PH2130. Week 1. Week 2. Week 3. Questions for contemplation. Why differential equations? Why usually linear diff eq n s? Why usually 2 nd order?

Size: px
Start display at page:

Download "PH2130. Week 1. Week 2. Week 3. Questions for contemplation. Why differential equations? Why usually linear diff eq n s? Why usually 2 nd order?"

Transcription

1 PH130 week 3, page 1 PH130 Questions for contemplation Week 1 Why differential equations? Week Why usually linear diff eq n s? Week 3 Why usually nd order?

2 PH130 week 3, page Aims of Wk 3 Lect 1 Recognise diffusion eq n and wave eq n. Know the type of phenomena they describe Know the meaning and use of the symbol Understand the physical meaning of the laplacian operator

3 PH130 week 3, page One dimension: x and t independent variables Ψ 1 Ψ = 0 Diffusion eq n x D t describes diffusion, heat flow etc. D is the diffusion coefficient. Ψ 1 Ψ = 0 Wave eq n x v t describes vibrating string. v is the speed of propagation. Note different orders of time Connection with relativity.

4 PH130 week 3, page 4.3. Two dimensions: x, y and t independent variables + Ψ Ψ 1 Ψ = 0 Diff n eq n x y D t describes diffusion, heat flow etc. in two dimensions D is the diffusion coefficient. + Ψ Ψ 1 Ψ = 0 Wave eq n x y v t describes vibrating sheet -- a drum for example. v is the speed of propagation.

5 PH130 week 3, page Three dimensions: x, y, z and t independent variables + + Ψ Ψ Ψ 1 Ψ = 0 Diff n eq n x y z D t describes diffusion, heat flow etc. in three dimensions D is the diffusion coefficient. + + Ψ Ψ Ψ 1 Ψ = 0 Wave x y z v t eq n describes vibrations in 3d -- sound waves for example. v is the speed of propagation.

6 PH130 week 3, page The laplacian Have seen before. + + x y z Recall vector calculus in PH110 and the formula div grad = The laplacian operator, denoted by, is given (in cartesian coordinates) by = + + x y z. Some books denote by ; we don t

7 Ubiquity of the laplacian The laplacian appears in many differential equations: Diffusion equation 1 Ψ Ψ. D t PH130 week 3, page 7 Wave equation Ψ 1 v Ψ. t Even the Schrödinger equation = Ψ Ψ+ VΨ= i= m t recall from PH1530 Why is so common?

8 PH130 week 3, page Physical meaning of The laplacian gives the smoothness of a function. It measures the difference between the value of Ψ at a point and its mean value at surrounding points. A little to the left of x a Ψ Ψ x a = Ψ x a Ψ + x x +... while a little to the right a Ψ Ψ x a = Ψ x + a Ψ + x x +...

9 PH130 week 3, page 9 On taking the average Ψ = Ψ x a + Ψ x+ a 05 a Ψ = Ψ x + x or 05 a Ψ Ψ Ψ x = x The argument can be extended to d and 3d. Thus we conclude: The deviation from the value of Ψ at a point and its mean value in the surrounding region is proportional to Ψ. In the Schrödinger equation bending Ψ costs kinetic energy.

10 PH130 week 3, page Laplace s equation In the steady state i.e. / t, / t etc. = 0. Then both the wave equation and the diffusion equation reduce to (another equation to spot) Ψ = 0. Laplace s equation Will see this in Electromagnetism PH40. Physical interpretation of implies: In a region where Laplace s eq n holds, there can be no maxima or minima in Ψ.

11 .3.7 The d alembertian kjhkjhkjhk PH130 week 3, page 11

12 PH130 week 3, page 1 Aims of Wk 3 Lect Understand separation of variables method for solving PDEs Use separation of variables to convert PDEs into ODEs Boundary conds and Initial conds in solving real problems Solve simple ( indep. vars) PDEs, given BCs and ICs

13 PH130 week 3, page 13 3 Separation of Variables Look for solutions of PDEs which are a product of the independent variables. Converts PDEs into a number of ODEs. - So in 1d case : x, t indep. vars., look for solutions like Ψ xt, = X xtt

14 PH130 week 3, page d wave equation Ψ 1 Ψ = x v t Writing Ψ xt, = X xtt Then Ψ xt, d X x 05 = Tt x dx and 0 5 Ψ xt, d Tt = X x t dt has total derivatives. Put in wave equation

15 d X x dx Tt = 1 v Divide by X0505, x T t gives d Tt dt PH130 week 3, page 15 1 d X 1 1 = X dx v T d T dt LHS depends on x only RHS depends on t only But x and t are independent! So both sides must be constant Put const = k. Called separation constant.

16 PH130 week 3, page 16 Have ODEs: d X dx d T dt + k X = + vkt= 0 0 ( ) K KK * - Have turned 1 PDE into ODEs - Assuming k is positive, these are both SHO equations.

17 PH130 week 3, page Boundary conditions & Initial conditions Need some physical information to solve real problems. E.g. Piano string, length L, where Ψ xt, 0 5 is displacement of string. Fixed at both ends: Ψ 0, t = Ψ L, t = 0 for all t. Restriction on Ψ by the boundary, so called boundary condition Initial shape: Ψ x,0 = f x, Restriction on Ψ by the initial state called initial condition.

18 PH130 week 3, page 18 The Boundary Condition helps solve the X equation. BC is X = X L = 0. Gen. Sol n of d X + k X = 0 dx is X x = Asin kx + Bcos kx. Recall from PH1110 BC X 05= 0 0 B= 0 BC X05= L 0 restricts allowed values of k since sin kl must = 0; i.e kl = nπ for integer n. (See why k must be +ve now)

19 PICTURE of Piano string PH130 week 3, page 19

20 PH130 week 3, page 0 Recall particle in a box in PH530. There we saw you needed an integer n o of ½ waves to fill L. Same thing. n = 1 n = n = 3 We label the allowed values of k: k L n n = π Then X solutions are: X x = A sin k x n n n underermined as yet See that Boundary conditions Quantisation

21 PH130 week 3, page 1 The Initial Condition helps solve the T equation 05 d Tt 0 + kvt = dt another SHO equation since we know k is positive. Solution is T t = P cos k vt + Q sin k vt n n n n n Solution for Ψ(x, t) for given n is then xt X xt t = sin k x P cos k vt + Q sin k vt Ψ n, = n n ; @ n n n n n (have subsumed the A n into the P n, Q n )

22 PH130 week 3, page Linearity allows us to write the general solution as a linear superposition 0 5 ; @ Ψ x, t = sinknx Pncos knvt + Qnsin knvt n again have subsumed coeffs into the P n and Q n. Satisfying the initial condition will determine the P n and Q n. so Ψ x,0 = f x Pnsin knx = f05. x n This is a Fourier sine series. Remember from PH110

23 PH130 week 3, page 3 The Fourier components P n are found 05 from f x using the inversion formula: IL Pn = f05sin x knxdx L 0

24 PH130 week 3, page 4 So: Solution to vibrating string obeying Ψ 1 Ψ = x v t and subject to: BC: Ψ 0, t = Ψ L, t = 0 for all t (fixed at both ends) and IC: Ψ x,0 = f x (shape at t = 0) Is Ψ xt, = Pnsin kx n cos kvt n where and P n n k L n n = π IL = f05sin x knxd x. L 0

25 PH130 week 3, page 5 Summary of S.V method: 1 Express Ψ as a product ODEs plus separation constant Solve ODEs 3 Boundary conditions determine allowed spatial solutions, values of separation constant 4 Make linear superposition of X n T n solutions. 5 Initial conditions allow determination of superposition coefficients.

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear.

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) November 12, 2018 Wave equation in one dimension This lecture Wave PDE in 1D Method of Separation of

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions # (Section.4: The following functions are defined on an interval of length. Sketch the even and odd etensions of each function over the interval [, ]. (a f( =, f ( Even etension of

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

u tt = a 2 u xx u tt = a 2 (u xx + u yy )

u tt = a 2 u xx u tt = a 2 (u xx + u yy ) 10.7 The wave equation 10.7 The wave equation O. Costin: 10.7 1 This equation describes the propagation of waves through a medium: in one dimension, such as a vibrating string u tt = a 2 u xx 1 This equation

More information

MATH 308 COURSE SUMMARY

MATH 308 COURSE SUMMARY MATH 308 COURSE SUMMARY Approximately a third of the exam cover the material from the first two midterms, that is, chapter 6 and the first six sections of chapter 7. The rest of the exam will cover the

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 2 The wave equation Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.0 28/09/2018 1 Learning objectives of this lecture Understand the fundamental properties of the wave equation

More information

Connection to Laplacian in spherical coordinates (Chapter 13)

Connection to Laplacian in spherical coordinates (Chapter 13) Connection to Laplacian in spherical coordinates (Chapter 13) We might often encounter the Laplace equation and spherical coordinates might be the most convenient 2 u(r, θ, φ) = 0 We already saw in Chapter

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

Quantum Physics Lecture 8

Quantum Physics Lecture 8 Quantum Physics ecture 8 Steady state Schroedinger Equation (SSSE): eigenvalue & eigenfunction particle in a box re-visited Wavefunctions and energy states normalisation probability density Expectation

More information

PDEs in Spherical and Circular Coordinates

PDEs in Spherical and Circular Coordinates Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) This lecture Laplacian in spherical & circular polar coordinates Laplace s PDE in electrostatics Schrödinger

More information

Partial Differential Equations - part of EM Waves module (PHY2065)

Partial Differential Equations - part of EM Waves module (PHY2065) Partial Differential Equations - part of EM Waves module (PHY2065) Richard Sear February 7, 2013 Recommended textbooks 1. Mathematical methods in the physical sciences, Mary Boas. 2. Essential mathematical

More information

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 561 Fall 017 Lecture #5 page 1 Last time: Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 1-D Wave equation u x = 1 u v t * u(x,t): displacements as function of x,t * nd -order:

More information

PHYS 301 HOMEWORK #13-- SOLUTIONS

PHYS 301 HOMEWORK #13-- SOLUTIONS PHYS 31 HOMEWORK #13-- SOLUTIONS 1. The wave equation is : 2 u x = 1 2 u 2 v 2 t 2 Since we have that u = f (x - vt) and u = f (x + vt), we substitute these expressions into the wave equation.starting

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 Lecture Notes 8 - PDEs Page 8.01 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

Wave Equation Modelling Solutions

Wave Equation Modelling Solutions Wave Equation Modelling Solutions SEECS-NUST December 19, 2017 Wave Phenomenon Waves propagate in a pond when we gently touch water in it. Wave Phenomenon Our ear drums are very sensitive to small vibrations

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series.

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series. Overview of Fourier Series (Sect. 6.2. Origins of the Fourier Series. Periodic functions. Orthogonality of Sines and Cosines. Main result on Fourier Series. Origins of the Fourier Series. Summary: Daniel

More information

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne

PEER REVIEW. ... Your future in science will be largely controlled by anonymous letters from your peers. peers. Matt. Corinne PEER REVIEW 1... Your future in science will be largely controlled by anonymous letters from your peers. Matt peers Corinne 2 3 4 5 6 MULTIPLE DRIVNG FREQUENCIES LRC circuit L I = (1/Z)V ext Z must have

More information

2. Waves and the Wave Equation

2. Waves and the Wave Equation 2. Waves and the Wave Equation What is a wave? Forward vs. backward propagating waves The one-dimensional wave equation Phase velocity Reminders about complex numbers The complex amplitude of a wave What

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

Chapter 10: Partial Differential Equations

Chapter 10: Partial Differential Equations 1.1: Introduction Chapter 1: Partial Differential Equations Definition: A differential equations whose dependent variable varies with respect to more than one independent variable is called a partial differential

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

WAVE PACKETS & SUPERPOSITION

WAVE PACKETS & SUPERPOSITION 1 WAVE PACKETS & SUPERPOSITION Reading: Main 9. PH41 Fourier notes 1 x k Non dispersive wave equation x ψ (x,t) = 1 v t ψ (x,t) So far, we know that this equation results from application of Newton s law

More information

Time-Varying Systems; Maxwell s Equations

Time-Varying Systems; Maxwell s Equations Time-Varying Systems; Maxwell s Equations 1. Faraday s law in differential form 2. Scalar and vector potentials; the Lorenz condition 3. Ampere s law with displacement current 4. Maxwell s equations 5.

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

Particle in a 3 Dimensional Box just extending our model from 1D to 3D

Particle in a 3 Dimensional Box just extending our model from 1D to 3D CHEM 2060 Lecture 20: Particle in a 3D Box; H atom L20-1 Particle in a 3 Dimensional Box just extending our model from 1D to 3D A 3D model is a step closer to reality than a 1D model. Let s increase the

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

The integrating factor method (Sect. 1.1)

The integrating factor method (Sect. 1.1) The integrating factor method (Sect. 1.1) Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Overview

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Analysis III (BAUG Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Question 1 et a 0,..., a n be constants. Consider the function. Show that a 0 = 1 0 φ(xdx. φ(x = a 0 + Since the integral

More information

Class Meeting # 2: The Diffusion (aka Heat) Equation

Class Meeting # 2: The Diffusion (aka Heat) Equation MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Fall 20 Professor: Jared Speck Class Meeting # 2: The Diffusion (aka Heat) Equation The heat equation for a function u(, x (.0.). Introduction

More information

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep Waves 2006 Physics 23 Armen Kocharian Lecture 3: Sep 12. 2006 Last Time What is a wave? A "disturbance" that moves through space. Mechanical waves through a medium. Transverse vs. Longitudinal e.g., string

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Week 01 : Introduction. A usually formal statement of the equality or equivalence of mathematical or logical expressions

Week 01 : Introduction. A usually formal statement of the equality or equivalence of mathematical or logical expressions 1. What are partial differential equations. An equation: Week 01 : Introduction Marriam-Webster Online: A usually formal statement of the equality or equivalence of mathematical or logical expressions

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Quantum Physics Lecture 8

Quantum Physics Lecture 8 Quantum Physics Lecture 8 Applications of Steady state Schroedinger Equation Box of more than one dimension Harmonic oscillator Particle meeting a potential step Waves/particles in a box of >1 dimension

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Physics 6303 Lecture 8 September 25, 2017

Physics 6303 Lecture 8 September 25, 2017 Physics 6303 Lecture 8 September 25, 2017 LAST TIME: Finished tensors, vectors, and matrices At the beginning of the course, I wrote several partial differential equations (PDEs) that are used in many

More information

Separation of Variables. A. Three Famous PDE s

Separation of Variables. A. Three Famous PDE s Separation of Variables c 14, Philip D. Loewen A. Three Famous PDE s 1. Wave Equation. Displacement u depends on position and time: u = u(x, t. Concavity drives acceleration: u tt = c u xx.. Heat Equation.

More information

Physics 142 Mechanical Waves Page 1. Mechanical Waves

Physics 142 Mechanical Waves Page 1. Mechanical Waves Physics 142 Mechanical Waves Page 1 Mechanical Waves This set of notes contains a review of wave motion in mechanics, emphasizing the mathematical formulation that will be used in our discussion of electromagnetic

More information

A Guided Tour of the Wave Equation

A Guided Tour of the Wave Equation A Guided Tour of the Wave Equation Background: In order to solve this problem we need to review some facts about ordinary differential equations: Some Common ODEs and their solutions: f (x) = 0 f(x) =

More information

Physics-I. Dr. Anurag Srivastava. Web address: Visit me: Room-110, Block-E, IIITM Campus

Physics-I. Dr. Anurag Srivastava. Web address:    Visit me: Room-110, Block-E, IIITM Campus Physics-I Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus Syllabus Electrodynamics: Maxwell s equations: differential

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

CODE: GR17A1003 GR 17 SET - 1

CODE: GR17A1003 GR 17 SET - 1 SET - 1 I B. Tech II Semester Regular Examinations, May 18 Transform Calculus and Fourier Series (Common to all branches) Time: 3 hours Max Marks: 7 PART A Answer ALL questions. All questions carry equal

More information

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture Professor Jasper Halekas Van Allen 70 MWF 1:30-1:0 Lecture Back on regular schedule for the next two weeks until Spring Break! There will be labs and homework due this week and next Labs this week and

More information

Lecture 6: Differential Equations Describing Vibrations

Lecture 6: Differential Equations Describing Vibrations Lecture 6: Differential Equations Describing Vibrations In Chapter 3 of the Benson textbook, we will look at how various types of musical instruments produce sound, focusing on issues like how the construction

More information

Mathematical Computing

Mathematical Computing IMT2b2β Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Differential Equations Types of Differential Equations Differential equations can basically be classified as ordinary differential

More information

Vibrating Strings and Heat Flow

Vibrating Strings and Heat Flow Vibrating Strings and Heat Flow Consider an infinite vibrating string Assume that the -ais is the equilibrium position of the string and that the tension in the string at rest in equilibrium is τ Let u(,

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

Physics 486 Discussion 5 Piecewise Potentials

Physics 486 Discussion 5 Piecewise Potentials Physics 486 Discussion 5 Piecewise Potentials Problem 1 : Infinite Potential Well Checkpoints 1 Consider the infinite well potential V(x) = 0 for 0 < x < 1 elsewhere. (a) First, think classically. Potential

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 13 Saarland University 5. Januar 2015 c Daria Apushkinskaya (UdS) PDE and BVP lecture 13 5. Januar 2015 1 / 35 Purpose of Lesson To interpretate

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation Lecture 12 Lecture 12 MA 201, PDE (2016) 1 / 24 Formal Solution of

More information

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: The Schrodinger Equation and Postulates Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

Chapter 9. Electromagnetic Waves

Chapter 9. Electromagnetic Waves Chapter 9. Electromagnetic Waves 9.1 Waves in One Dimension 9.1.1 The Wave Equation What is a "wave?" Let's start with the simple case: fixed shape, constant speed: How would you represent such a string

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

The Fourier series for a 2π-periodic function

The Fourier series for a 2π-periodic function The Fourier series for a 2π-periodic function Let f : ( π, π] R be a bounded piecewise continuous function which we continue to be a 2π-periodic function defined on R, i.e. f (x + 2π) = f (x), x R. The

More information

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture Professor Jasper Halekas Van Allen 70 MWF 1:30-1:0 Lecture Back on regular schedule for the next two weeks There *will* be labs and homeworks due this week and next EM Waves (light/photons) Amplitude E

More information

2 u 1-D: 3-D: x + 2 u

2 u 1-D: 3-D: x + 2 u c 2013 C.S. Casari - Politecnico di Milano - Introduction to Nanoscience 2013-14 Onde 1 1 Waves 1.1 wave propagation 1.1.1 field Field: a physical quantity (measurable, at least in principle) function

More information

Boundary value problems for partial differential equations

Boundary value problems for partial differential equations Boundary value problems for partial differential equations Henrik Schlichtkrull March 11, 213 1 Boundary value problem 2 1 Introduction This note contains a brief introduction to linear partial differential

More information

Vibrations and waves: revision. Martin Dove Queen Mary University of London

Vibrations and waves: revision. Martin Dove Queen Mary University of London Vibrations and waves: revision Martin Dove Queen Mary University of London Form of the examination Part A = 50%, 10 short questions, no options Part B = 50%, Answer questions from a choice of 4 Total exam

More information

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation

1. Partial differential equations. Chapter 12: Partial Differential Equations. Examples. 2. The one-dimensional wave equation 1. Partial differential equations Definitions Examples A partial differential equation PDE is an equation giving a relation between a function of two or more variables u and its partial derivatives. The

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 13 The Schrödinger Equation 13.1 Where we are so far We have focused primarily on electron spin so far because it s a simple quantum system (there are only two basis states!), and yet it still

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

PHYSICS 116C Homework 5 Solutions. y 2 = 0. x T

PHYSICS 116C Homework 5 Solutions. y 2 = 0. x T PHYSICS 116C Homework 5 Solutions 1. a The temperature T, y satisfies aplace s equation T + T y. The boundary conditions are T along,, and y, with T T at y. We look for a separable solution, T,y XYy. Following

More information

Physics 6303 Lecture 9 September 17, ct' 2. ct' ct'

Physics 6303 Lecture 9 September 17, ct' 2. ct' ct' Physics 6303 Lecture 9 September 17, 018 LAST TIME: Finished tensors, vectors, 4-vectors, and 4-tensors One last point is worth mentioning although it is not commonly in use. It does, however, build on

More information

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 )

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous

More information

Mechanical Energy and Simple Harmonic Oscillator

Mechanical Energy and Simple Harmonic Oscillator Mechanical Energy and Simple Harmonic Oscillator Simple Harmonic Motion Hooke s Law Define system, choose coordinate system. Draw free-body diagram. Hooke s Law! F spring =!kx ˆi! kx = d x m dt Checkpoint

More information

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations ecture Notes for Ch 10 Fourier Series and Partial Differential Equations Part III. Outline Pages 2-8. The Vibrating String. Page 9. An Animation. Page 10. Extra Credit. 1 Classic Example I: Vibrating String

More information

Staple or bind all pages together. DO NOT dog ear pages as a method to bind.

Staple or bind all pages together. DO NOT dog ear pages as a method to bind. Math 3337 Homework Instructions: Staple or bind all pages together. DO NOT dog ear pages as a method to bind. Hand-drawn sketches should be neat, clear, of reasonable size, with axis and tick marks appropriately

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves As the chart shows, the electromagnetic spectrum covers an extremely wide range of wavelengths and frequencies. Though the names indicate that these waves have a number of sources,

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) 1D Heat Equation: Derivation Current Semester 1 / 19 Introduction The derivation of the heat

More information

Maxwell s Equations and Electromagnetic Waves W13D2

Maxwell s Equations and Electromagnetic Waves W13D2 Maxwell s Equations and Electromagnetic Waves W13D2 1 Announcements Week 13 Prepset due online Friday 8:30 am Sunday Tutoring 1-5 pm in 26-152 PS 10 due Week 14 Friday at 9 pm in boxes outside 26-152 2

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

Vibrations and Waves Physics Year 1. Handout 1: Course Details

Vibrations and Waves Physics Year 1. Handout 1: Course Details Vibrations and Waves Jan-Feb 2011 Handout 1: Course Details Office Hours Vibrations and Waves Physics Year 1 Handout 1: Course Details Dr Carl Paterson (Blackett 621, carl.paterson@imperial.ac.uk Office

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Solution to Problems for the 1-D Wave Equation

Solution to Problems for the 1-D Wave Equation Solution to Problems for the -D Wave Equation 8. Linear Partial Differential Equations Matthew J. Hancock Fall 5 Problem (i) Suppose that an infinite string has an initial displacement +, u (, ) = f ()

More information

Differential equations

Differential equations Differential equations Math 7 Spring Practice problems for April Exam Problem Use the method of elimination to find the x-component of the general solution of x y = 6x 9x + y = x 6y 9y Soln: The system

More information

2.4 Eigenvalue problems

2.4 Eigenvalue problems 2.4 Eigenvalue problems Associated with the boundary problem (2.1) (Poisson eq.), we call λ an eigenvalue if Lu = λu (2.36) for a nonzero function u C 2 0 ((0, 1)). Recall Lu = u. Then u is called an eigenfunction.

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

Computational Neuroscience. Session 1-2

Computational Neuroscience. Session 1-2 Computational Neuroscience. Session 1-2 Dr. Marco A Roque Sol 05/29/2018 Definitions Differential Equations A differential equation is any equation which contains derivatives, either ordinary or partial

More information

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves

What is a Wave. Why are Waves Important? Power PHYSICS 220. Lecture 19. Waves PHYSICS 220 Lecture 19 Waves What is a Wave A wave is a disturbance that travels away from its source and carries energy. A wave can transmit energy from one point to another without transporting any matter

More information