DLP Technology-Driven, Optical Neural Network Results and Future Design. Emmett Redd Professor Missouri State University

Size: px
Start display at page:

Download "DLP Technology-Driven, Optical Neural Network Results and Future Design. Emmett Redd Professor Missouri State University"

Transcription

1 DLP Technology-Driven, Optical Neural Network Results and Future Design Emmett Redd Professor Missouri State University

2 Neural Network Applications Stock Prediction: Currency, Bonds, S&P 500 and Natural Gas Business: Direct mail, Credit Scoring, Appraisal and Summoning Juries Medical: Breast Cancer, Heart Attack Diagnosis and ER Test Ordering Sports: Horse and Dog Racing Science: Solar Flares, Protein Sequencing, Mosquito ID and Weather Manufacturing: Welding Quality, Plastics or Concrete Testing Pattern Recognition: Speech, Article Class. and Chem. Drawings No Optical Applications We are starting with Boolean most from

3 Optical Computing & Neural Networks Optical Parallel Processing Gives Speed Lenslet s Enlight Giga Multiply and Accumulate per second Order connections per second possible with holographic attenuators Neural Networks Parallel versus Serial Learn versus Program Solutions beyond Programming Deal with Ambiguous Inputs Solve Non-Linear problems Thinking versus Constrained Results

4 Optical Neural Networks Sources are modulated light beams (pulse or amplitude) Synaptic Multiplications are due to attenuation of light passing through an optical medium (30 fs) Geometric or Holographic Target neurons sum signals from many source neurons. Squashing by operational-amps or nonlinear optics

5 Standard Neural Net Learning We use a Training or Learning algorithm to adjust the weights, usually in an iterative manner. x1 Σ y1 xn Σ ym Target Output (T) Learning Algorithm Other Info

6 FWL-NN is equivalent to a standard Neural Network + Learning Algorithm Σ Σ FWL-NN Σ Σ + Learning Algorithm

7 Signal Source (Layer Input) Optical Recurrent Neural Network Synaptic Medium (35mm Slide) Postsynaptic Optics Target Neuron Summation Micromirror Array Presynaptic Optics Squashing Functions Recurrent Connections Layer Output A Single Layer of an Optical Recurrent Neural Network. Only four synapses are shown. Actual networks will have a large number of synapses. A multi-layer network has several consecutive layers.

8 Definitions Fixed-Weight Learning Neural Network (FWL-NN) A recurrent network that learns without changing synaptic weights Potency A weight signal Tranapse A Potency modulated synapse Planapse Supplies Potency error signal Zenapse Non-Participatory synapse Recurron A recurrent neuron Recurral Network A network of Recurrons

9 Optical Fixed-Weight Learning Synapse Tranapse x(t) Σ y(t-1) W(t-1) T(t-1) x(t-1) Planapse

10 Page Representation of a Recurron U(t-1) Bias Tranapse B(t) A(t) Tranapse Tranapse Σ O(t-1) Planapse

11 Optical Neural Network Constraints Finite Range Unipolar Signals [0,+1] Finite Range Bipolar Attenuation[-1,+1] Excitatory/Inhibitory handled separately Limited Resolution Signal Limited Resolution Synaptic Weights Alignment and Calibration Issues

12 DMD or DLP Optical System

13 Signal Source (Layer Input) Optical Recurrent Neural Network Synaptic Medium (35mm Slide) Postsynaptic Optics Target Neuron Summation Micromirror Array Presynaptic Optics Squashing Functions Recurrent Connections Layer Output A Single Layer of an Optical Recurrent Neural Network. Only four synapses are shown. Actual networks will have a large number of synapses. A multi-layer network has several consecutive layers.

14 Design Details and Networks Digital Micromirror Device 35 mm slide Synaptic Media CCD Camera Synaptic Weights - Positionally Encoded - Digital Attenuation Allows flexibility for evaluation. Recurrent AND Unsigned Multiply FWL Recurron

15 DMD/DLP A Versatile Tool Alignment and Distortion Correction Align DMD/DLP to CCD PEGS Align Synaptic Media to CCD HOLES Calculate DMD/DLP to Synaptic Media Alignment Putting PEGS in HOLES Correct projected DMD/DLP Images Nonlinearities

16 Stretch, Squash, and Rotate D x1 L xp y1 y L P 2 2 x1 L x P = xy 1 1 L xp yp 2 2 y1 L y P 1 L 1 1 x 1 y 0 x 0 y 1 x 2 y 0 x 1 y 1 x 0 y 2 x 3 y 0 x 2 y 1 x 1 y 2 x 0 y 3 etc. None Linear Quadratic Cubic etc.

17 Where We Are and Where We Want to Be DMD Dots Image (pegs) Slide Dots Image (holes) C C'

18 CCD Image of Known DLP Positions DMD Dots Image (pegs) Automatically Finds Points via Projecting 42 Individual Pegs C = H D H = C D P

19 CCD Image of Holes in Slide Film Slide Dots Image (holes) Manually Click on Interference to Zoom In

20 Mark the Center ZOOM OF DIFFRACTION PATTERN #1. Click on center

21 Options for Automatic Alignment Make holes larger so diffraction is reduced A single large Peg might illuminate only one Hole at a time Maximum intensity would mark Hole location Fit ellipse to 1 st minimum Ax 2 +Bxy+Cy 2 +Dx+Ey+1 = 0 Find its center x c =(BE-2CD)/(4AC-B 2 ), y c =(BD- 2AE)/(4AC-B 2 ) Hole location

22 Ellipse Fitting Changeable center and orientation parameters 4 3 theta x y x' y' E General Equation resulting from rotating and translating x^2/16 + y^2/9 = 1 by h, k, and theta. A B C D E F Recovered center and orientation parameters h k theta Gaussian Elimination Below

23 Eighty-four Clicks Later Slide Dots Image (holes) C' = M C M = C' C P

24 DLP Projected Regions of Interest D' = H -1 M -1 H D and C' = H D'

25 Nonlinearities Measured light signals vs. Weights for FWL Recurron Opaque slides aren t, ~6% leakage

26 Neural Networks and Results Recurrent AND Unsigned Multiply Fixed Weight Learning Recurron

27 Recurrent AND I N 1-cycle delay I N-1 I N I N-1

28 Source Neurons (buffers) Recurrent AND Neural Network Bias (1) -14/16 logsig(16*σ) I N 10/16 Σ 1 10/16 0 I N I N-1 Terminal Neurons -1/2 linsig(2*σ) I N-1 2/2 Σ 1 0

29 Synaptic Weight Slide Weights /16-1/2-14/16 10/16 2/2

30 MATLAB Recurrent AND Demo

31 Pulse Image (Regions of Interest)

32 Output Swings Larger than Input

33 Synaptic Weight Slide

34 Unsigned Multiply Results About 4 bits Blue-expected Black-obtained Red-squared error

35 Page Representation of a Recurron U(t-1) Bias Tranapse B(t) A(t) Tranapse Tranapse Σ O(t-1) Planapse

36 FWL Recurron Synaptic Weight Slide

37 Optical Fixed-Weight Learning Synapse Tranapse x(t) Σ y(t-1) W(t-1) T(t-1) x(t-1) Planapse

38 Signal Source (Layer Input) Optical Recurrent Neural Network Synaptic Medium (35mm Slide) Postsynaptic Optics Target Neuron Summation Micromirror Array Presynaptic Optics Squashing Functions Recurrent Connections Layer Output A Single Layer of an Optical Recurrent Neural Network. Only four synapses are shown. Actual networks will have a large number of synapses. A multi-layer network has several consecutive layers.

39 Future: Integrated Photonics Photonic (analog) i. Concept α. Neuron β. Weights γ. Synapses Photonics Spectra and Luxtera

40 Continued ii. Needs α. Laser β. Amplifier (detectors and control) γ. Splitters δ. Waveguides on Two Layers ε. Attenuators ζ. Combiners η. Constructive Interference θ. Destructive Interference ι. Phase Photonics Spectra and Luxtera

41 Interest Generated? We wish to implement Optical Neural Networks in Silicon Including Fixed Weight Learning. To do so, we need Collaborators. Much research remains, but an earlier start means an earlier finish. Please contact me if interested.

42 DLP -Driven, Optical Neural Network Results and Future Design Emmett Redd & A. Steven Younger Missouri State University

43 Source Pulse

Simple neuron model Components of simple neuron

Simple neuron model Components of simple neuron Outline 1. Simple neuron model 2. Components of artificial neural networks 3. Common activation functions 4. MATLAB representation of neural network. Single neuron model Simple neuron model Components

More information

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Learning Neural Networks Classifier Short Presentation INPUT: classification data, i.e. it contains an classification (class) attribute.

More information

A Guide to Reticle Design on the Autostep 200 Edward Tang 6/4/04

A Guide to Reticle Design on the Autostep 200 Edward Tang 6/4/04 A Guide to Reticle Design on the Autostep 200 Edward Tang 6/4/04 1 Table of Contents Introduction Section 1 Reticle Management System (RMS): Introduction Section 2- Global Alignment System Global Scan

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Midterm II Sample Problems

Midterm II Sample Problems EECS 16A Spring 2015 Designing Information Devices and Systems I Midterm II Sample Problems 1. Bio-Molecule Detector One application for electronics that has gained a lot of attention over the past several

More information

Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) CSE 5526: Introduction to Neural Networks Multilayer Perceptrons (MLPs) 1 Motivation Multilayer networks are more powerful than singlelayer nets Example: XOR problem x 2 1 AND x o x 1 x 2 +1-1 o x x 1-1

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Incremental Stochastic Gradient Descent

Incremental Stochastic Gradient Descent Incremental Stochastic Gradient Descent Batch mode : gradient descent w=w - η E D [w] over the entire data D E D [w]=1/2σ d (t d -o d ) 2 Incremental mode: gradient descent w=w - η E d [w] over individual

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

gives rise to multitude of four-wave-mixing phenomena which are of great

gives rise to multitude of four-wave-mixing phenomena which are of great Module 4 : Third order nonlinear optical processes Lecture 26 : Third-order nonlinearity measurement techniques: Z-Scan Objectives In this lecture you will learn the following Theory of Z-scan technique

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Optical Systems Program of Studies Version 1.0 April 2012

Optical Systems Program of Studies Version 1.0 April 2012 Optical Systems Program of Studies Version 1.0 April 2012 Standard1 Essential Understand Optical experimental methodology, data analysis, interpretation, and presentation strategies Essential Understandings:

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 1 Context and Scope of the Course (Refer Slide Time: 00:44) Welcome to this course

More information

Reification of Boolean Logic

Reification of Boolean Logic 526 U1180 neural networks 1 Chapter 1 Reification of Boolean Logic The modern era of neural networks began with the pioneer work of McCulloch and Pitts (1943). McCulloch was a psychiatrist and neuroanatomist;

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

CMSC 421: Neural Computation. Applications of Neural Networks

CMSC 421: Neural Computation. Applications of Neural Networks CMSC 42: Neural Computation definition synonyms neural networks artificial neural networks neural modeling connectionist models parallel distributed processing AI perspective Applications of Neural Networks

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light.

Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light. Slide 1 Goals of the Lab: Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light. Learn how to measure the influence

More information

Neuro-Fuzzy Comp. Ch. 1 March 24, 2005

Neuro-Fuzzy Comp. Ch. 1 March 24, 2005 Conclusion Neuro-Fuzzy Comp Ch 1 March 24, 2005 1 Basic concepts of Neural Networks and Fuzzy Logic Systems Inspirations based on course material by Professors Heikki Koiovo http://wwwcontrolhutfi/kurssit/as-74115/material/

More information

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots

Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Distribution of Delay Times in Laser Excited CdSe-ZnS Core-Shell Quantum Dots Andrei Vajiac Indiana University South Bend Mathematics, Computer Science Advisor: Pavel Frantsuzov, Physics Abstract This

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Advanced laser technology for 3D-shaping ~ toward to the highest brightness of electron beam source ~

Advanced laser technology for 3D-shaping ~ toward to the highest brightness of electron beam source ~ Advanced laser technology for 3D-shaping ~ toward to the highest brightness of electron beam source ~ Hiromistu Tomizawa Accelerator Division, Japan Synchrotron Radiation Research Institute (SPring-8)

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

requency generation spectroscopy Rahul N

requency generation spectroscopy Rahul N requency generation spectroscopy Rahul N 2-11-2013 Sum frequency generation spectroscopy Sum frequency generation spectroscopy (SFG) is a technique used to analyze surfaces and interfaces. SFG was first

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Physics 1252 Exam #2A

Physics 1252 Exam #2A Physics 1252 Exam #2A Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write on your

More information

Decision-making, inference, and learning theory. ECE 830 & CS 761, Spring 2016

Decision-making, inference, and learning theory. ECE 830 & CS 761, Spring 2016 Decision-making, inference, and learning theory ECE 830 & CS 761, Spring 2016 1 / 22 What do we have here? Given measurements or observations of some physical process, we ask the simple question what do

More information

Deep Learning Recurrent Networks 2/28/2018

Deep Learning Recurrent Networks 2/28/2018 Deep Learning Recurrent Networks /8/8 Recap: Recurrent networks can be incredibly effective Story so far Y(t+) Stock vector X(t) X(t+) X(t+) X(t+) X(t+) X(t+5) X(t+) X(t+7) Iterated structures are good

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Gianluca Pollastri, Head of Lab School of Computer Science and Informatics and. University College Dublin

Gianluca Pollastri, Head of Lab School of Computer Science and Informatics and. University College Dublin Introduction ti to Neural Networks Gianluca Pollastri, Head of Lab School of Computer Science and Informatics and Complex and Adaptive Systems Labs University College Dublin gianluca.pollastri@ucd.ie Credits

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Recurrent Neural Networks Deep Learning Lecture 5. Efstratios Gavves

Recurrent Neural Networks Deep Learning Lecture 5. Efstratios Gavves Recurrent Neural Networks Deep Learning Lecture 5 Efstratios Gavves Sequential Data So far, all tasks assumed stationary data Neither all data, nor all tasks are stationary though Sequential Data: Text

More information

Physics 1252 Exam #2C

Physics 1252 Exam #2C Physics 1252 Exam #2C Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write on your

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Threshold units Gradient descent Multilayer networks Backpropagation Hidden layer representations Example: Face Recognition Advanced topics 1 Connectionist Models Consider humans:

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 3(B), March 2012 pp. 2285 2300 FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS

More information

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera Intelligent Control Module I- Neural Networks Lecture 7 Adaptive Learning Rate Laxmidhar Behera Department of Electrical Engineering Indian Institute of Technology, Kanpur Recurrent Networks p.1/40 Subjects

More information

Physics 1252 Exam #2F

Physics 1252 Exam #2F Physics 1252 Exam #2F Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write on your

More information

Physics 1252 Exam #2A

Physics 1252 Exam #2A Physics 1252 Exam #2A Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write on your

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Physics 1212 Exam #2B

Physics 1212 Exam #2B Physics 1212 Exam #2B Instructions: This is a closed-book, closed-notes exam. You are allowed to use a clean print-out of your formula sheet, any scientific calculator, and a ruler. Do not write on your

More information

Designing Information Devices and Systems I Spring 2019 Midterm 2

Designing Information Devices and Systems I Spring 2019 Midterm 2 1 EECS 16A Designing Information Devices and Systems I Spring 2019 Midterm 2 1. How is your semester so far? (1 point) 2. Do you have any summer plans? (1 point) Do not turn this page until the proctor

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Arbitrary and reconfigurable optics - new opportunities for integrated photonics

Arbitrary and reconfigurable optics - new opportunities for integrated photonics Arbitrary and reconfigurable optics - new opportunities for integrated photonics David Miller, Stanford University For a copy of these slides, please e-mail dabm@ee.stanford.edu How to design any linear

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms.

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms. 9.16 Problem Set #4 In the final problem set you will combine the pieces of knowledge gained in the previous assignments to build a full-blown model of a plastic synapse. You will investigate the effects

More information

Neuro-Fuzzy Comp. Ch. 4 March 24, R p

Neuro-Fuzzy Comp. Ch. 4 March 24, R p 4 Feedforward Multilayer Neural Networks part I Feedforward multilayer neural networks (introduced in sec 17) with supervised error correcting learning are used to approximate (synthesise) a non-linear

More information

Convolutional networks. Sebastian Seung

Convolutional networks. Sebastian Seung Convolutional networks Sebastian Seung Convolutional network Neural network with spatial organization every neuron has a location usually on a grid Translation invariance synaptic strength depends on locations

More information

PARTICLE SIZE ANALYTICAL RANGES AND APPLICABILITY. m mm (10-6 m) nm (10-9 m)

PARTICLE SIZE ANALYTICAL RANGES AND APPLICABILITY. m mm (10-6 m) nm (10-9 m) P A R T I C L E S I Z E A N A L Y S I S PARTICLE SIZE Accurately determining particle size has become essential in many industries, as it is a fundamental physical characteristic that must be selected,

More information

Sample questions for Fundamentals of Machine Learning 2018

Sample questions for Fundamentals of Machine Learning 2018 Sample questions for Fundamentals of Machine Learning 2018 Teacher: Mohammad Emtiyaz Khan A few important informations: In the final exam, no electronic devices are allowed except a calculator. Make sure

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Applications of Memristors in ANNs

Applications of Memristors in ANNs Applications of Memristors in ANNs Outline Brief intro to ANNs Firing rate networks Single layer perceptron experiment Other (simulation) examples Spiking networks and STDP ANNs ANN is bio inpsired inpsired

More information

Session #1: Theoretical background and computer simulations of molecular vibrations.

Session #1: Theoretical background and computer simulations of molecular vibrations. Raman Spectroscopy Session #1: Theoretical background and computer simulations of molecular vibrations. Goals: Understand the origin of the Raman effect. Understand the vibrational normal modes of molecules.

More information

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems 홀로그램저장재료 Holographic materials Material Reusable Processing Type of Exposure Spectral Resol. Max. diff. hologram (J/m2) sensitivity (lim./mm) efficiency Photographic emulsion Dichromated gelatin Photoresists

More information

Introduction to Neural Networks: Structure and Training

Introduction to Neural Networks: Structure and Training Introduction to Neural Networks: Structure and Training Professor Q.J. Zhang Department of Electronics Carleton University, Ottawa, Canada www.doe.carleton.ca/~qjz, qjz@doe.carleton.ca A Quick Illustration

More information

Neural networks III: The delta learning rule with semilinear activation function

Neural networks III: The delta learning rule with semilinear activation function Neural networks III: The delta learning rule with semilinear activation function The standard delta rule essentially implements gradient descent in sum-squared error for linear activation functions. We

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

University of Cyprus. Reflectance and Diffuse Spectroscopy

University of Cyprus. Reflectance and Diffuse Spectroscopy University of Cyprus Biomedical Imaging and Applied Optics Reflectance and Diffuse Spectroscopy Spectroscopy What is it? from the Greek: spectro = color + scope = look at or observe = measuring/recording

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No University of Maryland Department of Physics Physics 122 20. May 2009 (175 points) Post grades on web? (Initial, please) Yes No (If you agree, I will post your grades and your detailed scores for each

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

Designing Information Devices and Systems I Spring 2019 Midterm 2. Exam Location: Cory 521 (DSP)

Designing Information Devices and Systems I Spring 2019 Midterm 2. Exam Location: Cory 521 (DSP) 1 EECS 16A Designing Information Devices and Systems I Spring 2019 Midterm 2 Exam Location: Cory 521 (DSP) PRINT AND SIGN your name:, (last name) (first name) (signature) PRINT time of your Monday section

More information

Conversion from Linear to Circular Polarization and Stokes Parameters in FPGA. Koyel Das, Alan Roy, Gino Tuccari, Reinhard Keller

Conversion from Linear to Circular Polarization and Stokes Parameters in FPGA. Koyel Das, Alan Roy, Gino Tuccari, Reinhard Keller Conversion from Linear to Circular Polarization and Stokes Parameters in FPGA Koyel Das, Alan Roy, Gino Tuccari, Reinhard Keller Purpose 1. Conventionally, for the formation of circular polarization, analogue

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching

Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Lab 3-4 : Confocal Microscope Imaging of Single-Emitter Fluorescence and Hanbury-Brown and Twiss Set Up, Photon Antibunching Mongkol Moongweluwan 1 1 Department of Physics and Astronomy, University of

More information

Reservoir Computing with Stochastic Bitstream Neurons

Reservoir Computing with Stochastic Bitstream Neurons Reservoir Computing with Stochastic Bitstream Neurons David Verstraeten, Benjamin Schrauwen and Dirk Stroobandt Department of Electronics and Information Systems (ELIS), Ugent {david.verstraeten, benjamin.schrauwen,

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

A Physical Machine Based on a Super-Turing Computational Model

A Physical Machine Based on a Super-Turing Computational Model A Physical Machine Based on a Super-Turing Computational Model A. Steven Younger 1, Emmett Redd 1 Hava Siegelmann 2, and Conrad Bell 3 1 Missouri State University, Springfield, MO 65897, USA, {steveyounger,

More information

Linear Models for Regression

Linear Models for Regression Linear Models for Regression CSE 4309 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 The Regression Problem Training data: A set of input-output

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Introduction. Previous work has shown that AER can also be used to construct largescale networks with arbitrary, configurable synaptic connectivity.

Introduction. Previous work has shown that AER can also be used to construct largescale networks with arbitrary, configurable synaptic connectivity. Introduction The goal of neuromorphic engineering is to design and implement microelectronic systems that emulate the structure and function of the brain. Address-event representation (AER) is a communication

More information

MAGNETO-OPTIC KERR EFFECT

MAGNETO-OPTIC KERR EFFECT T E C H N O L O G Y F O R P O L A R I Z A T I O N M E A S U R E M E N T MAGNETO-OPTIC KERR BY DR. THEODORE C. OAKBERG The Magneto-Optic Kerr Effect (MOKE) is the study of the refl ection of polarized light

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

MAE106 Laboratory Exercises Lab # 6 - Vibrating systems

MAE106 Laboratory Exercises Lab # 6 - Vibrating systems MAE106 Laboratory Exercises Lab # 6 - Vibrating systems Goals Understand how the oscillations in a mechanical system affect its behavior. Parts & equipment Qty Part/Equipment 1 Seeeduino board 1 Motor

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

Development and Applications of Acoustic Charge Transport

Development and Applications of Acoustic Charge Transport Development and Applications of Acoustic Charge Transport CID #478 Physics 222 Term Paper #1 Abstract Acoustic charge transport is accomplished through the use of a surface acoustic wave passing through

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Chapter 8, Section 7 Artificial Intelligence, spring 203, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 8, Section 7 Outline Brains Neural

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 41 Pulse Code Modulation (PCM) So, if you remember we have been talking

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Comunicações Ópticas Noise in photodetectors MIEEC EEC038. Henrique Salgado Receiver operation

Comunicações Ópticas Noise in photodetectors MIEEC EEC038. Henrique Salgado Receiver operation Comunicações Ópticas Noise in photodetectors 2007-2008 MIEEC EEC038 Henrique Salgado hsalgado@fe.up.pt Receiver operation Noise plays a fundamental role in design of an optical receiver Optical data link

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information