Physics 231 Lecture 21

Size: px
Start display at page:

Download "Physics 231 Lecture 21"

Transcription

1 Physics 3 Lectue Main points o today s lectue: Angula momentum: L Newton s law o univesal gavitation: GMm F PE GMm Keple s laws and the elation between the obital peiod and obital adius. T π GM 4 3

2 Rolling down the hill Stating ti om est, an object with moment o mass M, moment o inetia, and adius R olls down an incline o height h. What is the velocity at the bottom? (Hint use consevation o enegy.) h KE total KEtans + KEot Mv + Bigge smalle v Consevation o enegy: What is is do v v you o a a use cylinde? hoop? sphee? i the (/MR (MR (/5MR object slides ) ) ) without KE total Mv Mgh olling? + v a) v gh Rolling motion: v R R 4 b ) v gh v Mgh Mv + 3 R M+ v R 0 c) v gh Mghg gh v 7 v M + d) v gh R + MR

3 Conceptual quiz A solid disk and a ing oll down an incline.the ing is slowe than the disk i a) m ing m disk, whee m is the inetial mass. b) ing disk, whee is the adius. c) m ing m disk and ing disk. d) The ing is always slowe egadless o the elative values o m and. v Mgh gh M + R + MR ing : MR ing : v gh disk : MR 4 disk: v gh 3

4 Angula momentum n analogy to the linea momentum p mv we have the angula momentum L. Fo a single paticle m moving a cicle, the magnitude o L is: L m mvt pt v t thee no extenal toques, the angula momentum will be conseved. (Recall that i thee ae no extenal oces, the linea momentum will be conseved.) Fo example, this means that an isolated object will keep the same value o the angula momentum thoughout a poblem. n linea motion, consevation o p mv o an isolated object meant that the velocity v must emain constant. n angula motion, consevation o L o an isolated object does not mean must emain constant, because can change! Fig 8.4, p.9 Slide 5 thee ae no extenal toques L L

5 Example A woman stands at the cente o platom. The woman and the platom otate with an angula speed o 5.00 ad/s. Fiction is negligible. He ams ae outstetched and she is holding a dumbbell in each hand. n this position, the total moment o inetia o the otating system (platom, woman and dumbbells) is 5.4 kg m. By pulling in he ams, the moment o inetia is educed to 3.8 kg m. Find he new angula speed ad/s kg m 38k 3.8 kg m? ad / s 7.ad / s 3.8

6 quiz Adi dive leaps om the 0 m platom and executes a tiple ti owad somesault dive. While in the tuck, the dive has a moment o inetia o about 3.3 kg m and duing the inal layout, the dive stetches he body and inceases he moment o inetia to 0 kg m. the dive achieves an angula velocity o ev/s while in the tuck, what is the angula velocity duing the layout? 0 5 ad/s a) 6 ev/s kg m b) 66 ev/s 3.8 kg m c) 0.66 ev/s? d 0.7 ev/s ad / s 0.66ad / s 0

7 Anothe τα Example A cylindical 5.00-kg eel with a adius o m and a ictionless axle, stats om est and speeds up uniomly as a 3.00-kg bucket alls into a well, making a light ope unwind om the eel (a) What is the linea acceleation o the alling bucket? (b) What is the angula acceleation o the eel? R M eel a bucket bucket T a) Fo bucket: T m g m a T mbucketg+ mbucketa Fo eel: τ TR eel α T eel α R also: α a / R and eel MeelR MReelR a T T M a R R Reel T mbucketg + mbucketa Meela mbucketg Meela mbucketa mbucket g 3kg 9.8m / s 5.3m / s mbucket + M 5.5kg eel / / / α a R m bucket 5.3m / s 8.9ad / s 0.6m

8 Newton s law o univesal gavitation All objects (even light photons) eel a gavitational oce attacting them to othe objects. This oce is popotional to the two masses and invesely popotional to the squae o the distance between them. F G m m G x 0 Nm² /kg²

9 Example A spaceship is on a jouney to the moon. The masses o the eath and moon ae, espectively, 5.98x0 4 kg and 7.36x0 kg. The distance between the centes o the eath and the moon is 3.85x0 6 m. At what point, as measued om the cente o the eath, does the gavitational oce exeted on the cat by the eath balance the gavitational oce exeted by the moon? This point lies on a line between the centes o the eath and the moon. GM moonm ship F moon GMeathm Feath Moon eath _ ship GMmoonmship GMeathmship eath _ ship Eath M M moon eath eath _ ship eath _ ship M M eath moon eath _ ship moon _ship x0 m eath _ ship eath _ ship M eath Mmoon x0 kg x0 kg ship x0 m 6 eath _ ship 3.47x0 m

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Gravitation. AP/Honors Physics 1 Mr. Velazquez

Gravitation. AP/Honors Physics 1 Mr. Velazquez Gavitation AP/Honos Physics 1 M. Velazquez Newton s Law of Gavitation Newton was the fist to make the connection between objects falling on Eath and the motion of the planets To illustate this connection

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angula Momentum Rotational Motion Evey quantity that we have studied with tanslational motion has a otational countepat TRANSLATIONAL ROTATIONAL Displacement x Angula Position Velocity

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians:

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians: HW 7 Help 30. ORGANIZE AND PLAN We ae given the angula velocity and the time, and we ae asked to ind the distance that is coveed. We can ist solve o the angula displacement using Equation 8.3: t. The distance

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Translation and Rotation Kinematics

Translation and Rotation Kinematics Tanslation and Rotation Kinematics Oveview: Rotation and Tanslation of Rigid Body Thown Rigid Rod Tanslational Motion: the gavitational extenal foce acts on cente-of-mass F ext = dp sy s dt dv total cm

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2. Cental oce Poblem ind the motion of two bodies inteacting via a cental foce. Cental oce Motion 8.01 W14D1 Examples: Gavitational foce (Keple poblem): 1 1, ( ) G mm Linea estoing foce: ( ) k 1, Two Body

More information

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation

F 12. = G m m 1 2 F 21 = F 12. = G m 1m 2. Review. Physics 201, Lecture 22. Newton s Law Of Universal Gravitation Physics 201, Lectue 22 Review Today s Topics n Univesal Gavitation (Chapte 13.1-13.3) n Newton s Law of Univesal Gavitation n Popeties of Gavitational Foce n Planet Obits; Keple s Laws by Newton s Law

More information

Physics 312 Introduction to Astrophysics Lecture 7

Physics 312 Introduction to Astrophysics Lecture 7 Physics 312 Intoduction to Astophysics Lectue 7 James Buckley buckley@wuphys.wustl.edu Lectue 7 Eath/Moon System Tidal Foces Tides M= mass of moon o sun F 1 = GMm 2 F 2 = GMm ( + ) 2 Diffeence in gavitational

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Rotational Motion: Statics and Dynamics

Rotational Motion: Statics and Dynamics Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

More information

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B.

From Newton to Einstein. Mid-Term Test, 12a.m. Thur. 13 th Nov Duration: 50 minutes. There are 20 marks in Section A and 30 in Section B. Fom Newton to Einstein Mid-Tem Test, a.m. Thu. 3 th Nov. 008 Duation: 50 minutes. Thee ae 0 maks in Section A and 30 in Section B. Use g = 0 ms in numeical calculations. You ma use the following epessions

More information

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all

Chapter. s r. check whether your calculator is in all other parts of the body. When a rigid body rotates through a given angle, all conveted to adians. Also, be sue to vanced to a new position (Fig. 7.2b). In this inteval, the line OP has moved check whethe you calculato is in all othe pats of the body. When a igid body otates though

More information

Lecture 22. PE = GMm r TE = GMm 2a. T 2 = 4π 2 GM. Main points of today s lecture: Gravitational potential energy: Total energy of orbit:

Lecture 22. PE = GMm r TE = GMm 2a. T 2 = 4π 2 GM. Main points of today s lecture: Gravitational potential energy: Total energy of orbit: Lectue Main points of today s lectue: Gavitational potential enegy: Total enegy of obit: PE = GMm TE = GMm a Keple s laws and the elation between the obital peiod and obital adius. T = 4π GM a3 Midtem

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

Basic oces an Keple s Laws 1. Two ientical sphees of gol ae in contact with each othe. The gavitational foce of attaction between them is Diectly popotional to the squae of thei aius ) Diectly popotional

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lectue 1a: Satellite Obits Outline 1. Newton s Laws of Motion 2. Newton s Law of Univesal Gavitation 3. Calculating satellite obital paametes (assuming cicula motion) Scala & Vectos Scala: a physical quantity

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

1121 T Question 1

1121 T Question 1 1121 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, tavelling on the sae path in the sae diection as you, at a constant speed

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1

PHYSICS 220. Lecture 08. Textbook Sections Lecture 8 Purdue University, Physics 220 1 PHYSICS 0 Lectue 08 Cicula Motion Textbook Sections 5.3 5.5 Lectue 8 Pudue Univesity, Physics 0 1 Oveview Last Lectue Cicula Motion θ angula position adians ω angula velocity adians/second α angula acceleation

More information

PHYS 1114, Lecture 21, March 6 Contents:

PHYS 1114, Lecture 21, March 6 Contents: PHYS 1114, Lectue 21, Mach 6 Contents: 1 This class is o cially cancelled, being eplaced by the common exam Tuesday, Mach 7, 5:30 PM. A eview and Q&A session is scheduled instead duing class time. 2 Exam

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Sping, 2017 Cicula-Rotational Motion Mock Exam Name: Answe Key M. Leonad Instuctions: (92 points) Answe the following questions. SHOW ALL OF YOUR WORK. ( ) 1. A stuntman dives a motocycle

More information

PHYS 1410, 11 Nov 2015, 12:30pm.

PHYS 1410, 11 Nov 2015, 12:30pm. PHYS 40, Nov 205, 2:30pm. A B = AB cos φ x = x 0 + v x0 t + a 2 xt 2 a ad = v2 2 m(v2 2 v) 2 θ = θ 0 + ω 0 t + 2 αt2 L = p fs µ s n 0 + αt K = 2 Iω2 cm = m +m 2 2 +... m +m 2 +... p = m v and L = I ω ω

More information

Principles of Physics I

Principles of Physics I Pinciples of Physics I J. M. Veal, Ph. D. vesion 8.05.24 Contents Linea Motion 3. Two scala equations........................ 3.2 Anothe scala equation...................... 3.3 Constant acceleation.......................

More information

Chapter 4: The laws of motion. Newton s first law

Chapter 4: The laws of motion. Newton s first law Chapte 4: The laws of motion gavitational Electic magnetic Newton s fist law If the net foce exeted on an object is zeo, the object continues in its oiginal state of motion: - an object at est, emains

More information

Kepler's 1 st Law by Newton

Kepler's 1 st Law by Newton Astonom 10 Section 1 MWF 1500-1550 134 Astonom Building This Class (Lectue 7): Gavitation Net Class: Theo of Planeta Motion HW # Due Fida! Missed nd planetaium date. (onl 5 left), including tonight Stadial

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Lecture 19 Angular momentum. Chapter

Lecture 19 Angular momentum. Chapter PHYS 172H: Moden Mechanics Fall 2010 Lectue 19 ngula momentum Chapte 11.4 11.7 The angula momentum pinciple dp = F dl =? net d ( p ) d dp = p+ = v γ mv = = 0 The angula momentum pinciple fo a point paticle

More information

Lecture 13. Rotational motion Moment of inertia

Lecture 13. Rotational motion Moment of inertia Lectue 13 Rotational motion Moment of inetia EXAM 2 Tuesday Mach 6, 2018 8:15 PM 9:45 PM Today s Topics: Rotational Motion and Angula Displacement Angula Velocity and Acceleation Rotational Kinematics

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Chapter 5: Uniform Circular Motion

Chapter 5: Uniform Circular Motion Chapte 5: Unifom Cicula Motion Motion at constant speed in a cicle Centipetal acceleation Banked cuves Obital motion Weightlessness, atificial gavity Vetical cicula motion Centipetal Foce Acceleation towad

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION

ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION ROTATORY MOTION HORIZONTAL AND VERTICAL CIRCULAR MOTION POINTS TO REMEMBER 1. Tanslatoy motion: Evey point in the body follows the path of its peceding one with same velocity including the cente of mass..

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Department of Physics, Korea University Page 1 of 5

Department of Physics, Korea University Page 1 of 5 Name: Depatment: Student ID #: Notice ˆ + ( 1) points pe coect (incoect) answe. ˆ No penalty fo an unansweed question. ˆ Fill the blank ( ) with ( ) if the statement is coect (incoect). ˆ : coections to

More information

1. A stone falls from a platform 18 m high. When will it hit the ground? (a) 1.74 s (b) 1.83 s (c) 1.92 s (d) 2.01 s

1. A stone falls from a platform 18 m high. When will it hit the ground? (a) 1.74 s (b) 1.83 s (c) 1.92 s (d) 2.01 s 1. A stone falls fom a platfom 18 m high. When will it hit the gound? (a) 1.74 s (b) 1.83 s (c) 1.9 s (d).01 s Constant acceleation D = v 0 t + ½ a t. Which, if any, of these foces causes the otation of

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6- THE LAW OF GRAVITATION Essential Idea: The Newtonian idea of gavitational foce acting between two spheical bodies and the laws of mechanics

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Spring 2001 Physics 2048 Test 3 solutions

Spring 2001 Physics 2048 Test 3 solutions Sping 001 Physics 048 Test 3 solutions Poblem 1. (Shot Answe: 15 points) a. 1 b. 3 c. 4* d. 9 e. 8 f. 9 *emembe that since KE = ½ mv, KE must be positive Poblem (Estimation Poblem: 15 points) Use momentum-impulse

More information

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1 Einstein Classes, Unit No. 0, 0, Vahman Ring Roa Plaza, Vikas Pui Extn., New Delhi -8 Ph. : 96905, 857, E-mail einsteinclasses00@gmail.com, PG GRAVITATION Einstein Classes, Unit No. 0, 0, Vahman Ring Roa

More information

Chapter 12. Kinetics of Particles: Newton s Second Law

Chapter 12. Kinetics of Particles: Newton s Second Law Chapte 1. Kinetics of Paticles: Newton s Second Law Intoduction Newton s Second Law of Motion Linea Momentum of a Paticle Systems of Units Equations of Motion Dynamic Equilibium Angula Momentum of a Paticle

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist

History of Astronomy - Part II. Tycho Brahe - An Observer. Johannes Kepler - A Theorist Histoy of Astonomy - Pat II Afte the Copenican Revolution, astonomes stived fo moe obsevations to help bette explain the univese aound them Duing this time (600-750) many majo advances in science and astonomy

More information

= v 2. a c. = G m m 1 2. F g G = Review 5: Gravitation and Two-Dimensional Motion

= v 2. a c. = G m m 1 2. F g G = Review 5: Gravitation and Two-Dimensional Motion Review 5: Gavitation and Two-Dimensional Motion Review 5 Gavitation and Two-Dimensional Motion 2 d = 1 2 at F = ma 1. A busy waitess slides a plate of apple pie alon a counte to a huny custome sittin nea

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Depatment of Physics and Engineeing Physics Physics 115.3 Physics and the Univese FINAL EXAMINATION Decembe 21, 2016 NAME: (Last) Please Pint (Given) Time: 3 hous STUDENT NO.:

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law

AY 7A - Fall 2010 Section Worksheet 2 - Solutions Energy and Kepler s Law AY 7A - Fall 00 Section Woksheet - Solutions Enegy and Keple s Law. Escape Velocity (a) A planet is obiting aound a sta. What is the total obital enegy of the planet? (i.e. Total Enegy = Potential Enegy

More information

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon

Radius of the Moon is 1700 km and the mass is 7.3x 10^22 kg Stone. Moon xample: A 1-kg stone is thown vetically up fom the suface of the Moon by Supeman. The maximum height fom the suface eached by the stone is the same as the adius of the moon. Assuming no ai esistance and

More information

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD TAMPINES JUNIOR COLLEGE 009 JC1 H PHYSICS GRAVITATIONAL FIELD OBJECTIVES Candidates should be able to: (a) show an undestanding of the concept of a gavitational field as an example of field of foce and

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Midterm Exam #2, Part A

Midterm Exam #2, Part A Physics 151 Mach 17, 2006 Midtem Exam #2, Pat A Roste No.: Scoe: Exam time limit: 50 minutes. You may use calculatos and both sides of ONE sheet of notes, handwitten only. Closed book; no collaboation.

More information

Physics. Rotational Motion.

Physics. Rotational Motion. Physics otational Motion www.testpepat.com Table of Content. Intoduction.. Cente of Mass.. Angula Displacement. 4. Angula Velocity.. Angula Acceleation. 6. Equations of Linea Motion and otational Motion.

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

Gravity Notes for PHYS Joe Wolfe, UNSW

Gravity Notes for PHYS Joe Wolfe, UNSW Gavity Notes fo PHYS 111-1131. Joe Wolfe, UNSW 1 Gavity: whee does it fit in? Gavity [geneal elativity] Electic foce* gavitons photons Weak nuclea foce intemediate vecto bosons Stong nuclea foce Colou

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

Carry three significant figures throughout your calculations; for example 2 m means 2.00 m, and don t round 431 to 430. I mr. hoop. I mr.

Carry three significant figures throughout your calculations; for example 2 m means 2.00 m, and don t round 431 to 430. I mr. hoop. I mr. Physics 05 Exam Sec. Hess (-08) -digit CID# You ae allowed pencils and a testing cente calculato (should be povided without chage). No scatch pape is allowed. I you need moe pape, you may sepaate the exam

More information

Lecture 13 EXAM 2. Today s Topics: Rotational motion Moment of inertia. Tuesday March 8, :15 PM 9:45 PM

Lecture 13 EXAM 2. Today s Topics: Rotational motion Moment of inertia. Tuesday March 8, :15 PM 9:45 PM Lectue 13 Rotational motion Moment of inetia EXAM uesday Mach 8, 16 8:15 PM 9:45 PM oday s opics: Rotational Motion and Angula Displacement Angula Velocity and Acceleation Rotational Kinematics Angula

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion constant speed Pick a point in the objects motion... What diection is the velocity? HINT Think about what diection the object would tavel if the sting wee cut Unifom Cicula Motion

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

Escape Velocity. GMm ] B

Escape Velocity. GMm ] B 1 PHY2048 Mach 31, 2006 Escape Velocity Newton s law of gavity: F G = Gm 1m 2 2, whee G = 667 10 11 N m 2 /kg 2 2 3 10 10 N m 2 /kg 2 is Newton s Gavitational Constant Useful facts: R E = 6 10 6 m M E

More information

Physics 120 Homework Solutions April 25 through April 30, 2007

Physics 120 Homework Solutions April 25 through April 30, 2007 Physics Homewok Solutions Apil 5 though Apil 3, 7 Questions: 6. The oce is pependicula to evey incement o displacement. Theeoe, F =. 6.4 Wok is only done in acceleating the ball om est. The wok is done

More information

Chapter 7. Rotational Motion Angles, Angular Velocity and Angular Acceleration Universal Law of Gravitation Kepler s Laws

Chapter 7. Rotational Motion Angles, Angular Velocity and Angular Acceleration Universal Law of Gravitation Kepler s Laws Chapte 7 Rotational Motion Angles, Angula Velocity and Angula Acceleation Univesal Law of Gavitation Keple s Laws Angula Displacement Cicula motion about AXIS Thee diffeent measues of angles: 1. Degees.

More information

Physics 1A (a) Fall 2010: FINAL Version A 1. Comments:

Physics 1A (a) Fall 2010: FINAL Version A 1. Comments: Physics A (a) Fall 00: FINAL Vesion A Name o Initials: Couse 3-digit Code Comments: Closed book. No wok needs to be shown fo multiple-choice questions.. A helicopte is taveling at 60 m/s at a constant

More information

Tidal forces. m r. m 1 m 2. x r 2. r 1

Tidal forces. m r. m 1 m 2. x r 2. r 1 Tidal foces Befoe we look at fee waves on the eath, let s fist exaine one class of otion that is diectly foced: astonoic tides. Hee we will biefly conside soe of the tidal geneating foces fo -body systes.

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Revision Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Wok... 5 Gavitational field... 5 Potential enegy... 7 Kinetic enegy... 8 Pojectile... 9

More information