Chem 263 Winter 2018 Problem Set #2 Due: February 16

Size: px
Start display at page:

Download "Chem 263 Winter 2018 Problem Set #2 Due: February 16"

Transcription

1 Chem 263 Winter 2018 Problem Set #2 Due: February Use size considerations to predict the crystal structures of PbF2, CoF2, and BeF2. Do your predictions agree with the actual structures of these three compounds? Why or why not? Use the radius ratio rules (rcation/ranion and compare to 1) to help predict the structures. The radii we have are: Radii found between the slides with the Shannon-Prewitt graphs or the ionic radii periodic table or you can look them up on Wikipedia on the Ionic radius page or found on Web Elements webpage Atom Ion Size CN: 4 Ion Size CN: 6 Ion Size CN: 8 F Å 1.19 Å Pb Å 1.43 Å Be Å 0.59 Å Co Å 0.79 Å low spin Å high spin 1.04 Å You should try the radius ratio rules for all possible CN s. I ll just use the 1.19 Å for Fluorine, since the ionic radii between CN:4 and CN: 6 are almost the same For PbF2, trying 1.19/1.33 = meaning CN: 8, cubic (always make the radius ratio <1, so flip the cation and anion radii if necessary) Or trying 1.19/1.43 = 0.83, still cubic For BeF2, 0.41/1.19 = 0.34 meaning CN: 4, tetrahedral or 0.496/1.19=0.417 which means CN: 6 octahedral (but barely, so the structure more likely has tetrahedral coordination) For CoF2, 0.72/1.19 = or 0.79/1.19=0.664 meaning CN: 6, octahedral or 0.885/1.19=0.744 or 1.04/1.19=0.874 meaning CN: 8, cubic. Actual structures are: PbF2 is fluorite which is cubic, so radius ratio rules agree. BeF2 occurs as cristobalite as well as other SiO2-analogue polymorphs such as α-quartz which is trigonal and has tetrahedral coordination so again they agree. CoF2 is rutile which has an octahedral coordination so they agree. 2. Consider the following thermochemical data for calcium and chlorine in their standard states: S = +201 kj/mol D = +242 kj/mol

2 IE1 = +590 kj/mol IE 2 = kj/mol EA = -349 kj/mol First, use the Born-Landé equation to estimate the lattice energies for CaCl and CaCl2. Specify and justify any assumptions you needed to make to do this. UU = ZZ +ZZ ee 2 NNNN rr ee (1 1 nn ) is the Born-Lande equation where Z+ and Z- are the absolute value of the charges on the cation and anion, respectively, e=1.6022x10-19 C, N=6.023x10 23 atoms/mole, A is Madelung s constant (dependent on the crystal structure), n is the Born-Exponent ACaCl = (treat CaCl as a rock salt structure since Ca + is very similar to K + ) A CaCl2 = (rutile structure) n = [Ar][Ar]=(9+9)/2=9 rca+ is not available, but you can estimate it by knowing that it should be smaller than the atomic radius of Ca (which is 1.97 Ǻ) and should be slightly larger than the radius of K + (1.52 Ǻ), so I m going to use 1.60 Ǻ. rca2+=1.14 Ǻ and rcl-=1.67 Ǻ re= 4πε0r0 = 1.112x10-10 C 2 /J. m * r0 and r0 for CaCl = = 3.27 Ǻ and r0 for CaCl2 is = 2.81 Ǻ So finally, and UU CCCCCCCC = (+1)(1)(1.6022xx10 19 ) 2 (6.023xx10 23 )(1.748) (1.112xx10 10 )(3.27xx ) 9 = JJ 1000 = kkkk/mmmmmm mmmmmm UU CCCCCCCC2 = (+2)(1)(1.6022xx10 19 ) 2 (6.023xx10 23 )(2.408) (1.112xx10 10 )(2.81xx10 10 ) = kkkk/mmmmmm Second, compare your Born-Landé estimates against values from the Kapustinskii equation. UU = VVZZ +ZZ rr cc +rr aa ( rr cc +rr aa ) is the Kapustinskii equation where V is the # of ions in the formula and rr cc, rr aa are the radii of the cation and anion respectively in Angstroms. So we have,

3 and we have UU CCCCCCCC = (2)(1)(1) = kkkk/mmmmmm 3.27 UU CCCCCCCC2 = (3)(2)(1) = kkkk/mmmmmm 2.81 The values agree very well. For CaCl they agree within less than 1% and for CaCl 2 they agree within about 6%. Third, calculate the heats of formation for CaCl and CaCl2. HH ff = SS + DD + IIII + EEEE + UU For this, I just used the calculated lattice energies found by the Kapustinskii equation. So for CaCl, we only need the first IP for Ca and only 1/2D for the single Cl atom and we get HH ff oooo CCCCCCCC = = kkkk/mmmmmm For CaCl2, we need both IP to get to Ca 2+, the full dissociation energy since we have 2 Cl atoms and we need to multiply the EA by 2 to account for both Cl atoms so we get HH ff oooo CCCCCCCC2 = = kkkk/mmmmmm Why are they so different? Based on these numbers, do you expect CaCl to be stable or to disproportionate to CaCl2 and Ca? The heats of formation are different because the lattice energy is more negative for the CaCl2 since the sum of the radii is smaller and the charges on the atoms are larger. Based on these numbers we d expect that CaCl is not stable and would disproportionate to CaCl2 and Ca. 3. Gersten Smith 3.10 parts a and b: aa 2 aa 3 bb 1 aa 1 (aa 2 aa 3 ), bb aa 3 aa 11 2 aa 1 (aa 2 aa 3 ), bb aa 1 aa aa 1 (aa 2 aa 3 ) So,

4 gg 1 ( aaaa 3 2 ( aa 3 2 ii + aa 2 aaaa ( ii kk) + (jj kk)) 2 aaaa jj) (aaaa 3 ( ii kk) (jj kk)) (aaaa 3 aaaa (jj) (ii)) ( aa2 cc 3 + aa2 cc ) Similarly, since the denominator stays the same we get And gg 2 (aaaa 3 2 gg 3 (aa2 3 4 (ii ii) + aa2 3 ( aaaa 3 aaaa (jj) (ii)) ( aa 3 2 ii + aa aaaa jj) (aaaa 3 (jj) (ii)) ( 3(jj) + (ii)) aa 3 aa 3 ii + 2π aa jj aaaa (kk ii) + (kk jj)) 2 ( 3 (jj) + ( ii)) ( aa2 cc 3 2 ) ( 3aa) aa 3 ( ii) + 2π aa jj 4 (ii jj) + aa2 3 4 aa2 (jj ii) + (jj jj)) 4 ( aa2 cc 3 2 ) ( 3 3 kk kk) cc 3 cc kk Part b) The reciprocal lattice of the hexagonal lattice is also a hexagonal lattice. The first Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice. The first Brillouin zone is also a hexagonal prism. For a simple hexagonal Bravais lattice with lattice constants a and c, the reciprocal lattice is a simple hexagonal lattice of lattice constants 2π/c and 4ππ rotated by 30 relative to the direct lattice. Plan View Diagram aa 3 To construct the first Brillouin zone, take perpendicular bisectors and enclose

5 4. A & M 6.1 A (FCC) B (BCC) C (diamond) Θ sin 2 Θ ratio Θ sin 2 Θ ratio Θ sin 2 Θ ratio

6

7 5. Using a computer, draw to scale the first five rings of the X-ray ring patterns produced by diffraction from powders of SC, FCC, BCC, and diamond crystal structures of lattice constant a = 5.0 Å. 6. The first four XRD reflections of an unknown cubic alkali halide occur at 2θ = 23.38, 27.07, 38.65, and (Cu Kα radiation). Assign d-spacings and Miller indices to these reflections and calculate the lattice constant. The density of the alkali halide is 2.80 g/cm 3 at room temperature. Identify the substance. To find the d-spacing, just use Bragg s Law and solve for d. nn λλ dd = 2 ssssssθ where n=1 by conventional XRD, λ=1.54 Ǻ which is the length of Cu Kα radiation 2Θ (degrees) Θ (degrees) d- spacing (Ǻ) d 2 Ratios of d 2 Whole integer ratios Miller indices (111) (200) (220) (311) 6.57 Lattice constant values (Ǻ)

8 By referring to the slides on systematic absences, we can see by looking at the whole integer ratios of the d-spacings that the cubic structure must be FCC, so now we can assign Miller indices based on the structure factors and knowing that for FCC h,k, and l must all be even or all odd. Since we know the structure is cubic, we can calculate the lattice constant (a) by the cubic d- spacing formula aa dd = h 2 + kk 2 + ll 2 The lattice constant values should all be relatively the same as long as the Miller indices were properly assigned to the correct d-spacing values. Now we can find out the substance by dddddddddddddd = mm aaaaaaaaaa = nnnn ( 1 ) VV cccccccc NN AA VV cccccccc Where n is the number of atoms per unit cell which we know to be 4 for an FCC lattice, A is the atomic mass which we will solve for, NA is Avogadro s number and Vcell is equal to since the unit cell is cubic (need to change angstroms to cm). gg 4 aaaaaaaaaa AA ( 2.80gg/cccc3 = mmmmmm ) 6.023xx10 23 aaaaaaaaaa/mmmmmm ( 1 ( cccc) 3) A = g/mol, so by some trial and error and by looking at the alkalis and halides we can see that the mass of RbCl is g/mol which is nearly the same as what we calculated. 7. Derive the simplified structure factor equation for (a) cubic SrTiO3 and (b) CaF2. For what combinations of hkl will systematic absences occur in these two crystals? The total structure factor is φφ kk = ff jj (KK)ee iikk dd jj jj By using the B-cell of the perovskite structure, we can describe SrTiO 3 as simple cubic with a 5- atom basis: Ti (0, 0, 0), Sr ( ½, ½, ½) and O ( ½, 0, 0), (0, ½, 0) and (0, 0, ½) and using KK π (hxx + kkyy + aa llzz)

9 φφ kk = ff TTTT ee ii(2ππ aa (hxx+kkyy+llzz)) (aa(0 x+0 y+0 z)) + ff SSSS ee ii(2ππ aa (hxx+kkyy+llzz)) (aa 1 2 x+1 2 y+1 2 z ) + ff OO [ee ii 2ππ aa (hxx+kkyy+llzz) aa 1 2 x+0 y+0 z + ee ii 2ππ aa (hxx+kkyy+llzz) aa 0 x+1 2 y+0 z + ee ii 2ππ aa (hxx+kkyy+llzz) aa 0 x+0 y+1 2 z Which simplifies down to φφ kk = ff TTTT + ff SSSS ee iiππ(h+kk+ll) + ff OO [ee iiππ(h) + ee iiππ(kk) + ee iiππ(kk) ], where ee iiππ = 1 Without knowing the form factors, no systematic absences will occur for SrTiO 3, but these situations will occur for various values of h, k, and l: All h, k, and l are odd: ff TTTT ff SSSS 3ff OO All h, k, and l are even: ff TTTT + ff SSSS + 3ff OO When 1 is odd/2 are even: ff TTTT ff SSSS + ff OO When 2 are odd/1 is even: ff TTTT + ff SSSS ff OO For CaF 2, you can also see this worked out in Ch. 5 of the Old West book (pg ). We have an FCC lattice of Ca and an 8-atom basis of F, so we should expect to have 12 terms in the structure factor equation. The basis positions are: Ca (0, 0, 0), ( ½, ½, 0), ( ½, 0, ½), (0, ½, ½) and F ( ¼, ¼, ¼), ( ¼, ¼, ¾), ( ¼, ¾, ¼), ( ¾, ¼, ¼), ( ¾, ¾, ¼), ( ¾, ¼, ¾), ( ¼, ¾, ¾), ( ¾, ¾, ¾) φφ kk = ff CCCC 1 + ee iiii(h+kk) + ee iiii(kk+ll) + ee iiii(h+ll) + ff FF [ee iiππ 2 (h+kk+ll) + ee iiππ 2 (h+kk+3ll) + ee iiππ 2 (h+3kk+ll) + ee iiππ 2 (3h+kk+ll) + ee iiππ 2 (3h+3kk+ll) + ee iiππ 2 (3h+kk+3ll) + ee iiππ 2 (h+3kk+3ll) + ee iiππ 2 (3h+3kk+3ll) ] We already know that for FCC, h, k, and l must all be even or all be odd to observe a reflection. Turns out, it s still true for the fluorite structure. The structure factor will be: All odd h,k, and l: 4ff CCCC For h, k, and l all even, with sum 2x an odd number: 4ff CCCC -8ff FF For h, k, and l all even, with sum 2x an even number: 4ff CCCC +8ff FF Otherwise = 0

Experiment 7: Understanding Crystal Structures

Experiment 7: Understanding Crystal Structures Experiment 7: Understanding Crystal Structures To do well in this laboratory experiment you need to be familiar with the concepts of lattice, crystal structure, unit cell, coordination number, the different

More information

Inorganic Chemistry I (CH331) Solid-state Chemistry I (Crystal structure) Nattapol Laorodphan (Chulabhorn Building, 4 th Floor)

Inorganic Chemistry I (CH331) Solid-state Chemistry I (Crystal structure) Nattapol Laorodphan (Chulabhorn Building, 4 th Floor) Inorganic Chemistry I (CH331) Solid-state Chemistry I (Crystal structure) Nattapol Laorodphan (Chulabhorn Building, 4 th Floor) 7/2013 N.Laorodphan 1 Text books : 1. D.F. Sheiver, P.W. Atkins & C.H. Langford

More information

Ionic Bonding. Chem

Ionic Bonding. Chem Whereas the term covalent implies sharing of electrons between atoms, the term ionic indicates that electrons are taken from one atom by another. The nature of ionic bonding is very different than that

More information

Review of Last Class 1

Review of Last Class 1 Review of Last Class 1 X-Ray diffraction of crystals: the Bragg formulation Condition of diffraction peak: 2dd sin θθ = nnλλ Review of Last Class 2 X-Ray diffraction of crystals: the Von Laue formulation

More information

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet Secondary H Unit Lesson Worksheet Simplify: mm + 2 mm 2 4 mm+6 mm + 2 mm 2 mm 20 mm+4 5 2 9+20 2 0+25 4 +2 2 + 2 8 2 6 5. 2 yy 2 + yy 6. +2 + 5 2 2 2 0 Lesson 6 Worksheet List all asymptotes, holes and

More information

Quantum state measurement

Quantum state measurement Quantum state measurement Introduction The rotation properties of light fields of spin are described by the 3 3 representation of the 0 0 SO(3) group, with the generators JJ ii we found in class, for instance

More information

Chapter 3. The structure of crystalline solids 3.1. Crystal structures

Chapter 3. The structure of crystalline solids 3.1. Crystal structures Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate

More information

HW# 5 CHEM 281 Louisiana Tech University, POGIL(Process Oriented Guided Inquiry Learning) Exercise on Chapter 3. Structures of Ionic Solids. Why?

HW# 5 CHEM 281 Louisiana Tech University, POGIL(Process Oriented Guided Inquiry Learning) Exercise on Chapter 3. Structures of Ionic Solids. Why? HW# 5 CHEM 281 Louisiana Tech University, POGIL(Process Oriented Guided Inquiry Learning) Exercise on Chapter 3. Structures of Ionic Solids. Why? Many ionic structures may be described as close-packed

More information

HW 2. CHEM 481 Chapters 3 & 5 Chapter 3. Energetics of Ionic Bonding

HW 2. CHEM 481 Chapters 3 & 5 Chapter 3. Energetics of Ionic Bonding HW 2. CHEM 481 Chapters 3 & 5 Chapter 3. Energetics of Ionic Bonding Name: 1. Give coordination number for both anion and cation of the following ionic lattices. a) CsCl Structure: b) Rock Salt Structure:

More information

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro FIRST MIDTERM EXAM Chemistry 465 1 March 2011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any

More information

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Ewald Construction 2θ k out k in G Physics 460 F 2006 Lect 5 1 Recall from previous lectures Definition

More information

CRYSTALS THAT CANNOT BE DESCRIBED IN TERMS OF INTERSTITIAL FILLING OF A CLOSE-PACKED STRUCTURE

CRYSTALS THAT CANNOT BE DESCRIBED IN TERMS OF INTERSTITIAL FILLING OF A CLOSE-PACKED STRUCTURE CRYSTALS THAT CANNOT BE DESCRIBED IN TERMS OF INTERSTITIAL FILLING OF A CLOSE-PACKED STRUCTURE 153 CsCl STRUCTURE Not close packed - simple cubic with a two-point basis Space Group = Pm3m Lattice = Primitive

More information

Atomic Arrangement. Primer in Materials Spring

Atomic Arrangement. Primer in Materials Spring Atomic Arrangement Primer in Materials Spring 2017 30.4.2017 1 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling the volume to

More information

Structures of Solids. Unit Cells - Not(?) Chapter 4 Ionic and Other Inorganic Solids. CHEM 462 Wednesday, September 22 T.

Structures of Solids. Unit Cells - Not(?) Chapter 4 Ionic and Other Inorganic Solids. CHEM 462 Wednesday, September 22 T. Chapter 4 Ionic and Other Inorganic Solids CHEM 462 Wednesday, September 22 T. Hughbanks Structures of Solids Many dense solids are described in terms of packing of atoms or ions. Although these geometric

More information

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected.

Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. Remember the purpose of this reading assignment is to prepare you for class. Reading for familiarity not mastery is expected. After completing this reading assignment and reviewing the intro video you

More information

Atomic Arrangement. Primer Materials For Science Teaching Spring

Atomic Arrangement. Primer Materials For Science Teaching Spring Atomic Arrangement Primer Materials For Science Teaching Spring 2016 31.3.2015 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling

More information

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

 = Y(#,$) % R(r) = 1 4& %  = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V, Recitation Problems: Week 4 1. Which of the following combinations of quantum numbers are allowed for an electron in a one-electron atom: n l m l m s 2 2 1! 3 1 0 -! 5 1 2! 4-1 0! 3 2 1 0 2 0 0 -! 7 2-2!

More information

Physical Chemistry I. Crystal Structure

Physical Chemistry I. Crystal Structure Physical Chemistry I Crystal Structure Crystal Structure Introduction Crystal Lattice Bravis Lattices Crytal Planes, Miller indices Distances between planes Diffraction patters Bragg s law X-ray radiation

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Bonding and structure of ceramic materials as compared with metals Chapter 12-1 Atomic Bonding in Ceramics Bonding: -- Can be ionic

More information

Metallic & Ionic Solids. Crystal Lattices. Properties of Solids. Network Solids. Types of Solids. Chapter 13 Solids. Chapter 13

Metallic & Ionic Solids. Crystal Lattices. Properties of Solids. Network Solids. Types of Solids. Chapter 13 Solids. Chapter 13 1 Metallic & Ionic Solids Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Crystal Lattices Properties of Solids Regular 3-D arrangements of equivalent LATTICE POINTS

More information

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has?

Diamond. There are four types of solid: -Hard Structure - Tetrahedral atomic arrangement. What hybrid state do you think the carbon has? Bonding in Solids Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with

More information

Crystallographic structure Physical vs Chemical bonding in solids

Crystallographic structure Physical vs Chemical bonding in solids Crystallographic structure Physical vs Chemical bonding in solids Inert gas and molecular crystals: Van der Waals forces (physics) Water and organic chemistry H bonds (physics) Quartz crystal SiO 2 : covalent

More information

There are four types of solid:

There are four types of solid: Bonding in Solids There are four types of solid: 1. Molecular (formed from molecules) - usually soft with low melting points and poor conductivity. 2. Covalent network - very hard with very high melting

More information

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Algebraic Expressions. Mr Black 's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Algebraic Expressions Mr Black 's Maths Resources for Teachers GCSE 1-9 Algebra Algebraic Expressions Worksheets Contents Differentiated Independent Learning Worksheets

More information

VERY SHORT ANSWER TYPE QUESTIONS (1 Mark)

VERY SHORT ANSWER TYPE QUESTIONS (1 Mark) UNIT I 10 Chemistry-XII THE SOLID STATE VERY SHORT ANSWER TYPE QUESTIONS (1 Mark) Q. 1. What do you mean by paramagnetic substance? Ans. Weakly attracted by magnetic eld and these substances are made of

More information

E12 UNDERSTANDING CRYSTAL STRUCTURES

E12 UNDERSTANDING CRYSTAL STRUCTURES E1 UNDERSTANDING CRYSTAL STRUCTURES 1 Introduction In this experiment, the structures of many elements and compounds are rationalized using simple packing models. The pre-work revises and extends the material

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

National 5 Mathematics. Practice Paper E. Worked Solutions

National 5 Mathematics. Practice Paper E. Worked Solutions National 5 Mathematics Practice Paper E Worked Solutions Paper One: Non-Calculator Copyright www.national5maths.co.uk 2015. All rights reserved. SQA Past Papers & Specimen Papers Working through SQA Past

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Ionic Bonding - Electrostatic Interactions and Polarization

Ionic Bonding - Electrostatic Interactions and Polarization Ionic Bonding - Electrostatic Interactions and Polarization Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #13 Born-Haber Cycle for NaCl It is energetically unfavorable for Na metal and

More information

Term test #2 (50 points) Friday, June 24, This test has 10 questions and you have 50 minutes.

Term test #2 (50 points) Friday, June 24, This test has 10 questions and you have 50 minutes. Term test #2 (50 points) Friday, June 24, 2011 This test has 10 questions and you have 50 minutes. A calculator and periodic table may be used as required. Please use figures whenever possible illustrate

More information

Classical RSA algorithm

Classical RSA algorithm Classical RSA algorithm We need to discuss some mathematics (number theory) first Modulo-NN arithmetic (modular arithmetic, clock arithmetic) 9 (mod 7) 4 3 5 (mod 7) congruent (I will also use = instead

More information

"My name is Bond." N2 (Double 07)

My name is Bond. N2 (Double 07) "My name is Bond." N2 (Double 07) "Metallic Bond." Element 3: Lithium [He]2s 1 "My name is Bond." In the last lecture we identified three types of molecular bonding: van der Waals Interactions (Ar) Covalent

More information

CHAPTER 4 Structure of the Atom

CHAPTER 4 Structure of the Atom CHAPTER 4 Structure of the Atom Fall 2018 Prof. Sergio B. Mendes 1 Topics 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the

More information

SOLID STATE CHEMISTRY

SOLID STATE CHEMISTRY SOLID STATE CHEMISTRY Crystal Structure Solids are divided into 2 categories: I. Crystalline possesses rigid and long-range order; its atoms, molecules or ions occupy specific positions, e.g. ice II. Amorphous

More information

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations Ziyang (Christian) Xiao Neil Goldsman University of Maryland OUTLINE 1. GaN (bulk) 1.1 Crystal Structure 1.2 Band Structure Calculation

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

CHEMISTRY The Molecular Nature of Matter and Change

CHEMISTRY The Molecular Nature of Matter and Change CHEMISTRY The Molecular Nature of Matter and Change Third Edition Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 11 INTERMOLECULAR FORCES

More information

S.No. Crystalline Solids Amorphous solids 1 Regular internal arrangement of irregular internal arrangement of particles

S.No. Crystalline Solids Amorphous solids 1 Regular internal arrangement of irregular internal arrangement of particles Classification of solids: Crystalline and Amorphous solids: S.No. Crystalline Solids Amorphous solids 1 Regular internal arrangement of irregular internal arrangement of particles particles 2 Sharp melting

More information

Chapter 12 INTERMOLECULAR FORCES. Covalent Radius and van der Waals Radius. Intraand. Intermolecular Forces. ½ the distance of non-bonded

Chapter 12 INTERMOLECULAR FORCES. Covalent Radius and van der Waals Radius. Intraand. Intermolecular Forces. ½ the distance of non-bonded Chapter 2 INTERMOLECULAR FORCES Intraand Intermolecular Forces Covalent Radius and van der Waals Radius ½ the distance of bonded ½ the distance of non-bonded Dipole Dipole Interactions Covalent and van

More information

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra

Worksheets for GCSE Mathematics. Quadratics. mr-mathematics.com Maths Resources for Teachers. Algebra Worksheets for GCSE Mathematics Quadratics mr-mathematics.com Maths Resources for Teachers Algebra Quadratics Worksheets Contents Differentiated Independent Learning Worksheets Solving x + bx + c by factorisation

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Midterm I Results. Mean: 35.5 (out of 100 pts) Median: 33 Mode: 25 Max: 104 Min: 2 SD: 18. Compare to: 2013 Mean: 59% 2014 Mean: 51%??

Midterm I Results. Mean: 35.5 (out of 100 pts) Median: 33 Mode: 25 Max: 104 Min: 2 SD: 18. Compare to: 2013 Mean: 59% 2014 Mean: 51%?? Midterm I Results Mean: 35.5 (out of 100 pts) Median: 33 Mode: 25 Max: 104 Min: 2 SD: 18 Compare to: 2013 Mean: 59% 2014 Mean: 51%?? Crystal Thermodynamics and Electronic Structure Chapter 7 Monday, October

More information

Practice Final Exam CH 201

Practice Final Exam CH 201 Practice Final Exam CH 201 Name: (please print) Student I D : Instructions - Read Carefully 1. Please show your work, and put your final answers in the spaces provided. 2. Point values for each question

More information

10.4 The Cross Product

10.4 The Cross Product Math 172 Chapter 10B notes Page 1 of 9 10.4 The Cross Product The cross product, or vector product, is defined in 3 dimensions only. Let aa = aa 1, aa 2, aa 3 bb = bb 1, bb 2, bb 3 then aa bb = aa 2 bb

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

Ionic Bond, Latice energy, characteristic of Ionic compounds

Ionic Bond, Latice energy, characteristic of Ionic compounds Ionic Bond, Latice energy, characteristic of Ionic compounds 1. The strong electrostatic attraction between two oppositely charged ions which are formed due to transfer of electrons from one atom to another

More information

ENGR 151: Materials of Engineering MIDTERM 1 REVIEW MATERIAL

ENGR 151: Materials of Engineering MIDTERM 1 REVIEW MATERIAL ENGR 151: Materials of Engineering MIDTERM 1 REVIEW MATERIAL MIDTERM 1 General properties of materials Bonding (primary, secondary and sub-types) Properties of different kinds of bonds Types of materials

More information

Practice Problems Set II

Practice Problems Set II P1. For the HCP crystal structure, (a) show that the ideal c/a ratio is 1.633; (b) show that the atomic packing factor for HCP is 0.74. (a) A sketch of one-third of an HCP unit cell is shown below. Consider

More information

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com.

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com. Mathematics Ext HSC 4 Solutions Suite 43, 4 Elizabeth St, Surry Hills NSW info@keystoneeducation.com.au keystoneeducation.com.au Mathematics Extension : HSC 4 Solutions Contents Multiple Choice... 3 Question...

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

Definition: A sequence is a function from a subset of the integers (usually either the set

Definition: A sequence is a function from a subset of the integers (usually either the set Math 3336 Section 2.4 Sequences and Summations Sequences Geometric Progression Arithmetic Progression Recurrence Relation Fibonacci Sequence Summations Definition: A sequence is a function from a subset

More information

4. Interpenetrating simple cubic

4. Interpenetrating simple cubic 2 1. The correct structure t of CsClCl crystal is 1. Simple cubic 2. Body centered cubic 3. Face centered cubic 4. Interpenetrating simple cubic If corner as well as the particle at the center are same

More information

Why are solids important? Catalysts Ad & Ab Sorbents

Why are solids important? Catalysts Ad & Ab Sorbents III-1 1 PART THREE: Ionic Bonding In Molecules And Solids. So far we have defined several energies of interaction between charged particles. - Ionization Energy - Electron Affinity - Coulombic (Electrostatic)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4890 Electron-crystallography for determining the handedness of a chiral zeolite nano-crystal Yanhang Ma 1,2, Peter Oleynikov 1,2,*

More information

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å) Crystallography: neutron, electron, and X-ray scattering from periodic lattice, scattering of waves by periodic structures, Miller indices, reciprocal space, Ewald construction. Diffraction: Specular,

More information

Interaction with matter

Interaction with matter Interaction with matter accelerated motion: ss = bb 2 tt2 tt = 2 ss bb vv = vv 0 bb tt = vv 0 2 ss bb EE = 1 2 mmvv2 dddd dddd = mm vv 0 2 ss bb 1 bb eeeeeeeeeeee llllllll bbbbbbbbbbbbbb dddddddddddddddd

More information

Answers to Practice Test Questions 6 Metals of Groups 1 and 2

Answers to Practice Test Questions 6 Metals of Groups 1 and 2 Answers to Practice Test Questions 6 Metals of Groups 1 and 2 1. Only one answer required f each blank; / indicates possible choices lustre / malleability / ductility / good conduct of heat / good conduct

More information

Bonding in Solids. What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic

Bonding in Solids. What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic Bonding in Solids What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic 1 Ions and Ionic Radii LiCl 2 Ions (a) Ions are essentially spherical. (b) Ions may be

More information

Chapter 6. Heat capacity, enthalpy, & entropy

Chapter 6. Heat capacity, enthalpy, & entropy Chapter 6 Heat capacity, enthalpy, & entropy 1 6.1 Introduction In this lecture, we examine the heat capacity as a function of temperature, compute the enthalpy, entropy, and Gibbs free energy, as functions

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 15 Reciprocal Lattices and Their Roles in Diffraction Studies Suggested Reading Chs. 2 and 6 in Tilley, Crystals and Crystal Structures, Wiley (2006) Ch. 6 M. DeGraef

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

Worksheets for GCSE Mathematics. Solving Equations. Mr Black's Maths Resources for Teachers GCSE 1-9. Algebra

Worksheets for GCSE Mathematics. Solving Equations. Mr Black's Maths Resources for Teachers GCSE 1-9. Algebra Worksheets for GCSE Mathematics Solving Equations Mr Black's Maths Resources for Teachers GCSE 1-9 Algebra Equations Worksheets Contents Differentiated Independent Learning Worksheets Solving Equations

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

Lecture 05 Structure of Ceramics 2 Ref: Barsoum, Fundamentals of Ceramics, Ch03, McGraw-Hill, 2000.

Lecture 05 Structure of Ceramics 2 Ref: Barsoum, Fundamentals of Ceramics, Ch03, McGraw-Hill, 2000. MME 467 Ceramics for Advanced Applications Lecture 05 Structure of Ceramics 2 Ref: Barsoum, Fundamentals of Ceramics, Ch03, McGraw-Hill, 2000. Prof. A. K. M. Bazlur Rashid Department of MME, BUET, Dhaka

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) Course KGP003 Ch. 12 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Ceramic materials

More information

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012)

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) This is a part of lecture note on solid state physics (Phys.472/572)

More information

Followed by metals and inert gases - close-packed structures Deviations: BCC metals 'Ionic' compounds strive to follow the principles.

Followed by metals and inert gases - close-packed structures Deviations: BCC metals 'Ionic' compounds strive to follow the principles. Reading: West 7 &8 Principles of Laves 1.Space Principle: Space is used most efficiently 2.Symmetry Principle: Highest possible symmetry is adopted 3.Connection Principle: There will be the most possible

More information

Crystal Structure SOLID STATE PHYSICS. Lecture 5. A.H. Harker. thelecture thenextlecture. Physics and Astronomy UCL

Crystal Structure SOLID STATE PHYSICS. Lecture 5. A.H. Harker. thelecture thenextlecture. Physics and Astronomy UCL Crystal Structure thelecture thenextlecture SOLID STATE PHYSICS Lecture 5 A.H. Harker Physics and Astronomy UCL Structure & Diffraction Crystal Diffraction (continued) 2.4 Experimental Methods Notes: examples

More information

Haar Basis Wavelets and Morlet Wavelets

Haar Basis Wavelets and Morlet Wavelets Haar Basis Wavelets and Morlet Wavelets September 9 th, 05 Professor Davi Geiger. The Haar transform, which is one of the earliest transform functions proposed, was proposed in 90 by a Hungarian mathematician

More information

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE CRYSTALLINE AND AMORPHOUS SOLIDS Crystalline solids have an ordered arrangement. The long range order comes about from an underlying

More information

Math 3 Unit 3: Polynomial Functions

Math 3 Unit 3: Polynomial Functions Math 3 Unit 3: Polynomial Functions Unit Title Standards 3.1 End Behavior of Polynomial Functions F.IF.7c 3.2 Graphing Polynomial Functions F.IF.7c, A.APR3 3.3 Writing Equations of Polynomial Functions

More information

Report Form for Experiment 6: Solid State Structures

Report Form for Experiment 6: Solid State Structures Report Form for Experiment 6: Solid State Structures Note: Many of these questions will not make sense if you are not reading the accompanying lab handout. Station 1. Simple Cubic Lattice 1. How many unit

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras (Refer Slide Time: 00:11) Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Diffraction Methods for Crystal Structure Worked Examples Next, we have

More information

Chem 241. Lecture 20. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 20. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 20 UMass Amherst Biochemistry... Teaching Initiative Announcement March 26 Second Exam Recap Ellingham Diagram Inorganic Solids Unit Cell Fractional Coordinates Packing... 2 Inorganic

More information

Chapter 12: Structures of Ceramics

Chapter 12: Structures of Ceramics Chapter 12: Structures of Ceramics Outline Introduction Crystal structures Ceramic structure AX-type crystal structures A m X p -type A m B n X p - type Silicate ceramics Carbon Chapter 12 - Ceramics Two

More information

ionic solids Ionic Solids

ionic solids Ionic Solids ionic solids Ionic Solids Properties characteristic of ionic solids low conductivity as solids, high when molten high melting points hard brittle solids soluble in polar solvents high melting Hardness

More information

Math 171 Spring 2017 Final Exam. Problem Worth

Math 171 Spring 2017 Final Exam. Problem Worth Math 171 Spring 2017 Final Exam Problem 1 2 3 4 5 6 7 8 9 10 11 Worth 9 6 6 5 9 8 5 8 8 8 10 12 13 14 15 16 17 18 19 20 21 22 Total 8 5 5 6 6 8 6 6 6 6 6 150 Last Name: First Name: Student ID: Section:

More information

Quantum Condensed Matter Physics Lecture 4

Quantum Condensed Matter Physics Lecture 4 Quantum Condensed Matter Physics Lecture 4 David Ritchie QCMP Lent/Easter 2019 http://www.sp.phy.cam.ac.uk/drp2/home 4.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Bonding and Packing: building crystalline solids

Bonding and Packing: building crystalline solids Bonding and Packing: building crystalline solids The major forces of BONDING Gravitational forces: F = G m m 1 2 F = attractive forces between 2 bodies G = universal graviational constant (6.6767 * 10

More information

Ceramic Bonding. CaF 2 : large SiC: small

Ceramic Bonding. CaF 2 : large SiC: small Recall ceramic bonding: - Mixed ionic and covalent. - % ionic character ( f ) increases with difference in electronegativity Large vs small ionic bond character: Ceramic Bonding CaF : large SiC: small

More information

TEXT AND OTHER MATERIALS:

TEXT AND OTHER MATERIALS: 1. TEXT AND OTHER MATERIALS: Check Learning Resources in shared class files Calculus Wiki-book: https://en.wikibooks.org/wiki/calculus (Main Reference e-book) Paul s Online Math Notes: http://tutorial.math.lamar.edu

More information

Crystal Models. Figure 1.1 Section of a three-dimensional lattice.

Crystal Models. Figure 1.1 Section of a three-dimensional lattice. Crystal Models The Solid-State Structure of Metals and Ionic Compounds Objectives Understand the concept of the unit cell in crystalline solids. Construct models of unit cells for several metallic and

More information

Geos 306, Mineralogy Final Exam, Dec 12, pts

Geos 306, Mineralogy Final Exam, Dec 12, pts Name: Geos 306, Mineralogy Final Exam, Dec 12, 2014 200 pts 1. (9 pts) What are the 4 most abundant elements found in the Earth and what are their atomic abundances? Create a reasonable hypothetical charge-balanced

More information

Answers to Practice Test Questions 12 Organic Acids and Bases

Answers to Practice Test Questions 12 Organic Acids and Bases Answers to Practice Test Questions 12 rganic Acids and Bases 1. (a) (b) pppp aa = llllll(kk aa ) KK aa = 10 pppp aa KK aa = 10 4.20 KK aa = 6.3 10 5 (c) Benzoic acid is a weak acid. We know this because

More information

Math 3 Unit 3: Polynomial Functions

Math 3 Unit 3: Polynomial Functions Math 3 Unit 3: Polynomial Functions Unit Title Standards 3.1 End Behavior of Polynomial Functions F.IF.7c 3.2 Graphing Polynomial Functions F.IF.7c, A.APR3 3.3 Writing Equations of Polynomial Functions

More information

XRD Intensity Calculations -Example FCC Cu (centric)

XRD Intensity Calculations -Example FCC Cu (centric) Ihkl F hkl F hkl hkl f f Cu Cu ( e (1 e XRD Intensity Calculations -Example FCC Cu (centric) Consider Copper which is F 3 with a=3.615å; atoms in positions [0,0,0] m m [½,½,0][½,0,½][0,½,½] and l=1.54å

More information

General Mathematics 2019 v1.2

General Mathematics 2019 v1.2 Examination This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus (~ 60%

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those

More information

TEP Examination of the structure of NaCl monocrystals with different orientations

TEP Examination of the structure of NaCl monocrystals with different orientations Examination of the structure of NaCl TEP Related topics Characteristic X-radiation, energy levels, crystal structures, reciprocal lattices, Miller indices, atomic form factor, structure factor, and Bragg

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Ceramic Materials. Chapter 2: Crystal Chemistry

Ceramic Materials. Chapter 2: Crystal Chemistry Ceramic Materials Chapter 2: Crystal Chemistry F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials frank.filser@mat.ethz.ch HS 2007 http://www.mineralienatlas.de/ http://webmineral.com http://www.uniterra.de

More information