which can also be written as: 21 Basic differentiation - Chain rule: (f g) (b) = f (g(b)) g (b) dg dx for f(y) and g(x), = df dy

Size: px
Start display at page:

Download "which can also be written as: 21 Basic differentiation - Chain rule: (f g) (b) = f (g(b)) g (b) dg dx for f(y) and g(x), = df dy"

Transcription

1 2 Basic differentiation - Chain rule: Chain rule: Suppose f and g are differentiable functions so that we can form their composition f g. The derivative of f g at input b can be computed in terms of the derivative of g at input b, and the derivative of f at input g(b). We have which can also be written as: (f g) (b) = f (g(b)) g (b) for f(y) and g(x), Intuition for why chain rule is true. d(f g) dx x=b = df dy y=g(b) dg dx x=b A change of x in the input (from b to b + x) will result in a change in the output of g (from g(b) to g(b)+g (b) x) of g (b) x. In turn a change of g = g (b) x in the input of g(b) into the function f will result in a change of the output of f (g(b)) g = f (g(b))g (b) x.

2 So, the change in the composite f g that results from a x change in the input x is (approximately) f (g(b)) g (b) x. (f g) lim x 0 x f (g(b)) g (b) x = lim x 0 x = f (g(b)) g (b) Examples. We find the derivative of sin(x 2 ) using the change rule. We have sin(x 2 ) = f(g(x)) where f(y) = sin(y) and g(x) = x 2. Then f (y) = cos(y), and g (x) = 2x, so ( sin(x 2 ) ) = cos(x 2 ) 2x. Wefindthederivativeof(sin(x)) 2 usingthechangerule. Wehave(sin(x)) 2 = f(g(x))where f(y) = y 2 and g(x) = sin(x). Then f (y) = 2y, and g (x) = cos(x), so ( (sin(x)) 2 ) = 2sin(x) cos(x).

3 22 Basic differentiation - Inverse function: Suppose f is function with an interval domain D and which is oneto-one and differentiable on the domain. The one-to-one property means there will be an inverse function g. The functions f and g undo each other. b = f(a) g(b) = a point (a,b) is on point (b,a) is on the graph of f the graph of g tangent slope at tangent slope at (a,b) is m (b,a) is m

4 4 (a,b) m (b,a) m -2-4 Derivative of inverse: Suppose f is is one-to-one and differentiable and g is the inverse function. Suppose b = f(a) (so g(b) = a), and f (a) 0. The g is differentiable at b, and g (f(a)) = f (a).

5 Examples. The arcsine function x = (arcsin(y)) is the inverse of the sine function y = sin(x). The derivative of arcsin is: (arcsin(y)) y=sin(x) = (arcsin(y)) = = (sin(x)). y 2 cos(x) = (sin(x)) 2 = y 2, so g ' (b,/m).5 g (inverse) (b,a) (a,b) f 0.5 (a,m) f '

6 The arctangent function x = (arctan(y)) is the inverse of the tangent function y = tan(x). The derivative of arctan is: (arctan(y)) = y=tan(x) = (arctan(y)) = (tan(x)) = ( ) = (cos(x)) 2 ( (cos(x))2 +(sin(x)) 2 ) (cos(x)) 2 ( + (tan(x)) 2 ) = ( + y 2 ), so ( + y 2 ).

7 23 Introductory application of derivatives Examples. A rectangular piece of cardboard is 2 cm 30 cm (approximately A4 size). Squares of size x are cut from the 4 corners and the cardboard is then folded to make a box. The volume V is a function of the side x: V = x(2 2x)(30 2x) = 2x(35 5x + 2x 2 ) = 2(2x 3 5x x) The domain of x is 0 x 2 2 = 0.5 The derivative dv dx is: dv dx = 2 (x2 02x + 35) The quadratic x 2 02x + 35 has roots at 02± = 5±3 79. The derivative is zero at the roots = , and = The root = is not in the domain. The root = will provide a peak in the volume function V. The maximum volume is V x= = =

8 The end of a (east/west) hallway 4 feet wide meets a (north/south) hallway 3 feet wide. See figure. North Wall West Wall θ 4 ft 3ft For each angle θ in the interval (0, π 2 ), determine the longest ladder l(θ) that can fit between the North Wall and West Wall. By geometry l(θ) = l EW (θ) + l NS (θ), where sin(θ) = 4 l EW (θ) and cos(θ) = 3 l NS (θ). So, 4 l(θ) = sin(θ) + 3 with domain the interval (0, π cos(θ) 2 ). Determine the longest ladder that can be turned around the corner. We note that if l(θ a ) > l(θ b ), then a ladder of length l(θ a ) will fit at angle θ a, but NOT at angle θ b. A ladder which can be turned around the corner must be smaller that ALL

9 the lengths l(θ). Therefore, the largest ladder that can be turned around the corner is the smallest value of the function l(θ). We use the derivative to find the smallest value. l(θ) = 4 sin(θ) + 3 l (θ) = 4 ( sin(θ) cos(θ) ) + 3 ( cos(θ) = 4 ( cos(θ) (sin(θ)) 2 ) + 3 ( sin(θ) (cos(θ)) 2 ) = 4(cos(θ))3 + 3(sin(θ)) 3 (sin(θ)) 2 (cos(θ)) 2 ) = 4 ( (sin(θ)) (sin(θ)) 2 ) + 3 ( (cos(θ)) (cos(θ)) 2 ) = 3 cos(θ) ( (tan(θ)) 3 ) (sin(θ)) 2 The part 3 cos(θ) (sin(θ)) is positive. So, the sign of 2 (l(θ)) is determined by the part (tan(θ)) 3. On the domain (0, π 2 ), the function tan increases. Therefore, the function (tan(θ)) 3 is increasing it starts off negative, reaches zero and then is postive. So the tangent slopes are negative, then zero at some point, and then positive. The place θ 0 where the derivative equals zero is: 0 = (tan(θ 0 )) 3, so tan(θ 0 ) = ( 4 3 ) 3, so θ 0 = arctan( 4 3 ) 3 = While the tangent slopes are negative, the function is decreasing. When the tangent slopes are positive the function is increasing.

10 The smallest value of the function l, is l(arctan( 4 3 ) 3) = (feet). This smallest value of l is the longest ladder that can be turned around the corner.

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives Objectives 1. Find the Exact Value of an Inverse Sine, Cosine, or Tangent Function. 2. Find an Approximate Value of an Inverse Sine Function. 3. Use Properties of Inverse Functions to Find Exact Values

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/19 MTH 11: Elementary Functions Section 6.6 6.6:Inverse Trigonometric functions /19 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line crosses the graph of a 1

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

6.6 Inverse Trigonometric Functions

6.6 Inverse Trigonometric Functions 6.6 6.6 Inverse Trigonometric Functions We recall the following definitions from trigonometry. If we restrict the sine function, say fx) sinx, π x π then we obtain a one-to-one function. π/, /) π/ π/ Since

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions MTH 11: Elementary Functions F. Patricia Medina Department of Mathematics. Oregon State University Section 6.6 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line

More information

Inverse Trigonometric Functions. September 5, 2018

Inverse Trigonometric Functions. September 5, 2018 Inverse Trigonometric Functions September 5, 08 / 7 Restricted Sine Function. The trigonometric function sin x is not a one-to-one functions..0 0.5 Π 6, 5Π 6, Π Π Π Π 0.5 We still want an inverse, so what

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information

Formulas to remember

Formulas to remember Complex numbers Let z = x + iy be a complex number The conjugate z = x iy Formulas to remember The real part Re(z) = x = z+z The imaginary part Im(z) = y = z z i The norm z = zz = x + y The reciprocal

More information

Institute of Computer Science

Institute of Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic Calculus Digest Jiří Rohn http://uivtx.cs.cas.cz/~rohn Technical report No. V-54 02.02.202 Pod Vodárenskou věží 2, 82 07 Prague 8,

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 82 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

2.8 Linear Approximation and Differentials

2.8 Linear Approximation and Differentials 2.8 Linear Approximation Contemporary Calculus 1 2.8 Linear Approximation and Differentials Newton's method used tangent lines to "point toward" a root of the function. In this section we examine and use

More information

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March 2018 Name: Section: Last 4 digits of student ID #: This exam has 12 multiple choice questions (five points each) and 4 free response questions (ten

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

Calculus I Practice Exam 2

Calculus I Practice Exam 2 Calculus I Practice Exam 2 Instructions: The exam is closed book, closed notes, although you may use a note sheet as in the previous exam. A calculator is allowed, but you must show all of your work. Your

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

7.3 Inverse Trigonometric Functions

7.3 Inverse Trigonometric Functions 58 transcendental functions 73 Inverse Trigonometric Functions We now turn our attention to the inverse trigonometric functions, their properties and their graphs, focusing on properties and techniques

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Unit #3 : Differentiability, Computing Derivatives, Trig Review

Unit #3 : Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute

More information

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4 Study Guide for Final Exam 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its expression to be well-defined. Some examples of the conditions are: What

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show all your work on the standard response

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed.

Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed. Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed. Part A: (SHORT ANSWER QUESTIONS) Do the following problems. Write the answer in the space provided. Only the answers

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

WORKBOOK. MATH 31. CALCULUS AND ANALYTIC GEOMETRY I.

WORKBOOK. MATH 31. CALCULUS AND ANALYTIC GEOMETRY I. WORKBOOK. MATH 31. CALCULUS AND ANALYTIC GEOMETRY I. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributors: U. N. Iyer and P. Laul. (Many problems have been directly taken from Single Variable Calculus,

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

MATH 127 SAMPLE FINAL EXAM I II III TOTAL

MATH 127 SAMPLE FINAL EXAM I II III TOTAL MATH 17 SAMPLE FINAL EXAM Name: Section: Do not write on this page below this line Part I II III TOTAL Score Part I. Multiple choice answer exercises with exactly one correct answer. Each correct answer

More information

Topic 3 Part 1 [449 marks]

Topic 3 Part 1 [449 marks] Topic 3 Part [449 marks] a. Find all values of x for 0. x such that sin( x ) = 0. b. Find n n+ x sin( x )dx, showing that it takes different integer values when n is even and when n is odd. c. Evaluate

More information

Math 121. Exam II. November 28 th, 2018

Math 121. Exam II. November 28 th, 2018 Math 121 Exam II November 28 th, 2018 Name: Section: The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all

More information

1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim

1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim Spring 10/MAT 250/Exam 1 Name: Show all your work. 1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim x 1 +f(x) = lim x 3 f(x) = lim x

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0

(b) x = (d) x = (b) x = e (d) x = e4 2 ln(3) 2 x x. is. (b) 2 x, x 0. (d) x 2, x 0 1. Solve the equation 3 4x+5 = 6 for x. ln(6)/ ln(3) 5 (a) x = 4 ln(3) ln(6)/ ln(3) 5 (c) x = 4 ln(3)/ ln(6) 5 (e) x = 4. Solve the equation e x 1 = 1 for x. (b) x = (d) x = ln(5)/ ln(3) 6 4 ln(6) 5/ ln(3)

More information

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t Math 4, Autumn 006 Final Exam Solutions Page of 9. [ points total] Calculate the derivatives of the following functions. You need not simplfy your answers. (a) [4 points] y = 5x 7 sin(3x) + e + ln x. y

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You

More information

Math Fall 08 Final Exam Review

Math Fall 08 Final Exam Review Math 173.7 Fall 08 Final Exam Review 1. Graph the function f(x) = x 2 3x by applying a transformation to the graph of a standard function. 2.a. Express the function F(x) = 3 ln(x + 2) in the form F = f

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Unit #3 : Differentiability, Computing Derivatives

Unit #3 : Differentiability, Computing Derivatives Unit #3 : Differentiability, Computing Derivatives Goals: Determine when a function is differentiable at a point Relate the derivative graph to the the graph of an original function Compute derivative

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc.

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc. CRN: NAME: INSTRUCTIONS: This exam is a closed book exam. You may not use your text, homework, or other aids except for a 3 5-inch notecard. You may use an allowable calculator, TI-83 or TI-84 to perform

More information

State Precalculus/Trigonometry Contest 2008

State Precalculus/Trigonometry Contest 2008 State Precalculus/Trigonometry Contest 008 Select the best answer for each of the following questions and mark it on the answer sheet provided. Be sure to read all the answer choices before making your

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

Functions. Remark 1.2 The objective of our course Calculus is to study functions.

Functions. Remark 1.2 The objective of our course Calculus is to study functions. Functions 1.1 Functions and their Graphs Definition 1.1 A function f is a rule assigning a number to each of the numbers. The number assigned to the number x via the rule f is usually denoted by f(x).

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions -7-08 If you restrict fx) = sinx to the interval π x π, the function increases: y = sin x - / / This implies that the function is one-to-one, an hence it has an inverse. The inverse

More information

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place.

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place. O Answers: Chapter 7 Contemporary Calculus PROBLEM ANSWERS Chapter Seven Section 7.0. f is one to one ( ), y is, g is not, h is not.. f is not, y is, g is, h is not. 5. I think SS numbers are supposeo

More information

Old Math 220 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 220 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 0 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Spring 05 Contents Contents General information about these exams 4 Exams from 0

More information

Lecture 5: Inverse Trigonometric Functions

Lecture 5: Inverse Trigonometric Functions Lecture 5: Inverse Trigonometric Functions 5 The inverse sine function The function f(x = sin(x is not one-to-one on (,, but is on [ π, π Moreover, f still has range [, when restricte to this interval

More information

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as MAS113 CALCULUS II SPRING 008, QUIZ 5 SOLUTIONS Quiz 5a Solutions (1) Solve the differential equation y = x 1 + y. (1 + y )y = x = (1 + y ) = x = 3y + y 3 = x 3 + c. () Solve the differential equation

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

MAT 1332: Calculus for Life Sciences. A course based on the book Modeling the dynamics of life by F.R. Adler

MAT 1332: Calculus for Life Sciences. A course based on the book Modeling the dynamics of life by F.R. Adler MT 33: Calculus for Life Sciences course based on the book Modeling the dynamics of life by F.R. dler Supplementary material University of Ottawa Frithjof Lutscher, with Robert Smith? January 3, MT 33:

More information

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010 Mathematics 5, Calculus II Exam, April 3rd,. (8 points) If an unknown function y satisfies the equation y = x 3 x + 4 with the condition that y()=, then what is y? Solution: We must integrate y against

More information

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes Please complete this cover page with ALL CAPITAL LETTERS. Last name......................................................................................

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

WORKSHEET 1 SOLUTION Chapter 2 Differentiation

WORKSHEET 1 SOLUTION Chapter 2 Differentiation United Arab Emirates University College of Sciences Department of Mathematical Sciences WORKSHEET SOLUTION Chapter Differentiation Calculus I for Engineering MATH SECTION CRN : :5 on Sunday & Tuesday Due

More information

Derivative of a Function

Derivative of a Function Derivative of a Function (x+δx,f(x+δx)) f ' (x) = (x,f(x)) provided the limit exists Can be interpreted as the slope of the tangent line to the curve at any point (x, f(x)) on the curve. This generalizes

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

(p) p(y) = (e) g(t) = (t + t 2 )(1 5t + 4t 2 ) (r) x(t) = sin(t) cos(t) tan(t) (s) f(x) = x ( 3 x + 5 x) (t) f(x) = 1 2 (x ) (u) f(x) = 4x3 3x 2

(p) p(y) = (e) g(t) = (t + t 2 )(1 5t + 4t 2 ) (r) x(t) = sin(t) cos(t) tan(t) (s) f(x) = x ( 3 x + 5 x) (t) f(x) = 1 2 (x ) (u) f(x) = 4x3 3x 2 1. Find the derivative! (a) f(x) = x + x 2 x 3 + 1 (o) g(t) = sin(t) cos(t) tan(t) (b) f(x) = x + x 2 3 x 2 (c) f(x) = 1 x + 2 x 2 2 x + 312 (p) p(y) = 2 cos(y) + tan(y) sin(y) (d) h(t) = 2 t 3 + t 4 +

More information

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 611b Assignment #6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find a formula for the function graphed. 1) 1) A) f(x) = 5 + x, x < -

More information

16 Inverse Trigonometric Functions

16 Inverse Trigonometric Functions 6 Inverse Trigonometric Functions Concepts: Restricting the Domain of the Trigonometric Functions The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function Using the Inverse Trigonometric

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

MATH 31BH Homework 5 Solutions

MATH 31BH Homework 5 Solutions MATH 3BH Homework 5 Solutions February 4, 204 Problem.8.2 (a) Let x t f y = x 2 + y 2 + 2z 2 and g(t) = t 2. z t 3 Then by the chain rule a a a D(g f) b = Dg f b Df b c c c = [Dg(a 2 + b 2 + 2c 2 )] [

More information

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS The Department of Applied Mathematics administers a Math Placement test to assess fundamental skills in mathematics that are necessary to begin the study

More information

ADDITONAL MATHEMATICS

ADDITONAL MATHEMATICS ADDITONAL MATHEMATICS 00 0 CLASSIFIED TRIGONOMETRY Compiled & Edited B Dr. Eltaeb Abdul Rhman www.drtaeb.tk First Edition 0 5 Show that cosθ + + cosθ = cosec θ. [3] 0606//M/J/ 5 (i) 6 5 4 3 0 3 4 45 90

More information

WeBWorK assignment 1. b. Find the slope of the line passing through the points (10,1) and (0,2). 4.(1 pt) Find the equation of the line passing

WeBWorK assignment 1. b. Find the slope of the line passing through the points (10,1) and (0,2). 4.(1 pt) Find the equation of the line passing WeBWorK assignment Thought of the day: It s not that I m so smart; it s just that I stay with problems longer. Albert Einstein.( pt) a. Find the slope of the line passing through the points (8,4) and (,8).

More information

AP Calculus Free-Response Questions 1969-present AB

AP Calculus Free-Response Questions 1969-present AB AP Calculus Free-Response Questions 1969-present AB 1969 1. Consider the following functions defined for all x: f 1 (x) = x, f (x) = xcos x, f 3 (x) = 3e x, f 4 (x) = x - x. Answer the following questions

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

Handout 5, Summer 2014 Math May Consider the following table of values: x f(x) g(x) f (x) g (x)

Handout 5, Summer 2014 Math May Consider the following table of values: x f(x) g(x) f (x) g (x) Handout 5, Summer 204 Math 823-7 29 May 204. Consider the following table of values: x f(x) g(x) f (x) g (x) 3 4 8 4 3 4 2 9 8 8 3 9 4 Let h(x) = (f g)(x) and l(x) = g(f(x)). Compute h (3), h (4), l (8),

More information

3 Inequalities Absolute Values Inequalities and Intervals... 5

3 Inequalities Absolute Values Inequalities and Intervals... 5 Contents 1 Real Numbers, Exponents, and Radicals 3 1.1 Rationalizing the Denominator................................... 3 1.2 Factoring Polynomials........................................ 3 1.3 Algebraic

More information

Interpreting Derivatives, Local Linearity, Newton s

Interpreting Derivatives, Local Linearity, Newton s Unit #4 : Method Interpreting Derivatives, Local Linearity, Newton s Goals: Review inverse trigonometric functions and their derivatives. Create and use linearization/tangent line formulas. Investigate

More information

PART A: Solve the following equations/inequalities. Give all solutions. x 3 > x + 3 x

PART A: Solve the following equations/inequalities. Give all solutions. x 3 > x + 3 x CFHS Honors Precalculus Calculus BC Review PART A: Solve the following equations/inequalities. Give all solutions. 1. 2x 3 + 3x 2 8x = 3 2. 3 x 1 + 4 = 8 3. 1 x + 1 2 x 4 = 5 x 2 3x 4 1 4. log 2 2 + log

More information

Core 3 (A2) Practice Examination Questions

Core 3 (A2) Practice Examination Questions Core 3 (A) Practice Examination Questions Trigonometry Mr A Slack Trigonometric Identities and Equations I know what secant; cosecant and cotangent graphs look like and can identify appropriate restricted

More information

Derivatives of Trig and Inverse Trig Functions

Derivatives of Trig and Inverse Trig Functions Derivatives of Trig and Inverse Trig Functions Math 102 Section 102 Mingfeng Qiu Nov. 28, 2018 Office hours I m planning to have additional office hours next week. Next Monday (Dec 3), which time works

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS A2 level Mathematics Core 3 course workbook 2015-2016 Name: Welcome to Core 3 (C3) Mathematics. We hope that you will use this workbook to give you an organised set of notes for

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001

Math 111D Calculus 1 Exam 2 Practice Problems Fall 2001 Math D Calculus Exam Practice Problems Fall This is not a comprehensive set of problems, but I ve added some more problems since Monday in class.. Find the derivatives of the following functions a) y =

More information

Practice 14. imathesis.com By Carlos Sotuyo

Practice 14. imathesis.com By Carlos Sotuyo Practice 4 imathesis.com By Carlos Sotuyo Suggested solutions for Miscellaneous exercises 0, problems 5-0, pages 53 to 55 from Pure Mathematics, by Hugh Neil and Douglas Quailing, Cambridge University

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses

Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses Instructor: Sal Barone School of Mathematics Georgia Tech May 22, 2015 (updated May 22, 2015) Covered sections: 3.3 & 3.5 Exam 1 (Ch.1 - Ch.3) Thursday,

More information

2013 Leaving Cert Higher Level Official Sample Paper 1

2013 Leaving Cert Higher Level Official Sample Paper 1 013 Leaving Cert Higher Level Official Sample Paper 1 Section A Concepts and Skills 150 marks Question 1 (5 marks) (a) w 1 + 3i is a complex number, where i 1. (i) Write w in polar form. We have w ( 1)

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-010 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2017, WEEK 14 JoungDong Kim Week 14 Section 5.4, 5.5, 6.1, Indefinite Integrals and the Net Change Theorem, The Substitution Rule, Areas Between Curves. Section

More information