EE105 - Fall 2005 Microelectronic Devices and Circuits

Size: px
Start display at page:

Download "EE105 - Fall 2005 Microelectronic Devices and Circuits"

Transcription

1 EE5 - Fll 5 Microelectroic evice ircuit Lecture 4 P Juctio Lecture Mteril Lt lecture I mufcturig roce iffuio curret Review of electrottic I ccitor Thi lecture P uctio

2 rrier ocetrtio Potetil I therml equilibrium, there re o eterl fiel we thu eect the electro hole curret eitie to be zero: J q μ E μ oe q q kt o o o kt q o th 3 rrier ocetrtio Potetil We hve equtio reltig the otetil to the crrier cocetrtio kt q If we itegrte the bove equtio we hve l We efie the otetil referece to be itriic Si: th o th i 4

3 rrier ocetrtio eru Potetil The crrier cocetrtio i thu fuctio of otetil e / th i heck tht for zero otetil, we hve itriic crrier cocetrtio referece. If we o imilr clcultio for hole, we rrive t imilr equtio e / th i ote tht the lw of m ctio i uhel / / i e th th e i 5 The oig hge Potetil ue to the log ture of the otetil, the otetil chge lierly for eoetil icree i oig: th l 6m l 6m l log i 6m log 6m log i Quick clcultio i: For -tye cocetrtio of 6 cm -3, the otetil i -36 m -tye mteril hve oitive otetil with reect to itriic Si 6 3

4 P Juctio: Overview 7 P Juctio: Overview 8 4

5 P Juctio: Overview Preet i mot I tructure 9 P Juctio: Overview The mot imortt evice i uctio betwee -tye regio -tye regio Whe the uctio i firt forme, ue to the cocetrtio griet, mole chrge trfer er uctio Electro leve -tye regio hole leve -tye regio Thee mole crrier become miority crrier i ew regio c t eetrte fr ue to recomtio ue to chrge trfer, voltge ifferece occur betwee regio Thi crete fiel t the uctio tht cue rift curret to ooe the iffuio curret I therml equilibrium, rift curret iffuio mut blce -tye A -tye 5

6 P Juctio urret oier the P uctio i therml equilibrium Agi, the curret hve to be zero, o we hve J o qμe q o qμe q o E μ o E μ kt q kt q P Juctio Fiel -tye -tye A E J iff i i E J iff Tritio Regio 6

7 Totl hrge i Tritio Regio To olve for the electric fiel, we ee to write ow the chrge eity i the tritio regio: ρ q I the -ie of the uctio, there re very few electro oly ccetor: ρ q Sice the hole cocetrtio i ecreig o the - ie, the et chrge i egtive: > ρ < < < 3 hrge o -Sie Alogou to the -ie, the chrge o the -ie i give by: q ρ < < The et chrge here i oitive ice: ρ > > i E J iff Tritio Regio 4 7

8 Ect Solutio for Fiel Give the bove roimtio, we ow hve ereio for the chrge eity q ie ρ q / th / th ie o < < < < We lo hve the followig reult from electrottic E ρ otice tht the otetil er o both ie of the equtio ifficult roblem to olve A much imler wy to olve the roblem 5 eletio Aroimtio Let ume tht the tritio regio i comletely elete of free crrier oly immole ot eit The the chrge eity i give by q ρ q o < < < < The olutio for electric fiel i ow ey E E ρ ρ ' ' E Fiel zero outie tritio regio 6 8

9 eletio Aroimtio Sice chrge eity i cott ρ ' q E ' o If we trt from the -ie we get the followig reult ρ ' q E ' E E Fiel zero outie tritio regio q E 7 Plot of Fiel I eletio Regio -tye A eletio Regio -tye q E o q E E-Fiel zero outie of eletio regio ote the ymmetricl eletio with Which regio h higher oig? Sloe of E-Fiel lrger i -regio. Why? Pek E-Fiel t uctio. Why cotiuou? 8 9

10 otiuity of E-Fiel Acro Juctio Recll tht E-fiel iverge o chrge. For heet chrge t the iterfce, the E-fiel coul be icotiuou I our ce, the eletio regio i oly oulte by bckgrou eity of fie chrge o the E-Fiel i cotiuou Wht oe thi imly? q q E E o o q q o o Totl fie chrge i -regio equl fie chrge i - regio! Somewht obviou reult. 9 Potetil Acro Juctio From our erlier clcultio we kow tht the otetil i the -regio i higher th -regio The otetil h to moothly tritio form high to low i croig the uctio Phyiclly, the otetil ifferece i ue to the chrge trfer tht occur ue to the cocetrtio griet Let itegrte the fiel to get the otetil: q o ' q ' ' o o '

11 Potetil Acro Juctio We rrive t otetil o -ie rbolic q o o itegrl o -ie q Potetil mut be cotiuou t iterfce fiel fiite t iterfce q q Solve for eletio Legth We hve two equtio two ukow. We re filly i oitio to olve for the eletio eth q q q q o o o q o q >

12 Sity heck oe the bove equtio mke ee? Let y we oe oe ie very highly. The hyiclly we eect the eletio regio with for the hevily oe ie to roch zero: lim q lim q q Etire eletio with roe cro -regio 3 Totl eletio With The um of the eletio with i the ce chrge regio X q Thi regio i eetilly elete of ll mole chrge ue to high electric fiel, crrier move cro regio t velocity turte ee X q 5 μ E 4 μ cm 4

13 Hve we ivete bttery? we hre the P uctio tur it ito bttery? A A th l l th l i i i? umericl emle: m l 5 6m log 5 6 A i 6m 5 otct Potetil The cotct betwee P uctio crete otetil ifferece Likewie, the cotct betwee two iimilr metl crete otetil ifferece roortiol to the ifferece betwee the work fuctio Whe metl emicouctor uctio i forme, cotct otetil form well If we hort P uctio, the um of the voltge rou the loo mut be zero: m m m m m m 6 3

14 P Juctio citor Uer therml equilibrium, the P uctio oe ot rw y much curret But otice tht P uctio tore chrge i the ce chrge regio tritio regio Sice the evice i torig chrge, it ctig like ccitor Poitive chrge i tore i the -regio, egtive chrge i i the -regio: q q o o 7 Revere Bie P Juctio Wht he if we revere- the P uctio? < Sice o curret i flowig, the etire revere e otetil i roe cro the tritio regio To ccommote the etr otetil, the chrge i thee regio mut icree If o curret i flowig, the oly wy for the chrge to icree i to grow hrik the eletio regio 8 4

15 5 9 9 oltge eeece of eletio With reo the mth but i the e we relize tht the equtio re the me ecet we relce the built-i otetil with the effective revere : q X q q X X 3 3 hrge eru Bi A we icree the revere, the eletio regio grow to ccommote more chrge hrge i ot lier fuctio of voltge Thi i o-lier ccitor We c efie mll igl ccitce for mll igl by brekig u the chrge ito two term J q q Q J J v q Q v Q

16 6 3 3 erivtio of Smll Sigl citce From lt lecture we fou otice tht L J J v Q Q v Q R q Q q q q q q 3 3 Phyicl Iterrettio of eletio otice tht the ereio o the right-h-ie i ut the eletio with i therml equilibrium Thi look like rllel lte ccitor! q X q X

17 A rible citor rctor citce vrie veru : Alictio: Rio Tuer 33 iffuio Reitor -tye iffuio Regio Oie P-tye Si Subtrte Reitor i ccitively ioltio from ubtrte Mut Revere Bi P Juctio! 34 7

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE15 - Fll 6 Microelectroic evice Circuit Prof. J M. Rbey (@eec Lecture 4: Ccitor P Juctio Overview Lt lecture iffuio curret Overview of IC fbrictio roce Review of electrottic Thi lecture Ccitce Juctio

More information

Lecture 27: PN Junctions

Lecture 27: PN Junctions EECS 15 Srig 5, Lecture 7 Lecture 7: P Juctio Prof. ikej ertmet of EECS EECS 15 Fll 3, Lecture 7 Prof. A. ikej iffuio iffuio occur whe there exit cocetrtio griet I the figure below, imgie tht we fill the

More information

PN Junction Outline. Gate. Lec. 5. Gate electrode. Drain electrode. Source electrode. Source (n + ) Drain (n + ) Gate oxide. p-type Si substrate

PN Junction Outline. Gate. Lec. 5. Gate electrode. Drain electrode. Source electrode. Source (n + ) Drain (n + ) Gate oxide. p-type Si substrate P Juctio Outlie Gte electroe Source electroe Dri electroe Gte Source + Dri + Gte oie -tye Si ubtrte -chel MOSFET MOS Deletio regio P Juctio 0 Cotct otetil Built-i otetil Diffuio - + J iff =J rift Electric

More information

Chapter 5: The pn Junction

Chapter 5: The pn Junction Chter 5: The Juctio oequilibrium ece crrier i emicouctor Crrier geertio recombitio Mthemticl lyi of ece crrier Ambiolr trort The juctio Bic tructure of the juctio Zero lie bi evere lie bi o-uiformly oe

More information

Lecture 4: Heterojunction pn-diode

Lecture 4: Heterojunction pn-diode Lecture 4: Heterojuctio -ioe 16-1-5 Lecture 4, High See Devices 16 1 Lecture 4: Heterojuctio P-ioe + heterojuctio uer equilibrium + heterojuctio uer exterl s Gre heterojuctios + gre heterojuctio: Curret

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

Lecture 10: PN Junction & MOS Capacitors

Lecture 10: PN Junction & MOS Capacitors Lecture 10: P Junction & MOS Cpcitors Prof. iknej eprtment of EECS Lecture Outline Review: P Junctions Therml Equilibrium P Junctions with Reverse Bis (3.3-3.6 MOS Cpcitors (3.7-3.9: Accumultion, epletion,

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

KOREA UNIVERSITY. 5. I D -V D Relationship

KOREA UNIVERSITY. 5. I D -V D Relationship KOREA UERSTY 5. - Reltioshi 1 Betwee oit A d B, it is the ohmic regio of the JFET. t is the regio where the voltge d curret reltioshi follows ohm's lw. At oit B, the dri curret is t mximum for S = coditio

More information

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays. Sphericl refrctig urfce Here, the outgoig ry re o the oppoite ide of the urfce from the Icomig ry. The oject i t P. Icomig ry PB d PV form imge t P. All prxil ry from P which trike the phericl urfce will

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise Prticle i Box We must hve me where = 1,,3 Solvig for E, π h E = = where = 1,,3, m 8m d the stte fuctio is x A si for 0 x, d 0 otherwise x ˆ d KE V. m dx I this cse, the Hermiti opertor 0iside the box The

More information

Diode in electronic circuits. (+) (-) i D

Diode in electronic circuits. (+) (-) i D iode i electroic circuits Symbolic reresetatio of a iode i circuits ode Cathode () (-) i ideal diode coducts the curret oly i oe directio rrow shows directio of the curret i circuit Positive olarity of

More information

Lecture 2. Dopant Compensation

Lecture 2. Dopant Compensation Lecture 2 OUTLINE Bac Semicoductor Phycs (cot d) (cotd) Carrier ad uo PN uctio iodes Electrostatics Caacitace Readig: Chater 2.1 2.2 EE105 Srig 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC Berkeley oat Comesatio

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

First assignment of MP-206

First assignment of MP-206 irt igmet of MP- er to quetio - 7- Norml tre log { : MP Priipl tree: I MP II MP III MP Priipl iretio: { I { II { III Iitill uppoe tht i tre tte eribe i the referee tem ' i the me tre tte but eribe i other

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

is completely general whenever you have waves from two sources interfering. 2

is completely general whenever you have waves from two sources interfering. 2 MAKNG SENSE OF THE EQUATON SHEET terferece & Diffrctio NTERFERENCE r1 r d si. Equtio for pth legth differece. r1 r is completely geerl. Use si oly whe the two sources re fr wy from the observtio poit.

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/11/5 ection_4_4_e-field_clcultion_uing_coulomb_lw_empty.doc 1/1 4-4 E-field Clcultion uing Coulomb Lw Reding Aignment: pp. 9-98 Specificlly: 1. HO: The Uniform, Infinite Line Chrge. HO: The Uniform Dik

More information

Chap8 - Freq 1. Frequency Response

Chap8 - Freq 1. Frequency Response Chp8 - Freq Frequecy Repoe Chp8 - Freq Aged Prelimirie Firt order ytem Frequecy repoe Low-p filter Secod order ytem Clicl olutio Frequecy repoe Higher order ytem Chp8 - Freq 3 Frequecy repoe Stedy-tte

More information

Overview of Silicon p-n Junctions

Overview of Silicon p-n Junctions Overview of Silico - Juctios r. avid W. Graham West irgiia Uiversity Lae eartmet of omuter Sciece ad Electrical Egieerig 9 avid W. Graham 1 - Juctios (iodes) - Juctios (iodes) Fudametal semicoductor device

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Degenerate and Non degenerate semiconductors. Nondegenerate semiconductor Degenerate and nondegenerate semiconductors

Degenerate and Non degenerate semiconductors. Nondegenerate semiconductor Degenerate and nondegenerate semiconductors 4.3.4 Degeerte egeerte semicuctrs Degeerte egeerte semicuctrs Smll mut f t tms (imurity tms) itercti betwee t tms Discrete, iterctig eergy stte. F t the bg F F r ccetr egeerte semicuctr 4.3.4 Degeerte

More information

moment = m! x, where x is the length of the moment arm.

moment = m! x, where x is the length of the moment arm. th 1206 Clculus Sec. 6.7: omets d Ceters of ss I. Fiite sses A. Oe Dimesiol Cses 1. Itroductio Recll the differece etwee ss d Weight.. ss is the mout of "stuff" (mtter) tht mkes up oject.. Weight is mesure

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

EE Control Systems LECTURE 8

EE Control Systems LECTURE 8 Coyright F.L. Lewi 999 All right reerved Udted: Sundy, Ferury, 999 EE 44 - Control Sytem LECTURE 8 REALIZATION AND CANONICAL FORMS A liner time-invrint (LTI) ytem cn e rereented in mny wy, including: differentil

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

0 dx C. k dx kx C. e dx e C. u C. sec u. sec. u u 1. Ch 05 Summary Sheet Basic Integration Rules = Antiderivatives Pattern Recognition Related Rules:

0 dx C. k dx kx C. e dx e C. u C. sec u. sec. u u 1. Ch 05 Summary Sheet Basic Integration Rules = Antiderivatives Pattern Recognition Related Rules: Ch 05 Smmry Sheet Bic Itegrtio Rle = Atierivtive Ptter Recogitio Relte Rle: ( ) kf ( ) kf ( ) k f ( ) Cott oly! ( ) g ( ) f ( ) g ( ) f ( ) g( ) f ( ) g( ) Bic Atierivtive: C 0 0 C k k k k C 1 1 1 Mlt.

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

10. 3 The Integral and Comparison Test, Estimating Sums

10. 3 The Integral and Comparison Test, Estimating Sums 0. The Itegrl d Comriso Test, Estimtig Sums I geerl, it is hrd to fid the ect sum of series. We were le to ccomlish this for geometric series d for telescoig series sice i ech of those cses we could fid

More information

CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS

CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS HAPTER 7 SMMETRAL OMPOETS AD REPRESETATO OF FAULTED ETWORKS A uled three-phe yte e reolved ito three led yte i the iuoidl tedy tte. Thi ethod of reolvig uled yte ito three led phor yte h ee propoed y.

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Phys-272 Lecture 25. Geometric Optics Lenses

Phys-272 Lecture 25. Geometric Optics Lenses Phy-7 Lecture 5 Geometric Optic Lee h h Rerctio o Sphericl Surce θ β φ φ α θ + + ; θ θ θ θ i i ( )φ β α + δ φ δ β δ α + R h h h t ; t ; t R h h h φ β α ; ; R + Rerctio o Sphericl Surce R + Mgiictio θ θ

More information

Orthogonal functions - Function Approximation

Orthogonal functions - Function Approximation Orthogol uctios - Fuctio Approimtio - he Problem - Fourier Series - Chebyshev Polyomils he Problem we re tryig to pproimte uctio by other uctio g which cosists o sum over orthogol uctios Φ weighted by

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES CHAPTER NETWORK ADTTANCE AND PEDANCE ATRCES As we hve see i Chter tht ower system etwor c e coverted ito equivlet imedce digrm. This digrm forms the sis of ower flow (or lod flow) studies d short circuit

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

1. Do the following sequences converge or diverge? If convergent, give the limit. Explicitly show your reasoning. 2n + 1 n ( 1) n+1.

1. Do the following sequences converge or diverge? If convergent, give the limit. Explicitly show your reasoning. 2n + 1 n ( 1) n+1. Solutio: APPM 36 Review #3 Summer 4. Do the followig sequeces coverge or iverge? If coverget, give the limit. Eplicitly show your reasoig. a a = si b a = { } + + + 6 c a = e Solutio: a Note si a so, si

More information

, so the state may be taken to be l S ÅÅÅÅ

, so the state may be taken to be l S ÅÅÅÅ hw4-7.b: 4/6/04:::9:34 Hoework: 4-7 ü Skuri :, G,, 7, 8 ü. bel the eigefuctio of the qure well by S, with =,,. The correpodig wve fuctio re x = px i Iitilly, the prticle i kow to be t x =, o the tte y

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Introduction to Modern Control Theory

Introduction to Modern Control Theory Itroductio to Moder Cotrol Theory MM : Itroductio to Stte-Spce Method MM : Cotrol Deig for Full Stte Feedck MM 3: Etitor Deig MM 4: Itroductio of the Referece Iput MM 5: Itegrl Cotrol d Rout Trckig //4

More information

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences.

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences. Uversty of Clfor t Berkeley College of Egeerg et. of Electrcl Egeerg Comuter Sceces EE 5 Mterm I Srg 6 Prof. Mg C. u Feb. 3, 6 Gueles Close book otes. Oe-ge formto sheet llowe. There re some useful formuls

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Lecture 10: P-N Diodes. Announcements

Lecture 10: P-N Diodes. Announcements EECS 15 Sprig 4, Lecture 1 Lecture 1: P-N Diodes EECS 15 Sprig 4, Lecture 1 Aoucemets The Thursday lab sectio will be moved a hour later startig this week, so that the TA s ca atted lecture i aother class

More information

Dopant Compensation. Lecture 2. Carrier Drift. Types of Charge in a Semiconductor

Dopant Compensation. Lecture 2. Carrier Drift. Types of Charge in a Semiconductor Lecture OUTLIE Bc Semcoductor Phycs (cot d) rrer d uo P ucto odes Electrosttcs ctce ot omesto tye semcoductor c be coverted to P tye mterl by couter dog t wth ccetors such tht >. comested semcoductor mterl

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013 Sigls & Systems Chpter 0: The Z-Trsform Adpted from: Lecture otes from MIT, Bighmto Uiversity Dr. Hmid R. Rbiee Fll 03 Lecture 5 Chpter 0 Lecture 6 Chpter 0 Outlie Itroductio to the -Trsform Properties

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Nonequilibrium Excess Carriers in Semiconductors

Nonequilibrium Excess Carriers in Semiconductors Lecture 8 Semicoductor Physics VI Noequilibrium Excess Carriers i Semicoductors Noequilibrium coditios. Excess electros i the coductio bad ad excess holes i the valece bad Ambiolar trasort : Excess electros

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Generalization of Fibonacci Sequence. in Case of Four Sequences

Generalization of Fibonacci Sequence. in Case of Four Sequences It. J. Cotem. Mth. iees Vol. 8 03 o. 9 4-46 HIKARI Lt www.m-hikri.om Geerliztio of Fioi euee i Cse of Four euees jy Hre Govermet College Meleswr M. P. Ii Bijer igh hool of tuies i Mthemtis Vikrm Uiversity

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Chem 253A. Crystal Structure. Chem 253B. Electronic Structure

Chem 253A. Crystal Structure. Chem 253B. Electronic Structure Chem 53, UC, Bereley Chem 53A Crystl Structure Chem 53B Electroic Structure Chem 53, UC, Bereley 1 Chem 53, UC, Bereley Electroic Structures of Solid Refereces Ashcroft/Mermi: Chpter 1-3, 8-10 Kittel:

More information

Intermediate Applications of Vectors and Matrices Ed Stanek

Intermediate Applications of Vectors and Matrices Ed Stanek Iteredite Applictio of Vector d Mtrice Ed Stek Itroductio We decribe iteredite opertio d pplictio of vector d trice for ue i ttitic The itroductio i iteded for thoe who re filir with bic trix lgebr Followig

More information