer

Klaus Janich. Vector Analysis. Translated by Leslie Kay. With 108 Illustrations. Springer Klaus Janich Vector Analysis Translated by Leslie Kay With 108 Illustrations Springer Preface to the English Edition Preface to the First German Edition Differentiable Manifolds 1 1.1 The Concept of a

More information

An Algorithmist s Toolkit September 15, Lecture 2

An Algorithmist s Toolkit September 15, Lecture 2 18.409 An Algorithmist s Toolkit September 15, 007 Lecture Lecturer: Jonathan Kelner Scribe: Mergen Nachin 009 1 Administrative Details Signup online for scribing. Review of Lecture 1 All of the following

More information

Complex manifolds, Kahler metrics, differential and harmonic forms

Complex manifolds, Kahler metrics, differential and harmonic forms Complex manifolds, Kahler metrics, differential and harmonic forms Cattani June 16, 2010 1 Lecture 1 Definition 1.1 (Complex Manifold). A complex manifold is a manifold with coordinates holomorphic on

More information

CS 468. Differential Geometry for Computer Science. Lecture 13 Tensors and Exterior Calculus

CS 468. Differential Geometry for Computer Science. Lecture 13 Tensors and Exterior Calculus CS 468 Differential Geometry for Computer Science Lecture 13 Tensors and Exterior Calculus Outline Linear and multilinear algebra with an inner product Tensor bundles over a surface Symmetric and alternating

More information

Friedrich symmetric systems

Friedrich symmetric systems viii CHAPTER 8 Friedrich symmetric systems In this chapter, we describe a theory due to Friedrich [13] for positive symmetric systems, which gives the existence and uniqueness of weak solutions of boundary

More information

Survey on exterior algebra and differential forms

Survey on exterior algebra and differential forms Survey on exterior algebra and differential forms Daniel Grieser 16. Mai 2013 Inhaltsverzeichnis 1 Exterior algebra for a vector space 1 1.1 Alternating forms, wedge and interior product.....................

More information

Stable minimal cones in R 8 and R 9 with constant scalar curvature

Stable minimal cones in R 8 and R 9 with constant scalar curvature Revista Colombiana de Matemáticas Volumen 6 (2002), páginas 97 106 Stable minimal cones in R 8 and R 9 with constant scalar curvature Oscar Perdomo* Universidad del Valle, Cali, COLOMBIA Abstract. In this

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

Created by T. Madas VECTOR OPERATORS. Created by T. Madas

Created by T. Madas VECTOR OPERATORS. Created by T. Madas VECTOR OPERATORS GRADIENT gradϕ ϕ Question 1 A surface S is given by the Cartesian equation x 2 2 + y = 25. a) Draw a sketch of S, and describe it geometrically. b) Determine an equation of the tangent

More information

NONLOCAL EXTERIOR CALCULUS ON RIEMANNIAN MANIFOLDS

NONLOCAL EXTERIOR CALCULUS ON RIEMANNIAN MANIFOLDS The Pennsylvania State University The Graduate School Department of Mathematics NONLOCAL EXTERIOR CALCULUS ON RIEMANNIAN MANIFOLDS A Dissertation in Mathematics by Thinh Duc Le c 2013 Thinh Duc Le Submitted

More information

Upon successful completion of MATH 220, the student will be able to:

Upon successful completion of MATH 220, the student will be able to: MATH 220 Matrices Upon successful completion of MATH 220, the student will be able to: 1. Identify a system of linear equations (or linear system) and describe its solution set 2. Write down the coefficient

More information

arxiv: v2 [math.dg] 26 Sep 2017

arxiv: v2 [math.dg] 26 Sep 2017 A flow of isometric G 2 -structures. Short-time existence arxiv:1709.06356v2 [math.dg] 26 Sep 2017 Leonardo Bagaglini Dipartimento di atematica e Informatica Ulisse Dini. Università degli Studi di Firenze.

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

The Group Inverse of extended Symmetric and Periodic Jacobi Matrices

The Group Inverse of extended Symmetric and Periodic Jacobi Matrices GRUPO MAPTHE Preprint 206 February 3, 206. The Group Inverse of extended Symmetric and Periodic Jacobi Matrices S. Gago Abstract. In this work, we explicitly compute the group inverse of symmetric and

More information

Now, if you see that x and y are present in both equations, you may write:

Now, if you see that x and y are present in both equations, you may write: Matrices: Suppose you have two simultaneous equations: y y 3 () Now, if you see that and y are present in both equations, you may write: y 3 () You should be able to see where the numbers have come from.

More information

MATH 829: Introduction to Data Mining and Analysis Clustering II

MATH 829: Introduction to Data Mining and Analysis Clustering II his lecture is based on U. von Luxburg, A Tutorial on Spectral Clustering, Statistics and Computing, 17 (4), 2007. MATH 829: Introduction to Data Mining and Analysis Clustering II Dominique Guillot Departments

More information

EECS 598: Statistical Learning Theory, Winter 2014 Topic 11. Kernels

EECS 598: Statistical Learning Theory, Winter 2014 Topic 11. Kernels EECS 598: Statistical Learning Theory, Winter 2014 Topic 11 Kernels Lecturer: Clayton Scott Scribe: Jun Guo, Soumik Chatterjee Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w.

Given the vectors u, v, w and real numbers α, β, γ. Calculate vector a, which is equal to the linear combination α u + β v + γ w. Selected problems from the tetbook J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I Problems in Mathematics I I. LINEAR ALGEBRA I.. Vectors, vector spaces Given the vectors u, v, w and real numbers

More information

Physical Metaphors for Graphs

Physical Metaphors for Graphs Graphs and Networks Lecture 3 Physical Metaphors for Graphs Daniel A. Spielman October 9, 203 3. Overview We will examine physical metaphors for graphs. We begin with a spring model and then discuss resistor

More information

Chapter 6 Inner product spaces

Chapter 6 Inner product spaces Chapter 6 Inner product spaces 6.1 Inner products and norms Definition 1 Let V be a vector space over F. An inner product on V is a function, : V V F such that the following conditions hold. x+z,y = x,y

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Contact and Symplectic Geometry of Monge-Ampère Equations: Introduction and Examples

Contact and Symplectic Geometry of Monge-Ampère Equations: Introduction and Examples Contact and Symplectic Geometry of Monge-Ampère Equations: Introduction and Examples Vladimir Rubtsov, ITEP,Moscow and LAREMA, Université d Angers Workshop "Geometry and Fluids" Clay Mathematical Institute,

More information

Math 302 Outcome Statements Winter 2013

Math 302 Outcome Statements Winter 2013 Math 302 Outcome Statements Winter 2013 1 Rectangular Space Coordinates; Vectors in the Three-Dimensional Space (a) Cartesian coordinates of a point (b) sphere (c) symmetry about a point, a line, and a

More information

The spectral zeta function

The spectral zeta function The spectral zeta function Bernd Ammann June 4, 215 Abstract In this talk we introduce spectral zeta functions. The spectral zeta function of the Laplace-Beltrami operator was already introduced by Minakshisundaram

More information

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Index theory on singular manifolds I p. 1/4 Index theory on singular manifolds I Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Paul Loya Index theory on singular manifolds I

More information

The Signless Laplacian Spectral Radius of Graphs with Given Degree Sequences. Dedicated to professor Tian Feng on the occasion of his 70 birthday

The Signless Laplacian Spectral Radius of Graphs with Given Degree Sequences. Dedicated to professor Tian Feng on the occasion of his 70 birthday The Signless Laplacian Spectral Radius of Graphs with Given Degree Sequences Xiao-Dong ZHANG Ü À Shanghai Jiao Tong University xiaodong@sjtu.edu.cn Dedicated to professor Tian Feng on the occasion of his

More information

Class 4 : Maxwell s Equations for Electrostatics

Class 4 : Maxwell s Equations for Electrostatics Class 4 : Maxwell s Equations for Electrostatics Concept of charge density Maxwell s 1 st and 2 nd Equations Physical interpretation of divergence and curl How do we check whether a given vector field

More information

14 Divergence, flux, Laplacian

14 Divergence, flux, Laplacian Tel Aviv University, 204/5 Analysis-III,IV 240 4 Divergence, flux, Laplacian 4a What is the problem................ 240 4b Integral of derivative (again)........... 242 4c Divergence and flux.................

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

TOPICS IN HOMOGENIZATION OF DIFFERENTIAL EQUATIONS 7

TOPICS IN HOMOGENIZATION OF DIFFERENTIAL EQUATIONS 7 TOPICS IN HOMOGENIZATION OF DIFFERENTIAL EQUATIONS 7. Two-scale asymptotic epansions method We will illustrate this method by applying it to an elliptic boundary value problem for the unknown u : æ R given

More information

The Weitzenböck Machine

The Weitzenböck Machine The Weitzenböck Machine Uwe Semmelmann & Gregor Weingart February 19, 2012 Abstract Weitzenböck formulas are an important tool in relating local differential geometry to global topological properties by

More information

Ollivier Ricci curvature for general graph Laplacians

Ollivier Ricci curvature for general graph Laplacians for general graph Laplacians York College and the Graduate Center City University of New York 6th Cornell Conference on Analysis, Probability and Mathematical Physics on Fractals Cornell University June

More information

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence Chapter 6 Nonlinear Equations 6. The Problem of Nonlinear Root-finding In this module we consider the problem of using numerical techniques to find the roots of nonlinear equations, f () =. Initially we

More information

Lecture 13 The Fundamental Forms of a Surface

Lecture 13 The Fundamental Forms of a Surface Lecture 13 The Fundamental Forms of a Surface In the following we denote by F : O R 3 a parametric surface in R 3, F(u, v) = (x(u, v), y(u, v), z(u, v)). We denote partial derivatives with respect to the

More information

Introducing the Laplacian

Introducing the Laplacian Introducing the Laplacian Prepared by: Steven Butler October 3, 005 A look ahead to weighted edges To this point we have looked at random walks where at each vertex we have equal probability of moving

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

1. The Polar Decomposition

1. The Polar Decomposition A PERSONAL INTERVIEW WITH THE SINGULAR VALUE DECOMPOSITION MATAN GAVISH Part. Theory. The Polar Decomposition In what follows, F denotes either R or C. The vector space F n is an inner product space with

More information

On certain integral Schreier graphs of the symmetric group

On certain integral Schreier graphs of the symmetric group On certain integral Schreier graphs of the symmetric group Paul E. Gunnells Department of Mathematics and Statistics University of Massachusetts Amherst, Massachusetts, USA gunnells@math.umass.edu Richard

More information

Lecture 10: October 27, 2016

Lecture 10: October 27, 2016 Mathematical Toolkit Autumn 206 Lecturer: Madhur Tulsiani Lecture 0: October 27, 206 The conjugate gradient method In the last lecture we saw the steepest descent or gradient descent method for finding

More information

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix. Quadratic forms 1. Symmetric matrices An n n matrix (a ij ) n ij=1 with entries on R is called symmetric if A T, that is, if a ij = a ji for all 1 i, j n. We denote by S n (R) the set of all n n symmetric

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

Let M be a Riemannian manifold with Levi-Civita connection D. For X, Y, W Γ(TM), we have R(X, Y )Z = D Y D X Z D X D Y Z D [X,Y ] Z,

Let M be a Riemannian manifold with Levi-Civita connection D. For X, Y, W Γ(TM), we have R(X, Y )Z = D Y D X Z D X D Y Z D [X,Y ] Z, Let M be a Riemannian manifold with Levi-Civita connection D. For X, Y, W Γ(TM), we have R(X, Y )Z = D Y D X Z D X D Y Z D [X,Y ] Z, where R is the curvature tensor of D. We have Proposition 1. For any

More information

7.1 Tangent Planes; Differentials of Maps Between

7.1 Tangent Planes; Differentials of Maps Between Chapter 7 Tangent Planes Reading: Do Carmo sections 2.4 and 3.2 Today I am discussing 1. Differentials of maps between surfaces 2. Geometry of Gauss map 7.1 Tangent Planes; Differentials of Maps Between

More information

Caltech Ph106 Fall 2001

Caltech Ph106 Fall 2001 Caltech h106 Fall 2001 ath for physicists: differential forms Disclaimer: this is a first draft, so a few signs might be off. 1 Basic properties Differential forms come up in various parts of theoretical

More information

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then 1. x S is a global minimum point of f over S if f (x) f (x ) for any x S. 2. x S

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Gradient, Divergence, Curl Page 5.01 ENGI 94 5. - Gradient, Divergence, Curl Page 5. 5. The Gradient Operator A brief review is provided here for the gradient operator in both Cartesian and orthogonal non-cartesian coordinate systems. Sections

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry Lecture 13 13 May 2013 Tensors and Exterior Calculus Lecturer: Adrian Butscher Scribe: Cassidy Saenz 1 Vectors, Dual Vectors and Tensors 1.1 Inner Product

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm.

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm. MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm. Bring a calculator and something to write with. Also, you will be allowed to bring in one 8.5 11 sheet of paper

More information

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration:

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration: RIEMANNIAN GEOMETRY of COMPACT METRIC SPACES Jean BELLISSARD 1 Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) 1 e-mail:

More information

Lecture 4: Harmonic forms

Lecture 4: Harmonic forms Lecture 4: Harmonic forms Jonathan Evans 29th September 2010 Jonathan Evans () Lecture 4: Harmonic forms 29th September 2010 1 / 15 Jonathan Evans () Lecture 4: Harmonic forms 29th September 2010 2 / 15

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Differential Geometry: Discrete Exterior Calculus

Differential Geometry: Discrete Exterior Calculus Differential Geometry: Discrete Exterior Calculus [Discrete Exterior Calculus (Thesis). Hirani, 23] [Discrete Differential Forms for Computational Modeling. Desbrun et al., 25] [Build Your Own DEC at Home.

More information

On positive solutions of semi-linear elliptic inequalities on Riemannian manifolds

On positive solutions of semi-linear elliptic inequalities on Riemannian manifolds On positive solutions of semi-linear elliptic inequalities on Riemannian manifolds Alexander Grigor yan University of Bielefeld University of Minnesota, February 2018 Setup and problem statement Let (M,

More information

Singular Value Decomposition (SVD) and Polar Form

Singular Value Decomposition (SVD) and Polar Form Chapter 2 Singular Value Decomposition (SVD) and Polar Form 2.1 Polar Form In this chapter, we assume that we are dealing with a real Euclidean space E. Let f: E E be any linear map. In general, it may

More information

Geometry on Probability Spaces

Geometry on Probability Spaces Geometry on Probability Spaces Steve Smale Toyota Technological Institute at Chicago 427 East 60th Street, Chicago, IL 60637, USA E-mail: smale@math.berkeley.edu Ding-Xuan Zhou Department of Mathematics,

More information

5 Quiver Representations

5 Quiver Representations 5 Quiver Representations 5. Problems Problem 5.. Field embeddings. Recall that k(y,..., y m ) denotes the field of rational functions of y,..., y m over a field k. Let f : k[x,..., x n ] k(y,..., y m )

More information

1.13 The Levi-Civita Tensor and Hodge Dualisation

1.13 The Levi-Civita Tensor and Hodge Dualisation ν + + ν ν + + ν H + H S ( S ) dφ + ( dφ) 2π + 2π 4π. (.225) S ( S ) Here, we have split the volume integral over S 2 into the sum over the two hemispheres, and in each case we have replaced the volume-form

More information

MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS

MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS T H I R D E D I T I O N MULTIVARIABLE CALCULUS, LINEAR ALGEBRA, AND DIFFERENTIAL EQUATIONS STANLEY I. GROSSMAN University of Montana and University College London SAUNDERS COLLEGE PUBLISHING HARCOURT BRACE

More information

ELECTRODYNAMICS and the GAUSS LINKING INTEGRAL

ELECTRODYNAMICS and the GAUSS LINKING INTEGRAL ELECTRODYNAMICS and the GAUSS LINKING INTEGRAL on the 3-SPHERE and in HYPERBOLIC 3-SPACE Dennis DeTurck and Herman Gluck In this first of two papers, we develop a steady-state version of classical electrodynamics

More information

Matrices and Linear transformations

Matrices and Linear transformations Matrices and Linear transformations We have been thinking of matrices in connection with solutions to linear systems of equations like Ax = b. It is time to broaden our horizons a bit and start thinking

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

On the M-matrix inverse problem for singular and symmetric Jacobi matrices

On the M-matrix inverse problem for singular and symmetric Jacobi matrices Electronic Journal of Linear Algebra Volume 4 Volume 4 (0/0) Article 7 0 On the M-matrix inverse problem for singular and symmetric Jacobi matrices Angeles Carmona Andres Encinas andres.marcos.encinas@upc.edu

More information

Lecture: Modeling graphs with electrical networks

Lecture: Modeling graphs with electrical networks Stat260/CS294: Spectral Graph Methods Lecture 16-03/17/2015 Lecture: Modeling graphs with electrical networks Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Liouville Properties for Nonsymmetric Diffusion Operators. Nelson Castañeda. Central Connecticut State University

Liouville Properties for Nonsymmetric Diffusion Operators. Nelson Castañeda. Central Connecticut State University Liouville Properties for Nonsymmetric Diffusion Operators Nelson Castañeda Central Connecticut State University VII Americas School in Differential Equations and Nonlinear Analysis We consider nonsymmetric

More information

Linear Algebra using Dirac Notation: Pt. 2

Linear Algebra using Dirac Notation: Pt. 2 Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q - Southern Illinois University February 6, 2018 PHYS 476Q - Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

INTRODUCTION TO LIE ALGEBRAS. LECTURE 1.

INTRODUCTION TO LIE ALGEBRAS. LECTURE 1. INTRODUCTION TO LIE ALGEBRAS. LECTURE 1. 1. Algebras. Derivations. Definition of Lie algebra 1.1. Algebras. Let k be a field. An algebra over k (or k-algebra) is a vector space A endowed with a bilinear

More information

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström A brief introduction to Semi-Riemannian geometry and general relativity Hans Ringström May 5, 2015 2 Contents 1 Scalar product spaces 1 1.1 Scalar products...................................... 1 1.2 Orthonormal

More information