Diffeological Spaces and Denotational Semantics for Differential Programming

Size: px
Start display at page:

Download "Diffeological Spaces and Denotational Semantics for Differential Programming"

Transcription

1 Kammar, Staton, andvákár Diffeological Spaces and Denotational Semantics for Differential Programming Ohad Kammar, Sam Staton, and Matthijs Vákár MFPS 2018 Halifax 8 June 2018

2 What is differential programming? PL in which all (some) constructs are differentiable and derivatives can be computed mechanically. Compute derivatives compositionally, using chain rule, rather than symbolically or using finite differences. AKA Automatic Differentiation. Kammar, Staton, andvákár

3 Why study semantics of differential programming? Important: Efficient optimisation (in high dim); Efficient integration/sampling (in high dim); Often combined with concurrency and probability correctness non-trivial and good test-coverage hard to obtain; Kammar, Staton, andvákár

4 Why study semantics of differential programming? Non-Trivial: How to differentiate through traditional language constructs? conditionals iteration and term recursion higher order functions probability, state and other effects How to differentiate at structured types? inductive/recursive types refinement types function types quotient types So need to move beyond traditional calculus! Kammar, Staton, andvákár

5 Kammar, Staton, andvákár Concrete example of higher-order differential prog Finding Shortest Arc Length -- Integrate :: ([0,1] => real) => real -- Differentiate :: ([0,1] => real) => [0,1] => real ArcLength :: ([0,1] => real) => [0,infty) ArcLength(f) = Integrate(Sqrt(1 + Differentiate(f)^2)) Power :: (0,infty) => [0,1] => real Power(a)(t) = t^a -- Minimise :: ((0,infty) => real) => (0,infty) Minimal_a :: real Minimal_a = Minimise(\a -> ArcLength(Power(a))) -- Should be 1

6 Kammar, Staton, andvákár Is this not an artificial problem? Stan language: For specifying a smooth objective function and sampling from it / optimising it: conditionals (for custom combinations of objective functions), while loops, recursive functions (for iterative approximations); higher-order functions (ODE and algebraic solvers, used in pharmacokinetics); certain refinement types (constraints: intervals, unit vectors, simplices, symmetric positive definite matrices); fwd and rev mode AutoDiff through everything.

7 Kammar, Staton, andvákár Calculus 101 Refresher Traditional derivative (Jacobian) T x f : R n R m of f : U V at x, where U open in R n and V open in R m Best linear approximation: f(x + v) f(x) T x f(v) lim = 0 v 0 v

8 Categories for Smoothness? Category Open: objects - opens U in some R n ; morphisms f : U V - smooth (C ) functions from U to V ; R n f R m RU V Category Mfd of fin. dim. manifolds and smooth maps: Adds surfaces (certain refinements); Whitney Embedding: idempotent completion of Open; Kammar, Staton, andvákár

9 Kammar, Staton, andvákár Several Categories of Smooth Maps Many full subcategories: EuclSp Open Mfd FreSp FreMfd ConvSp FroSp Diffeo Sh(Open) [Open op, Set] Diffeo Grothendieck quasi-topos and well-pointed; Interprets tuples, function types, variant types, (co)inductive types, dependent types; Conservative extension: embeddings into Diffeo preserve all limits and coproducts, coequalizers of open covers;

10 Diffeological spaces [Souriau] Objects A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that the plots are closed under: Kammar, Staton, andvákár

11 Diffeological spaces [Souriau] Objects A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that the plots are closed under: constant functions c; α(r)=c c Kammar, Staton, andvákár

12 Diffeological spaces [Souriau] Objects A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that the plots are closed under: constant functions c; precomposition with a smooth φ : U V φ α Kammar, Staton, andvákár

13 Diffeological spaces [Souriau] Objects ( ) A diffeological space X = X, SX consists of: a carrier set X ; U X U for all U Open a set of plots SX such that the plots are closed under: constant functions c; precomposition with a smooth φ : U V gluing of compatible families along open covers U. case{u.αu U U } 7 Kammar, Staton, and Vákár

14 Diffeological spaces [Souriau] Objects A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that...3 axioms... Morphisms f : X Y Functions f : X Y such that: α S X = f α S Y Example: Traditional Spaces For manifold M, define (Yoneda) plots S U M := Mfd(U, M). Kammar, Staton, andvákár

15 Categorical structure Objects A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that...3 axioms... Products } S U X Y := {r ( α(r), β(r) ) α S U X, β S U Y Kammar, Staton, andvákár

16 Kammar, Staton, andvákár Categorical structure Morphisms f : X Y Functions f : X Y such that: α S X = f α S Y Function spaces Y X := Diffeo(X, Y ) S U Y X := { f : U Y X uncurry f Diffeo(U X, Y ) } NB: The exponential X U is the space of U-plots.

17 Kammar, Staton, andvákár Categorical structure Morphisms f : X Y Functions f : X Y such that: α S X = f α S Y Function spaces Y X := Diffeo(X, Y ) S U Y X := { f : U Y X uncurry f Diffeo(U X, Y ) } NB: The exponential X U is the space of U-plots. More structure Coproducts, limits, colimits,... (co)inductive types!

18 Kammar, Staton, andvákár Diffeo-morphisms are continuous! D-Topology Adjunction with topological spaces (M Top, X Diffeo): SDiffeoM U := Top(U, { M) } O TopX := B X U Open.α SX U, α 1 [X] O U Diffeo Top Diffeo = Top Generalises Euclidean topology. Set

19 Kammar, Staton, andvákár Derivatives? Covariant Derivative Fwd Mode R n f R m Write T U := U R n fst U T V := V R m fst V ; RU V And write T U T f T V x, v f(x), T x f(v) ; This defines a functor Open T Open Functoriality is chain rule! id cod Open.

20 Kammar, Staton, andvákár C made difficult objects: morphisms a : A A 0, b : B B 0 in C; morphisms f 0, f 1 : C (a, b) := f 0 C(A 0,B 0 ) C/A 0(a, f 0 b) using pullback (suppose exist); projection functor fst : C C; A f 1 f a f 0 B B f 0 b b f0 A 0 B 0

21 Kammar, Staton, andvákár C made difficult objects: morphisms a : A A 0, b : B B 0 in C; morphisms f 0, f 1 : C (a, b) := f 0 C(A 0,B 0 ) C/A 0(a, f 0 b) using pullback (suppose exist); projection functor fst : C C; A a f 1 f 0 B B f 0 b b f0 A 0 B 0

22 Kammar, Staton, andvákár Dual Fibration: Polynomials/Containers Poly(C) objects: morphisms a : A A 0, b : B B 0 in C; morphisms f 0, f 1 : Poly(C)(a, b) := f 0 C(A 0,B 0 ) C/A 0(f0 b, a) using pullback; projection functor fst : Poly(C) C; A f 1 a f 0 B B f 0 b b f0 A 0 B 0

23 Kammar, Staton, andvákár Contravariant Derivative Rev Mode Write T x f : R m = R m R Txf R R n R = R n ; Define polynomials/containers T U := U R n fst U T V := V R m fst V and f T V T f T U x, ξ This defines a functor x, T x f(ξ) ; Open T Poly (Open) Functoriality is chain rule! id cod Open. (Poly : slight cheating, objects product projections, so pb)

24 Kammar, Staton, andvákár Derivatives on Diffeo Observe that Diffeo and Poly(Diffeo) are cocomplete (and complete); Define through left Kan extension Poly (Open) T Open T Open Poly(y) y y Poly(Diffeo) Diffeo Lan y (T ; Poly(y)) Lan y (T ; y ) Diffeo Functor by construction chain rule! y is full and faithful extends usual definition (on Mfd); But many other ways to define in literature! Do they coincide..?

25 Kammar, Staton, andvákár Derivatives are dependently typed! (Co)tangent bundles not all trivial (product projections): take S 2. dependent types! Type Formers: Given Γ X type, we get Γ, x : X T x X type and Γ, x : X T x X type. T X is syntactic sugar for Σ x:x T x X and T X for Σ x:x T x X. Term Formers: Given Γ, x : X f(x) : Y, we get Γ, x : X, v : T x X T x f(v) : T f(x) Y and Γ, x : X, ξ : T f(x) Y T x f(ξ) : T x X.

26 Our example revisited Finding Shortest Arc Length -- Integrate :: ([0,1] => real) => real -- Differentiate :: ([0,1] => real) => [0,1] => real ArcLength :: ([0,1] => real) => [0,infty) ArcLength(f) = Integrate(Sqrt(1 + Differentiate(f)^2)) Power :: (0,infty) => [0,1] => real Power(a)(t) = t^a -- Minimise :: ((0,infty) => real) => (0,infty) Minimal_a :: real Minimal_a = Minimise(\a -> ArcLength(Power(a))) -- Should be 1 Uncurry to see Power is smooth; Integrate sends smooth functions of two arguments to smooth functions, so it is smooth. Kammar, Staton, andvákár

27 Diffeological Domains [Kammar, Staton, Vákár] Category ωdiffeo Objects: diffeological spaces X with an ω-cpo structure X, s.t. S X is closed under lubs of ω-chains; Morphisms: Scott continuous Diffeo-morphisms; Gives a (co)complete ccc ωdiffeo (locally presentable); Recursive types through Fiore s axiomatic domain theory! Define T, T as enriched Kan extensions, but working with ωdiffeo fib and its dual fibration? 3 More Equivalent Characterisations ωcpo-enriched separated sheaves on Open; Models of an essentially algebraic theory; Internal language ω-cpos in Diffeo. Kammar, Staton, andvákár

28 Conclusion Summary Diffeo: very simple, well-behaved and rich setting for semantics of differential languages Rich type theory allows for syntactic proofs Some Questions Derivative of a recursive function and T, T on ωdiffeo? An adequate semantics for differential programming? Prove corrects NUTS? Analyse the (co)tangent bundle of function types? C.f (co)tangent bundles in literature? Smooth probability monad? Relationship cotangent bundle and CPS? Boman s theorem: why not restrict to S R X? Kammar, Staton, andvákár

29 Thanks! Recall - definition A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that the plots are closed under: Kammar, Staton, andvákár

30 Thanks! Recall - definition A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that the plots are closed under: constant functions c; α(r)=c c Kammar, Staton, andvákár

31 Thanks! Recall - definition A diffeological space X = ( X, S X ) consists of: a carrier set X ; a set of plots S U X X U for all U Open such that the plots are closed under: constant functions c; precomposition with a smooth φ : U V φ α Kammar, Staton, andvákár

32 Thanks! Recall - definition ( ) A diffeological space X = X, SX consists of: a carrier set X ; U X U for all U Open a set of plots SX such that the plots are closed under: constant functions c; precomposition with a smooth φ : U V gluing of compatible families along open covers U. case{u.αu U U } 7 Kammar, Staton, and Vákár

Diffeological Spaces and Denotational Semantics for Differential Programming

Diffeological Spaces and Denotational Semantics for Differential Programming Diffeological Spaces and Denotational Semantics for Differential Programming Ohad Kammar, Sam Staton, and Matthijs Vákár Domains 2018 Oxford 8 July 2018 What is differential programming? PL in which all

More information

The Semantic Structure of Quasi-Borel Spaces

The Semantic Structure of Quasi-Borel Spaces H O T F E E U D N I I N V E B R U S R I T Y H G Heunen, Kammar, Moss, Ścibior, Staton, Vákár, and Yang Chris Heunen, Ohad Kammar, Sean K. Moss, Adam Ścibior, Sam Staton, Matthijs Vákár, and Hongseok Yang

More information

Lecture 9: Sheaves. February 11, 2018

Lecture 9: Sheaves. February 11, 2018 Lecture 9: Sheaves February 11, 2018 Recall that a category X is a topos if there exists an equivalence X Shv(C), where C is a small category (which can be assumed to admit finite limits) equipped with

More information

LECTURE 1: SOME GENERALITIES; 1 DIMENSIONAL EXAMPLES

LECTURE 1: SOME GENERALITIES; 1 DIMENSIONAL EXAMPLES LECTURE 1: SOME GENERALITIES; 1 DIMENSIONAL EAMPLES VIVEK SHENDE Historically, sheaves come from topology and analysis; subsequently they have played a fundamental role in algebraic geometry and certain

More information

3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection

3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection 3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection is called the objects of C and is denoted Obj(C). Given

More information

Elementary (ha-ha) Aspects of Topos Theory

Elementary (ha-ha) Aspects of Topos Theory Elementary (ha-ha) Aspects of Topos Theory Matt Booth June 3, 2016 Contents 1 Sheaves on topological spaces 1 1.1 Presheaves on spaces......................... 1 1.2 Digression on pointless topology..................

More information

University of Oxford, Michaelis November 16, Categorical Semantics and Topos Theory Homotopy type theor

University of Oxford, Michaelis November 16, Categorical Semantics and Topos Theory Homotopy type theor Categorical Semantics and Topos Theory Homotopy type theory Seminar University of Oxford, Michaelis 2011 November 16, 2011 References Johnstone, P.T.: Sketches of an Elephant. A Topos-Theory Compendium.

More information

Semantics and syntax of higher inductive types

Semantics and syntax of higher inductive types Semantics and syntax of higher inductive types Michael Shulman 1 Peter LeFanu Lumsdaine 2 1 University of San Diego 2 Stockholm University http://www.sandiego.edu/~shulman/papers/stthits.pdf March 20,

More information

Math 535a Homework 5

Math 535a Homework 5 Math 535a Homework 5 Due Monday, March 20, 2017 by 5 pm Please remember to write down your name on your assignment. 1. Let (E, π E ) and (F, π F ) be (smooth) vector bundles over a common base M. A vector

More information

IndCoh Seminar: Ind-coherent sheaves I

IndCoh Seminar: Ind-coherent sheaves I IndCoh Seminar: Ind-coherent sheaves I Justin Campbell March 11, 2016 1 Finiteness conditions 1.1 Fix a cocomplete category C (as usual category means -category ). This section contains a discussion of

More information

Abstracting away from cell complexes

Abstracting away from cell complexes Abstracting away from cell complexes Michael Shulman 1 Peter LeFanu Lumsdaine 2 1 University of San Diego 2 Stockholm University March 12, 2016 Replacing big messy cell complexes with smaller and simpler

More information

A homotopy theory of diffeological spaces

A homotopy theory of diffeological spaces A homotopy theory of diffeological spaces Dan Christensen and Enxin Wu MIT Jan. 5, 2012 Motivation Smooth manifolds contain a lot of geometric information: tangent spaces, differential forms, de Rham cohomology,

More information

Homology and Cohomology of Stacks (Lecture 7)

Homology and Cohomology of Stacks (Lecture 7) Homology and Cohomology of Stacks (Lecture 7) February 19, 2014 In this course, we will need to discuss the l-adic homology and cohomology of algebro-geometric objects of a more general nature than algebraic

More information

Some glances at topos theory. Francis Borceux

Some glances at topos theory. Francis Borceux Some glances at topos theory Francis Borceux Como, 2018 2 Francis Borceux francis.borceux@uclouvain.be Contents 1 Localic toposes 7 1.1 Sheaves on a topological space.................... 7 1.2 Sheaves

More information

Patrick Iglesias-Zemmour

Patrick Iglesias-Zemmour Mathematical Surveys and Monographs Volume 185 Diffeology Patrick Iglesias-Zemmour American Mathematical Society Contents Preface xvii Chapter 1. Diffeology and Diffeological Spaces 1 Linguistic Preliminaries

More information

h M (T ). The natural isomorphism η : M h M determines an element U = η 1

h M (T ). The natural isomorphism η : M h M determines an element U = η 1 MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 7 2.3. Fine moduli spaces. The ideal situation is when there is a scheme that represents our given moduli functor. Definition 2.15. Let M : Sch Set be a moduli

More information

An introduction to Yoneda structures

An introduction to Yoneda structures An introduction to Yoneda structures Paul-André Melliès CNRS, Université Paris Denis Diderot Groupe de travail Catégories supérieures, polygraphes et homotopie Paris 21 May 2010 1 Bibliography Ross Street

More information

Category theory and set theory: algebraic set theory as an example of their interaction

Category theory and set theory: algebraic set theory as an example of their interaction Category theory and set theory: algebraic set theory as an example of their interaction Brice Halimi May 30, 2014 My talk will be devoted to an example of positive interaction between (ZFC-style) set theory

More information

Categories and Modules

Categories and Modules Categories and odules Takahiro Kato arch 2, 205 BSTRCT odules (also known as profunctors or distributors) and morphisms among them subsume categories and functors and provide more general and abstract

More information

Derived Algebraic Geometry I: Stable -Categories

Derived Algebraic Geometry I: Stable -Categories Derived Algebraic Geometry I: Stable -Categories October 8, 2009 Contents 1 Introduction 2 2 Stable -Categories 3 3 The Homotopy Category of a Stable -Category 6 4 Properties of Stable -Categories 12 5

More information

PART I. Abstract algebraic categories

PART I. Abstract algebraic categories PART I Abstract algebraic categories It should be observed first that the whole concept of category is essentially an auxiliary one; our basic concepts are those of a functor and a natural transformation.

More information

Topological aspects of restriction categories

Topological aspects of restriction categories Calgary 2006, Topological aspects of restriction categories, June 1, 2006 p. 1/22 Topological aspects of restriction categories Robin Cockett robin@cpsc.ucalgary.ca University of Calgary Calgary 2006,

More information

Category Theory. Travis Dirle. December 12, 2017

Category Theory. Travis Dirle. December 12, 2017 Category Theory 2 Category Theory Travis Dirle December 12, 2017 2 Contents 1 Categories 1 2 Construction on Categories 7 3 Universals and Limits 11 4 Adjoints 23 5 Limits 31 6 Generators and Projectives

More information

Representable presheaves

Representable presheaves Representable presheaves March 15, 2017 A presheaf on a category C is a contravariant functor F on C. In particular, for any object X Ob(C) we have the presheaf (of sets) represented by X, that is Hom

More information

The equivalence axiom and univalent models of type theory.

The equivalence axiom and univalent models of type theory. The equivalence axiom and univalent models of type theory. (Talk at CMU on February 4, 2010) By Vladimir Voevodsky Abstract I will show how to define, in any type system with dependent sums, products and

More information

Higher Order Containers

Higher Order Containers Higher Order Containers Thorsten Altenkirch 1, Paul Levy 2, and Sam Staton 3 1 University of Nottingham 2 University of Birmingham 3 University of Cambridge Abstract. Containers are a semantic way to talk

More information

A Grothendieck site is a small category C equipped with a Grothendieck topology T. A Grothendieck topology T consists of a collection of subfunctors

A Grothendieck site is a small category C equipped with a Grothendieck topology T. A Grothendieck topology T consists of a collection of subfunctors Contents 5 Grothendieck topologies 1 6 Exactness properties 10 7 Geometric morphisms 17 8 Points and Boolean localization 22 5 Grothendieck topologies A Grothendieck site is a small category C equipped

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2 RAVI VAKIL CONTENTS 1. Where we were 1 2. Yoneda s lemma 2 3. Limits and colimits 6 4. Adjoints 8 First, some bureaucratic details. We will move to 380-F for Monday

More information

Real-cohesion: from connectedness to continuity

Real-cohesion: from connectedness to continuity Real-cohesion: from connectedness to continuity Michael Shulman University of San Diego March 26, 2017 My hat today I am a mathematician: not a computer scientist. I am a categorical logician: type theory

More information

LOCALIZATIONS, COLOCALIZATIONS AND NON ADDITIVE -OBJECTS

LOCALIZATIONS, COLOCALIZATIONS AND NON ADDITIVE -OBJECTS LOCALIZATIONS, COLOCALIZATIONS AND NON ADDITIVE -OBJECTS GEORGE CIPRIAN MODOI Abstract. Given two arbitrary categories, a pair of adjoint functors between them induces three pairs of full subcategories,

More information

Algebra and local presentability: how algebraic are they? (A survey)

Algebra and local presentability: how algebraic are they? (A survey) Algebra and local presentability: how algebraic are they? (A survey) Jiří Adámek 1 and Jiří Rosický 2, 1 Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague,

More information

Unbounded quantifiers and strong axioms in topos theory

Unbounded quantifiers and strong axioms in topos theory Unbounded quantifiers and in topos A. University of Chicago November 14, 2009 The motivating question What is the topos-theoretic counterpart of the strong set-theoretic axioms of Separation, Replacement,

More information

arxiv: v1 [math.ct] 28 Oct 2017

arxiv: v1 [math.ct] 28 Oct 2017 BARELY LOCALLY PRESENTABLE CATEGORIES arxiv:1710.10476v1 [math.ct] 28 Oct 2017 L. POSITSELSKI AND J. ROSICKÝ Abstract. We introduce a new class of categories generalizing locally presentable ones. The

More information

Applications of 2-categorical algebra to the theory of operads. Mark Weber

Applications of 2-categorical algebra to the theory of operads. Mark Weber Applications of 2-categorical algebra to the theory of operads Mark Weber With new, more combinatorially intricate notions of operad arising recently in the algebraic approaches to higher dimensional algebra,

More information

Review of category theory

Review of category theory Review of category theory Proseminar on stable homotopy theory, University of Pittsburgh Friday 17 th January 2014 Friday 24 th January 2014 Clive Newstead Abstract This talk will be a review of the fundamentals

More information

CHAPTER 1. Étale cohomology

CHAPTER 1. Étale cohomology CHAPTER 1 Étale cohomology This chapter summarizes the theory of the étale topology on schemes, culminating in the results on l-adic cohomology that are needed in the construction of Galois representations

More information

Recall for an n n matrix A = (a ij ), its trace is defined by. a jj. It has properties: In particular, if B is non-singular n n matrix,

Recall for an n n matrix A = (a ij ), its trace is defined by. a jj. It has properties: In particular, if B is non-singular n n matrix, Chern characters Recall for an n n matrix A = (a ij ), its trace is defined by tr(a) = n a jj. j=1 It has properties: tr(a + B) = tr(a) + tr(b), tr(ab) = tr(ba). In particular, if B is non-singular n n

More information

PART II.1. IND-COHERENT SHEAVES ON SCHEMES

PART II.1. IND-COHERENT SHEAVES ON SCHEMES PART II.1. IND-COHERENT SHEAVES ON SCHEMES Contents Introduction 1 1. Ind-coherent sheaves on a scheme 2 1.1. Definition of the category 2 1.2. t-structure 3 2. The direct image functor 4 2.1. Direct image

More information

Model Structures on the Category of Small Double Categories

Model Structures on the Category of Small Double Categories Model Structures on the Category of Small Double Categories CT2007 Tom Fiore Simona Paoli and Dorette Pronk www.math.uchicago.edu/ fiore/ 1 Overview 1. Motivation 2. Double Categories and Their Nerves

More information

PART III.3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES

PART III.3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES PART III.3. IND-COHERENT SHEAVES ON IND-INF-SCHEMES Contents Introduction 1 1. Ind-coherent sheaves on ind-schemes 2 1.1. Basic properties 2 1.2. t-structure 3 1.3. Recovering IndCoh from ind-proper maps

More information

Derived Algebraic Geometry IX: Closed Immersions

Derived Algebraic Geometry IX: Closed Immersions Derived Algebraic Geometry I: Closed Immersions November 5, 2011 Contents 1 Unramified Pregeometries and Closed Immersions 4 2 Resolutions of T-Structures 7 3 The Proof of Proposition 1.0.10 14 4 Closed

More information

CGP DERIVED SEMINAR GABRIEL C. DRUMMOND-COLE

CGP DERIVED SEMINAR GABRIEL C. DRUMMOND-COLE CGP DERIVED SEMINAR GABRIEL C. DRUMMOND-COLE 1. January 16, 2018: Byunghee An, bar and cobar Today I am going to talk about bar and cobar constructions again, between categories of algebras and coalgebras.

More information

Category theory and set theory: examples of their interaction

Category theory and set theory: examples of their interaction Category theory and set theory: examples of their interaction Brice Halimi (Paris Ouest University & Sphere) My talk will be composed of three parts: 1. quick review of the basic ping-pong that opposes

More information

A Convenient Category for Higher-Order Probability Theory

A Convenient Category for Higher-Order Probability Theory A Convenient Category for Higher-Order Probability Theory Chris Heunen University of Edinburgh, UK Ohad Kammar University of Oxford, UK Sam Staton University of Oxford, UK Hongseok Yang University of Oxford,

More information

Journal of Pure and Applied Algebra

Journal of Pure and Applied Algebra Journal of Pure and Applied Algebra 214 (2010) 1384 1398 Contents lists available at ScienceDirect Journal of Pure and Applied Algebra journal homepage: www.elsevier.com/locate/jpaa Homotopy theory of

More information

ABSTRACT DIFFERENTIAL GEOMETRY VIA SHEAF THEORY

ABSTRACT DIFFERENTIAL GEOMETRY VIA SHEAF THEORY ABSTRACT DIFFERENTIAL GEOMETRY VIA SHEAF THEORY ARDA H. DEMIRHAN Abstract. We examine the conditions for uniqueness of differentials in the abstract setting of differential geometry. Then we ll come up

More information

MONADS WITH ARITIES AND THEIR ASSOCIATED THEORIES

MONADS WITH ARITIES AND THEIR ASSOCIATED THEORIES MONADS WITH ARITIES AND THEIR ASSOCIATED THEORIES CLEMENS BERGER, PAUL-ANDRÉ MELLIÈS AND MARK WEBER Abstract. After a review of the concept of monad with arities we show that the category of algebras for

More information

Limit Preservation from Naturality

Limit Preservation from Naturality CTCS 2004 Preliminary Version Limit Preservation from Naturality Mario Caccamo 1 The Wellcome Trust Sanger Institute Cambridge, UK Glynn Winskel 2 University of Cambridge Computer Laboratory Cambridge,

More information

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. CATEGORY THEORY PROFESSOR PETER JOHNSTONE Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. Definition 1.1. A category C consists

More information

Programming Languages in String Diagrams. [ four ] Local stores. Paul-André Melliès. Oregon Summer School in Programming Languages June 2011

Programming Languages in String Diagrams. [ four ] Local stores. Paul-André Melliès. Oregon Summer School in Programming Languages June 2011 Programming Languages in String iagrams [ four ] Local stores Paul-André Melliès Oregon Summer School in Programming Languages June 2011 Finitary monads A monadic account of algebraic theories Algebraic

More information

What are Iteration Theories?

What are Iteration Theories? What are Iteration Theories? Jiří Adámek 1, Stefan Milius 1 and Jiří Velebil 2 1 Institute of Theoretical Computer Science, TU Braunschweig, Germany {adamek,milius}@iti.cs.tu-bs.de 2 Department of Mathematics,

More information

The synthetic theory of -categories vs the synthetic theory of -categories

The synthetic theory of -categories vs the synthetic theory of -categories Emily Riehl Johns Hopkins University The synthetic theory of -categories vs the synthetic theory of -categories joint with Dominic Verity and Michael Shulman Vladimir Voevodsky Memorial Conference The

More information

via Topos Theory Olivia Caramello University of Cambridge The unification of Mathematics via Topos Theory Olivia Caramello

via Topos Theory Olivia Caramello University of Cambridge The unification of Mathematics via Topos Theory Olivia Caramello in University of Cambridge 2 / 23 in in In this lecture, whenever I use the word topos, I really mean Grothendieck topos. Recall that a Grothendieck topos can be seen as: a generalized space a mathematical

More information

COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY

COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY VIVEK SHENDE A ring is a set R with two binary operations, an addition + and a multiplication. Always there should be an identity 0 for addition, an

More information

1 Motivation. If X is a topological space and x X a point, then the fundamental group is defined as. the set of (pointed) morphisms from the circle

1 Motivation. If X is a topological space and x X a point, then the fundamental group is defined as. the set of (pointed) morphisms from the circle References are: [Szamuely] Galois Groups and Fundamental Groups [SGA1] Grothendieck, et al. Revêtements étales et groupe fondamental [Stacks project] The Stacks Project, https://stacks.math.columbia. edu/

More information

A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries

A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries Johannes Marti and Riccardo Pinosio Draft from April 5, 2018 Abstract In this paper we present a duality between nonmonotonic

More information

which is a group homomorphism, such that if W V U, then

which is a group homomorphism, such that if W V U, then 4. Sheaves Definition 4.1. Let X be a topological space. A presheaf of groups F on X is a a function which assigns to every open set U X a group F(U) and to every inclusion V U a restriction map, ρ UV

More information

C2.7: CATEGORY THEORY

C2.7: CATEGORY THEORY C2.7: CATEGORY THEORY PAVEL SAFRONOV WITH MINOR UPDATES 2019 BY FRANCES KIRWAN Contents Introduction 2 Literature 3 1. Basic definitions 3 1.1. Categories 3 1.2. Set-theoretic issues 4 1.3. Functors 5

More information

Solutions to some of the exercises from Tennison s Sheaf Theory

Solutions to some of the exercises from Tennison s Sheaf Theory Solutions to some of the exercises from Tennison s Sheaf Theory Pieter Belmans June 19, 2011 Contents 1 Exercises at the end of Chapter 1 1 2 Exercises in Chapter 2 6 3 Exercises at the end of Chapter

More information

Duality in Probabilistic Automata

Duality in Probabilistic Automata Duality in Probabilistic Automata Chris Hundt Prakash Panangaden Joelle Pineau Doina Precup Gavin Seal McGill University MFPS May 2006 Genoa p.1/40 Overview We have discovered an - apparently - new kind

More information

Postulated colimits and left exactness of Kan-extensions

Postulated colimits and left exactness of Kan-extensions Postulated colimits and left exactness of Kan-extensions Anders Kock If A is a small category and E a Grothendieck topos, the Kan extension LanF of a flat functor F : A E along any functor A D preserves

More information

Algebraic Geometry

Algebraic Geometry MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

An introduction to locally finitely presentable categories

An introduction to locally finitely presentable categories An introduction to locally finitely presentable categories MARU SARAZOLA A document born out of my attempt to understand the notion of locally finitely presentable category, and my annoyance at constantly

More information

Higher toposes Internal logic Modalities Sub- -toposes Formalization. Modalities in HoTT. Egbert Rijke, Mike Shulman, Bas Spitters 1706.

Higher toposes Internal logic Modalities Sub- -toposes Formalization. Modalities in HoTT. Egbert Rijke, Mike Shulman, Bas Spitters 1706. Modalities in HoTT Egbert Rijke, Mike Shulman, Bas Spitters 1706.07526 Outline 1 Higher toposes 2 Internal logic 3 Modalities 4 Sub- -toposes 5 Formalization Two generalizations of Sets Groupoids: To keep

More information

MULTIPLE DISJUNCTION FOR SPACES OF POINCARÉ EMBEDDINGS

MULTIPLE DISJUNCTION FOR SPACES OF POINCARÉ EMBEDDINGS MULTIPLE DISJUNCTION FOR SPACES OF POINCARÉ EMBEDDINGS THOMAS G. GOODWILLIE AND JOHN R. KLEIN Abstract. Still at it. Contents 1. Introduction 1 2. Some Language 6 3. Getting the ambient space to be connected

More information

On a Categorical Framework for Coalgebraic Modal Logic

On a Categorical Framework for Coalgebraic Modal Logic On a Categorical Framework for Coalgebraic Modal Logic Liang-Ting Chen 1 Achim Jung 2 1 Institute of Information Science, Academia Sinica 2 School of Computer Science, University of Birmingham MFPS XXX

More information

LIST OF CORRECTIONS LOCALLY PRESENTABLE AND ACCESSIBLE CATEGORIES

LIST OF CORRECTIONS LOCALLY PRESENTABLE AND ACCESSIBLE CATEGORIES LIST OF CORRECTIONS LOCALLY PRESENTABLE AND ACCESSIBLE CATEGORIES J.Adámek J.Rosický Cambridge University Press 1994 Version: June 2013 The following is a list of corrections of all mistakes that have

More information

arxiv: v2 [math.ag] 15 May 2016

arxiv: v2 [math.ag] 15 May 2016 Syntactic categories for Nori motives Luca Barbieri-Viale Olivia Caramello Laurent Lafforgue arxiv:1506.06113v2 [math.ag] 15 May 2016 Abstract We give a new construction, based on categorical logic, of

More information

arxiv:math/ v1 [math.at] 6 Oct 2004

arxiv:math/ v1 [math.at] 6 Oct 2004 arxiv:math/0410162v1 [math.at] 6 Oct 2004 EQUIVARIANT UNIVERSAL COEFFICIENT AND KÜNNETH SPECTRAL SEQUENCES L. GAUNCE LEWIS, JR. AND MICHAEL A. MANDELL Abstract. We construct hyper-homology spectral sequences

More information

An Introduction to the Stolz-Teichner Program

An Introduction to the Stolz-Teichner Program Intro to STP 1/ 48 Field An Introduction to the Stolz-Teichner Program Australian National University October 20, 2012 Outline of Talk Field Smooth and Intro to STP 2/ 48 Field Field Motivating Principles

More information

Axiomatics for Data Refinement in Call by Value Programming Languages

Axiomatics for Data Refinement in Call by Value Programming Languages Electronic Notes in Theoretical Computer Science 225 (2009) 281 302 www.elsevier.com/locate/entcs Axiomatics for Data Refinement in Call by Value Programming Languages John Power 1,2 Department of Computer

More information

Topos-theoretic background

Topos-theoretic background opos-theoretic background Olivia Caramello IHÉS September 22, 2014 Contents 1 Introduction 2 2 erminology and notation 3 3 Grothendieck toposes 3 3.1 he notion of site............................ 3 3.2

More information

1 Categorical Background

1 Categorical Background 1 Categorical Background 1.1 Categories and Functors Definition 1.1.1 A category C is given by a class of objects, often denoted by ob C, and for any two objects A, B of C a proper set of morphisms C(A,

More information

A Model of Guarded Recursion via Generalised Equilogical Spaces

A Model of Guarded Recursion via Generalised Equilogical Spaces A Model of Guarded Recursion via Generalised Equilogical Spaces Aleš Bizjak, Lars Birkedal Department of Computer Science Aarhus University Abstract We present a new model, called GuardedEqu, of guarded

More information

Convenient Categories of Smooth Spaces

Convenient Categories of Smooth Spaces Convenient Categories of Smooth Spaces John C. Baez and Alexander E. Hoffnung Department of Mathematics, University of California Riverside, California 92521 USA email: baez@math.ucr.edu, alex@math.ucr.edu

More information

SOME EXERCISES. This is not an assignment, though some exercises on this list might become part of an assignment. Class 2

SOME EXERCISES. This is not an assignment, though some exercises on this list might become part of an assignment. Class 2 SOME EXERCISES This is not an assignment, though some exercises on this list might become part of an assignment. Class 2 (1) Let C be a category and let X C. Prove that the assignment Y C(Y, X) is a functor

More information

What is an ind-coherent sheaf?

What is an ind-coherent sheaf? What is an ind-coherent sheaf? Harrison Chen March 8, 2018 0.1 Introduction All algebras in this note will be considered over a field k of characteristic zero (an assumption made in [Ga:IC]), so that we

More information

Complete Partial Orders, PCF, and Control

Complete Partial Orders, PCF, and Control Complete Partial Orders, PCF, and Control Andrew R. Plummer TIE Report Draft January 2010 Abstract We develop the theory of directed complete partial orders and complete partial orders. We review the syntax

More information

CONTINUOUS COHESION OVER SETS

CONTINUOUS COHESION OVER SETS Theory and Applications of Categories, Vol. 29, No. 20, 204, pp. 542 568. CONTINUOUS COHESION OVER SETS M. MENNI Abstract. A pre-cohesive geometric morphism p : E S satisfies Continuity if the canonical

More information

Outline of Synthetic Differential Geometry F. William Lawvere

Outline of Synthetic Differential Geometry F. William Lawvere Outline of Synthetic Differential Geometry F. William Lawvere 26 February 1998 [Initial results in Categorical Dynamics were proved in 1967 and presented in a series of three lectures at Chicago. Since

More information

Algebras and Bialgebras

Algebras and Bialgebras Algebras and Bialgebras via categories with distinguished objects Vaughan Pratt Stanford University October 9, 2016 AMS Fall Western Sectional Meeting University of Denver, CO Vaughan Pratt (Stanford University)

More information

BRICS. Presheaf Models for Concurrency (Unrevised) Basic Research in Computer Science BRICS DS-99-1 G. L. Cattani: Presheaf Models for Concurrency

BRICS. Presheaf Models for Concurrency (Unrevised) Basic Research in Computer Science BRICS DS-99-1 G. L. Cattani: Presheaf Models for Concurrency BRICS Basic Research in Computer Science BRICS DS-99-1 G. L. Cattani: Presheaf Models for Concurrency Presheaf Models for Concurrency (Unrevised) Gian Luca Cattani BRICS Dissertation Series DS-99-1 ISSN

More information

PART II.2. THE!-PULLBACK AND BASE CHANGE

PART II.2. THE!-PULLBACK AND BASE CHANGE PART II.2. THE!-PULLBACK AND BASE CHANGE Contents Introduction 1 1. Factorizations of morphisms of DG schemes 2 1.1. Colimits of closed embeddings 2 1.2. The closure 4 1.3. Transitivity of closure 5 2.

More information

Geometry 9: Serre-Swan theorem

Geometry 9: Serre-Swan theorem Geometry 9: Serre-Swan theorem Rules: You may choose to solve only hard exercises (marked with!, * and **) or ordinary ones (marked with! or unmarked), or both, if you want to have extra problems. To have

More information

Semantics for algebraic operations

Semantics for algebraic operations MFPS 17 Preliminary Version Semantics for algebraic operations Gordon Plotkin and John Power 1 Laboratory for the Foundations of Computer Science University of Edinburgh King s Buildings, Edinburgh EH9

More information

Chern classes à la Grothendieck

Chern classes à la Grothendieck Chern classes à la Grothendieck Theo Raedschelders October 16, 2014 Abstract In this note we introduce Chern classes based on Grothendieck s 1958 paper [4]. His approach is completely formal and he deduces

More information

What are Iteration Theories?

What are Iteration Theories? What are Iteration Theories? Jiří Adámek and Stefan Milius Institute of Theoretical Computer Science Technical University of Braunschweig Germany adamek,milius @iti.cs.tu-bs.de Jiří Velebil Department

More information

Topos Theory. Lectures 21 and 22: Classifying toposes. Olivia Caramello. Topos Theory. Olivia Caramello. The notion of classifying topos

Topos Theory. Lectures 21 and 22: Classifying toposes. Olivia Caramello. Topos Theory. Olivia Caramello. The notion of classifying topos Lectures 21 and 22: toposes of 2 / 30 Toposes as mathematical universes of Recall that every Grothendieck topos E is an elementary topos. Thus, given the fact that arbitrary colimits exist in E, we can

More information

Boolean Algebra and Propositional Logic

Boolean Algebra and Propositional Logic Boolean Algebra and Propositional Logic Takahiro Kato June 23, 2015 This article provides yet another characterization of Boolean algebras and, using this characterization, establishes a more direct connection

More information

Elements of Category Theory

Elements of Category Theory Elements of Category Theory Robin Cockett Department of Computer Science University of Calgary Alberta, Canada robin@cpsc.ucalgary.ca Estonia, Feb. 2010 Functors and natural transformations Adjoints and

More information

FROM COHERENT TO FINITENESS SPACES

FROM COHERENT TO FINITENESS SPACES FROM COHERENT TO FINITENESS SPACES PIERRE HYVERNAT Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac Cedex, France. e-mail address: Pierre.Hyvernat@univ-savoie.fr Abstract. This

More information

Sheaves. S. Encinas. January 22, 2005 U V. F(U) F(V ) s s V. = s j Ui Uj there exists a unique section s F(U) such that s Ui = s i.

Sheaves. S. Encinas. January 22, 2005 U V. F(U) F(V ) s s V. = s j Ui Uj there exists a unique section s F(U) such that s Ui = s i. Sheaves. S. Encinas January 22, 2005 Definition 1. Let X be a topological space. A presheaf over X is a functor F : Op(X) op Sets, such that F( ) = { }. Where Sets is the category of sets, { } denotes

More information

LOOP SPACES IN MOTIVIC HOMOTOPY THEORY. A Dissertation MARVIN GLEN DECKER

LOOP SPACES IN MOTIVIC HOMOTOPY THEORY. A Dissertation MARVIN GLEN DECKER LOOP SPACES IN MOTIVIC HOMOTOPY THEORY A Dissertation by MARVIN GLEN DECKER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree

More information

Chern Classes and the Chern Character

Chern Classes and the Chern Character Chern Classes and the Chern Character German Stefanich Chern Classes In this talk, all our topological spaces will be paracompact Hausdorff, and our vector bundles will be complex. Let Bun GLn(C) be the

More information

SUMMER COURSE IN MOTIVIC HOMOTOPY THEORY

SUMMER COURSE IN MOTIVIC HOMOTOPY THEORY SUMMER COURSE IN MOTIVIC HOMOTOPY THEORY MARC LEVINE Contents 0. Introduction 1 1. The category of schemes 2 1.1. The spectrum of a commutative ring 2 1.2. Ringed spaces 5 1.3. Schemes 10 1.4. Schemes

More information

Complex Systems from the Perspective of Category. Theory: II. Covering Systems and Sheaves

Complex Systems from the Perspective of Category. Theory: II. Covering Systems and Sheaves Complex Systems from the Perspective of Category Theory: II. Covering Systems and Sheaves Abstract Using the concept of adjunction, for the comprehension of the structure of a complex system, developed

More information

Categorical models of homotopy type theory

Categorical models of homotopy type theory Categorical models of homotopy type theory Michael Shulman 12 April 2012 Outline 1 Homotopy type theory in model categories 2 The universal Kan fibration 3 Models in (, 1)-toposes Homotopy type theory

More information

Morita-equivalences for MV-algebras

Morita-equivalences for MV-algebras Morita-equivalences for MV-algebras Olivia Caramello* University of Insubria Geometry and non-classical logics 5-8 September 2017 *Joint work with Anna Carla Russo O. Caramello Morita-equivalences for

More information

PERVERSE SHEAVES. Contents

PERVERSE SHEAVES. Contents PERVERSE SHEAVES SIDDHARTH VENKATESH Abstract. These are notes for a talk given in the MIT Graduate Seminar on D-modules and Perverse Sheaves in Fall 2015. In this talk, I define perverse sheaves on a

More information

INDUCTIVE PRESENTATIONS OF GENERALIZED REEDY CATEGORIES. Contents. 1. The algebraic perspective on Reedy categories

INDUCTIVE PRESENTATIONS OF GENERALIZED REEDY CATEGORIES. Contents. 1. The algebraic perspective on Reedy categories INDUCTIVE PRESENTATIONS OF GENERALIZED REEDY CATEGORIES EMILY RIEHL Abstract. This note explores the algebraic perspective on the notion of generalized Reedy category introduced by Berger and Moerdijk

More information