Thermalization and Unruh Radiation for a Uniformly Accelerated Charged Particle

Size: px
Start display at page:

Download "Thermalization and Unruh Radiation for a Uniformly Accelerated Charged Particle"

Transcription

1 July 2010, Azumino Thermalization and Unruh Radiation for a Uniformly Accelerated Charged Particle 張森 Sen Zhang S. Iso and Y. Yamamoto

2 Unruh effect and Unruh radiation Vacuum: ~ ~ Bogoliubov transformation Unruh Effect: Vacuum for inertial observer thermal state for accelerating observer Hawking Radiation: Vacuum of free falling observer Asymptotic observer

3 Unruh effect and Unruh radiation Unruh Effect: Vacuum for inertial observer thermal state for accelerating observer Unruh Temperature: (10 7 K) How to See? Unruh Radiation: radiation due to fluctuation of electron Chen, Tajima 99 Schutzhold, Schaller, Habs 06

4 Previous Results Chen, Tajima 99 Schutzhold, Schaller, Habs 06 Radiation from fluctuation Larmor radiation Dimensionless laser strength parameter (a 0 ~100 for patawatt-class laser) Unruh radiation is very small compare to Larmor radiation. The angular distribution is quite different. The discussion is intuitive and smart But more systematic derivation is required Unruh radiation are treated in a complete different way from Larmor radiation. How does the path of the uniformly accelerated particle fluctuate? The interference effect were not considered.

5 Plan Charged particle How does it fluctuate actually? Stochastic equation (general formalism for fluctuation) Accelerating case Equipartition theorem Agrees Chen Tajima s proporsal Unruh Radiation Radiation from fluctuations in transverse directions Angular distribution Interference effect But several problems

6 Particle

7 Stochastic Equation Real Process Random motion Focus on Particle Motion absorption and radiation Brownian motion

8 Stochastic Equation Scalar for simplicity: Equation of motion: Solution: fluctuation dissipation Effective equation for a particle interacting with some quantum field

9 expansion: Non-local Renormalized mass Self-force from Larmor radiation (ALD) P. R. Johnson and B. L. Hu

10 Fluctuation around uniformly accelerated motion for transverse direction: Equation of fluctuations Acceleration (1 kev) Transverse direction Longitudinal direction

11 Transverse Fluctuation Neglecting term: Relaxation Time: Including term: Two point function: Derivative expansion

12 Equipartition Theorem Equipartition theorem thermal

13 Action: Solution: Stochastic equation: Universal Equipartition theorem

14 Longitudinal Fluctuation Transform variables for the accelerated observer : Problem of coordinates: The expectation values change, but the Bogoliubov transformation is same Problem on constant electric field: Different longitudinal coordinates means different acceleration Difficult to say if the longitudinal is same to the transverse Fluctuation in longitudinal direction for uniformly accelerated obserber: Very different from transverse direction

15 Radiation

16 Interference effect What Chen-Tajima calculated Nonzero Depend on

17 Inteference Effect - Unruh Detector 2D: no radiation Raine, Sciama, Grove 91 s Unruh Detector 4D: radiate during thermalization, but no radiation if the detector state is thermal state at first Shih-Yuin Lin & B. L. Hu Eom:

18 Interference term G R Cancels the radiation from inhomogeneous part

19 Interference effect - charged particle For transverse fluctuation:

20 Energy momentum tensor: Larmor Radiation: Unruh Radiation

21 Summary and Future Work An uniformly accelerated particle satisfies a stochastic equation. The transverse momentum fluctuations satisfy the equipartition theorem for both scalar field and gauge field. Longitudinal direction is more complicated. Radiations due to the fluctuations are calculated partly. The interference effect are important. There may be a problem on validity of approximation which relates to the UV divergence. Treatment based on QED will be required. Longitudinal contribution, Angular distribution, QED case

22 UV divergence Four poles Photon travelling time in Compton wave length Relaxation time (thermalization time) : does not contribute for but is dominant for. Cancelled by the interference term, in the calculation of radiation due to transverse fluctuations Unruh radiation depends on physics beyond the semi-classical analysis in our framework. Treatment based on QED will be required.

23 Problem of Radiation Dumping Abraham-Lorentz-Dirac Force: Energy momentum conservation on-shell condition Runaway Solution Landau-Lifshitz equation: No back reaction for uniformly accelerated electron!? What can we say about this problem using QED?

Unruh effect & Schwinger mechanism in strong lasers?

Unruh effect & Schwinger mechanism in strong lasers? Unruh effect & Schwinger mechanism in strong lasers? Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Unruh effect & Schwinger mechanism in strong lasers? p.1/14 Unruh Effect Uniformly accelerated

More information

Virtual observation of the Unruh effect

Virtual observation of the Unruh effect *Instituto de Física Teórica (IFT) - UNESP 03/03/2017 Outline What is the Unruh effect? What does it mean to observe the Unruh effect? The Unruh effect and Larmor radiation. Quantum field theory reminder

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

arxiv:quant-ph/ v2 25 Aug 2004

arxiv:quant-ph/ v2 25 Aug 2004 Vacuum fluctuations and Brownian motion of a charged test particle near a reflecting boundary arxiv:quant-ph/4622v2 25 Aug 24 Hongwei Yu CCAST(World Lab.), P. O. Box 873, Beijing, 8, P. R. China and Department

More information

Beam Shape Effects in Non Linear Compton Scattering

Beam Shape Effects in Non Linear Compton Scattering Beam Shape Effects in Non Linear Compton Scattering Signatures of High Intensity QED Daniel Seipt with T. Heinzl and B. Kämpfer Introduction QED vs. classical calculations, Multi Photon radiation Temporal

More information

Radiation reaction in classical and quantum electrodynamics

Radiation reaction in classical and quantum electrodynamics Radiation reaction in classical and quantum electrodynamics Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 12th 2014 OUTLINE Introduction to classical

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 6. Relativistic Covariance & Kinematics Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Practise, practise, practise... mid-term, 31st may, 9.15-11am As we

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect Copyright c 2018 by Robert G. Littlejohn Physics 221B Spring 2018 Notes 34 The Photoelectric Effect 1. Introduction In these notes we consider the ejection of an atomic electron by an incident photon,

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

arxiv: v1 [hep-ph] 7 Dec 2017

arxiv: v1 [hep-ph] 7 Dec 2017 Unruh effect and Schwinger pair creation under extreme acceleration by ultraintense lasers arxiv:1712.02477v1 [hep-ph] 7 Dec 2017 Chul Min Kim Center for Relativistic Laser Science, Institute for Basic

More information

Photonic zitterbewegung and its interpretation*

Photonic zitterbewegung and its interpretation* Photonic zitterbewegung and its interpretation* Zhi-Yong Wang, Cai-Dong Xiong, Qi Qiu School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 654, CHINA

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Uniqueness theorems, Separation of variables for Poisson's equation

Uniqueness theorems, Separation of variables for Poisson's equation NPTEL Syllabus Electrodynamics - Web course COURSE OUTLINE The course is a one semester advanced course on Electrodynamics at the M.Sc. Level. It will start by revising the behaviour of electric and magnetic

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

THE DYNAMICS OF A CHARGED PARTICLE

THE DYNAMICS OF A CHARGED PARTICLE 1. THE DYNAMICS OF A CHARGED PARTICLE Fritz Rohrlich* Syracuse University, Syracuse, New York 1344-113 Using physical arguments, I derive the physically correct equations of motion for a classical charged

More information

CMB Polarization in Einstein-Aether Theory

CMB Polarization in Einstein-Aether Theory CMB Polarization in Einstein-Aether Theory Masahiro Nakashima (The Univ. of Tokyo, RESCEU) With Tsutomu Kobayashi (RESCEU) COSMO/CosPa 2010 Introduction Two Big Mysteries of Cosmology Dark Energy & Dark

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Midterm Solutions. 1 1 = 0.999c (0.2)

Midterm Solutions. 1 1 = 0.999c (0.2) Midterm Solutions 1. (0) The detected muon is seen km away from the beam dump. It carries a kinetic energy of 4 GeV. Here we neglect the energy loss and angular scattering of the muon for simplicity. a.

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Symposium on Fascinating Nonlinear Physics, 27:th August, 2006, Trieste, Italy

Symposium on Fascinating Nonlinear Physics, 27:th August, 2006, Trieste, Italy Unruh-radiation - and how to detect it, a work in progress. By G. Brodin Dept. of Physics, University of Umea, Sweden Collaborators: Mattias Marklund, Bob Bingham + possibly others. Outline Background

More information

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x)

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x) QED; and the Standard Model We have calculated cross sections in lowest order perturbation theory. Terminology: Born approximation; tree diagrams. At this order of approximation QED (and the standard model)

More information

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7:

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7: Chapter 7 -- Radiative Corrections: some formal developments A quotation from Peskin & Schroeder, Chapter 7: 7.1. Field-strength renormalization 7.2. The LSZ reduction formula 7.3. The optical theorem

More information

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran Classical and Quantum Dynamics in a Black Hole Background Chris Doran Thanks etc. Work in collaboration with Anthony Lasenby Steve Gull Jonathan Pritchard Alejandro Caceres Anthony Challinor Ian Hinder

More information

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron - Potentials - Liénard-Wiechart Potentials - Larmor s Formula - Dipole Approximation - Beginning of Cyclotron & Synchrotron Maxwell s equations in a vacuum become A basic feature of these eqns is the existence

More information

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark)

Which of the following can be used to calculate the resistive force acting on the brick? D (Total for Question = 1 mark) 1 A brick of mass 5.0 kg falls through water with an acceleration of 0.90 m s 2. Which of the following can be used to calculate the resistive force acting on the brick? A 5.0 (0.90 9.81) B 5.0 (0.90 +

More information

LECTURES ON QUANTUM MECHANICS

LECTURES ON QUANTUM MECHANICS LECTURES ON QUANTUM MECHANICS GORDON BAYM Unitsersity of Illinois A II I' Advanced Bock Progrant A Member of the Perseus Books Group CONTENTS Preface v Chapter 1 Photon Polarization 1 Transformation of

More information

Particle Physics 2018 Final Exam (Answers with Words Only)

Particle Physics 2018 Final Exam (Answers with Words Only) Particle Physics 2018 Final Exam (Answers with Words Only) This was a hard course that likely covered a lot of new and complex ideas. If you are feeling as if you could not possibly recount all of the

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

Matter-Radiation Interaction

Matter-Radiation Interaction Matter-Radiation Interaction The purpose: 1) To give a description of the process of interaction in terms of the electronic structure of the system (atoms, molecules, solids, liquid or amorphous samples).

More information

Two particle elastic scattering at 1-loop

Two particle elastic scattering at 1-loop Two particle elastic scattering at 1-loop based on S-20 Let s use our rules to calculate two-particle elastic scattering amplitude in, theory in 6 dimensions including all one-loop corrections: For the

More information

Renormalization of the fermion self energy

Renormalization of the fermion self energy Part I Renormalization of the fermion self energy Electron self energy in general gauge The self energy in n = 4 Z i 0 = ( ie 0 ) d n k () n (! dimensions is i k )[g ( a 0 ) k k k ] i /p + /k m 0 use Z

More information

Strong-Field QED and High-Power Lasers

Strong-Field QED and High-Power Lasers LC2006 16-05-2006 with: O. Schröder (UoP science + computing, Tübingen) B. Liesfeld, K.-U. Amthor, H. Schwörer and A. Wipf (FSU Jena) R. Sauerbrey, FZ Rossendorf Outline Introduction 1. Introduction QED

More information

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY Mahnaz Q. Haseeb Physics Department COMSATS Institute of Information Technology Islamabad Outline Relevance Finite Temperature Effects One Loop Corrections

More information

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 1 Main Headings I Introduction and relativity pre Einstein II Einstein s principle of relativity and a new concept of spacetime III

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory PHYSICS Subject Code: PH Course Structure Sections/Units Topics Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Mathematical Physics Classical Mechanics Electromagnetic

More information

Gravity and action at a distance

Gravity and action at a distance Gravitational waves Gravity and action at a distance Newtonian gravity: instantaneous action at a distance Maxwell's theory of electromagnetism: E and B fields at distance D from charge/current distribution:

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

XV Mexican Workshop on Particles and Fields

XV Mexican Workshop on Particles and Fields XV Mexican Workshop on Particles and Fields Constructing Scalar-Photon Three Point Vertex in Massless Quenched Scalar QED Dra. Yajaira Concha Sánchez, Michoacana University, México 2-6 November 2015 Mazatlán,

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

D.Blanco, H.C., L.Y.Hung, R. Myers (2013)

D.Blanco, H.C., L.Y.Hung, R. Myers (2013) D.Blanco, H.C., L.Y.Hung, R. Myers (2013) Renormalization group flow in the space of QFT Change in the physics with scale through the change of coupling constants with the RG flow. At fixed points there

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Maxwell's Equations and Conservation Laws

Maxwell's Equations and Conservation Laws Maxwell's Equations and Conservation Laws 1 Reading: Jackson 6.1 through 6.4, 6.7 Ampère's Law, since identically. Although for magnetostatics, generally Maxwell suggested: Use Gauss's Law to rewrite continuity

More information

On the partner particles for black-hole evaporation

On the partner particles for black-hole evaporation On the partner particles for black-hole evaporation Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen On the partner particles for black-hole evaporation p.1/12 Quantum Radiation Relativistic

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

Chapter 11. Radiation. How accelerating charges and changing currents produce electromagnetic waves, how they radiate.

Chapter 11. Radiation. How accelerating charges and changing currents produce electromagnetic waves, how they radiate. Chapter 11. Radiation How accelerating charges and changing currents produce electromagnetic waves, how they radiate. 11.1.1 What is Radiation? Assume a radiation source is localized near the origin. Total

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Effective Field Theory of Dissipative Fluids

Effective Field Theory of Dissipative Fluids Effective Field Theory of Dissipative Fluids Hong Liu Paolo Glorioso Michael Crossley arxiv: 1511.03646 Conserved quantities Consider a long wavelength disturbance of a system in thermal equilibrium non-conserved

More information

arxiv: v1 [physics.atom-ph] 7 Feb 2013

arxiv: v1 [physics.atom-ph] 7 Feb 2013 Phase Effects in Two-Photon Free-Free Transitions in a Bichromatic Field of Frequencies ω and ω Aurelia Cionga and Gabriela Zloh arxiv:02.76v [physics.atom-ph] 7 Feb 20 Institute for Space Sciences, P.O.

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field.

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 2: Vector and integral identities. Here ψ is a scalar

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

Summary lecture VI. with the reduced mass and the dielectric background constant

Summary lecture VI. with the reduced mass and the dielectric background constant Summary lecture VI Excitonic binding energy reads with the reduced mass and the dielectric background constant Δ Statistical operator (density matrix) characterizes quantum systems in a mixed state and

More information

CLASSICAL ELECTRICITY

CLASSICAL ELECTRICITY CLASSICAL ELECTRICITY AND MAGNETISM by WOLFGANG K. H. PANOFSKY Stanford University and MELBA PHILLIPS Washington University SECOND EDITION ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo

More information

The Radia)ng Electron

The Radia)ng Electron The Radia)ng Electron R. F. O Connell, Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA 70803-4001 USA Based on work carried out in collaboramon with Professor G. W. Ford.

More information

Calculation of the Larmor Radius of the Inverse Faraday Effect in an Electron Ensemble from the Einstein Cartan Evans (ECE) Unified Field Theory

Calculation of the Larmor Radius of the Inverse Faraday Effect in an Electron Ensemble from the Einstein Cartan Evans (ECE) Unified Field Theory 10 Calculation of the Larmor Radius of the Inverse Faraday Effect in an Electron Ensemble from the Einstein Cartan Evans (ECE) Unified Field Theory by Myron W. Evans, Alpha Institute for Advanced Study,

More information

Wilson and Polyakov loops of gravitational gauge fields in Rindler space

Wilson and Polyakov loops of gravitational gauge fields in Rindler space Wilson and Polyakov loops of gravitational gauge fields in Rindler space E.Koorambas 8A Chatzikosta, 5 Ampelokipi, Athens, Greece E-mail:elias.koor@gmail.com (August 4, 04) Abstract: We will study the

More information

Feynman Diagrams. e + e µ + µ scattering

Feynman Diagrams. e + e µ + µ scattering Feynman Diagrams Pictorial representations of amplitudes of particle reactions, i.e scatterings or decays. Greatly reduce the computation involved in calculating rate or cross section of a physical process,

More information

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014 YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD Algirdas Antano Maknickas Institute of Mechanical Sciences, Vilnius Gediminas Technical University September 3, 04 Abstract. It

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

3 Rindler Space and Hawking Radiation

3 Rindler Space and Hawking Radiation 3 Rindler Space and Hawking Radiation The next couple of lectures are on Hawking radiation. There are many good references to learn this subject, for example: Carroll s GR book Chapter 9; Townsend gr-qc/970702;

More information

Hawking-Unruh Temperature. PHYS 612: Advanced Topics in Quantum Field Theory. Spring Taught by George Siopsis. Written by Charles Hughes

Hawking-Unruh Temperature. PHYS 612: Advanced Topics in Quantum Field Theory. Spring Taught by George Siopsis. Written by Charles Hughes Hawking-Unruh Temperature PHYS 612: Advanced Topics in Quantum Field Theory Spring 2018 Taught by George Siopsis Written by Charles Hughes Table of Contents 0) Abstract 1) Introduction to Rindler Coordinates

More information

PHYS 214 Exam Spring 2017 Midterm

PHYS 214 Exam Spring 2017 Midterm PHYS 214 Exam Spring 2017 Midterm 1. Two identical loudspeakers produce sound of equal intensity and frequency = 1200 Hz. The sound waves travel at a speed of 340 m/s. The speakers are driven in phase

More information

The concept of free electromagnetic field in quantum domain

The concept of free electromagnetic field in quantum domain Tr. J. of Physics 23 (1999), 839 845. c TÜBİTAK The concept of free electromagnetic field in quantum domain Alexander SHUMOVSKY and Özgür MÜSTECAPLIOĞLU Physics Department, Bilkent University 06533 Ankara-TURKEY

More information

On the renormalization-scheme dependence in quantum field theory.

On the renormalization-scheme dependence in quantum field theory. On the renormalization-scheme dependence in quantum field theory. arxiv:hep-ph/972477v 22 Dec 997 Anton V. Konychev Institute for High Energy Physics, Protvino* Abstract Using quantum electrodynamics as

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Topological insulator part I: Phenomena

Topological insulator part I: Phenomena Phys60.nb 5 Topological insulator part I: Phenomena (Part II and Part III discusses how to understand a topological insluator based band-structure theory and gauge theory) (Part IV discusses more complicated

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Chapter 2 Undulator Radiation

Chapter 2 Undulator Radiation Chapter 2 Undulator Radiation 2.1 Magnetic Field of a Planar Undulator The motion of an electron in a planar undulator magnet is shown schematically in Fig. 2.1. The undulator axis is along the direction

More information

Special Relativity from Soft Gravitons

Special Relativity from Soft Gravitons Special Relativity from Soft Gravitons Mark Hertzberg, Tufts University CosPA, December 14, 2017 with McCullen Sandora, PRD 96 084048 (1704.05071) Can the laws of special relativity be violated in principle?

More information

THE INTERACTION OF FREE ELECTRONS WITH INTENSE ELECTROMAGNETIC RADIATION

THE INTERACTION OF FREE ELECTRONS WITH INTENSE ELECTROMAGNETIC RADIATION THE ITERACTIO OF FREE ELECTROS WITH ITESE ELECTROMAGETIC RADIATIO M. BOCA, V. FLORESCU Department of Physics and Centre for Advanced Quantum Physics University of Bucharest, MG-11, Bucharest-Mãgurele,

More information

Massive Photon and Cosmology

Massive Photon and Cosmology Massive Photon and Cosmology Phillial Oh Sungkyunkwan University KIAS 2014. 6. Contents I. Introduction II. Massive QED and Cosmology III. Massive Dark Photon and Cosmology IV. Conslusions Massive Photon:

More information

Recollision processes in strong-field QED

Recollision processes in strong-field QED Recollision processes in strong-field QED Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 21st 2014 Outline Introduction to recollision processes in atomic

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

( ) /, so that we can ignore all

( ) /, so that we can ignore all Physics 531: Atomic Physics Problem Set #5 Due Wednesday, November 2, 2011 Problem 1: The ac-stark effect Suppose an atom is perturbed by a monochromatic electric field oscillating at frequency ω L E(t)

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Stable bouncing universe in Hořava-Lifshitz Gravity

Stable bouncing universe in Hořava-Lifshitz Gravity Stable bouncing universe in Hořava-Lifshitz Gravity (Waseda Univ.) Collaborate with Yosuke MISONOH (Waseda Univ.) & Shoichiro MIYASHITA (Waseda Univ.) Based on Phys. Rev. D95 044044 (2017) 1 Inflation

More information

Retarded Potentials and Radiation

Retarded Potentials and Radiation Retarded Potentials and Radiation No, this isn t about potentials that were held back a grade :). Retarded potentials are needed because at a given location in space, a particle feels the fields or potentials

More information

Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014

Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014 Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014 A.L.M and F. Prada to appear Albareti, Cembranos, A.L.M. arxiv:1404.5946 and 1405.3900

More information

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania THERMODYNAMICS AND AN INTRODUCTION TO THERMOSTATISTICS SECOND EDITION HERBERT B. University of Pennsylvania CALLEN JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CONTENTS PART I GENERAL

More information