Networks: space-time stochastic models for networks

Size: px
Start display at page:

Download "Networks: space-time stochastic models for networks"

Transcription

1 Mobile and Delay Tolerant Networks: space-time stochastic models for networks Philippe Jacquet Alcatel-Lucent Bell Labs France

2 Plan of the talk Short history of wireless networking Information in space-time embeding The limit of wireless networking Space scaling capacity paradox Time scaling capacity paradox Delay Tolerant Networks

3 wireless performance from Traffic density 1900: Marconi to Wifi 10 bit/s/ km 2, 1000 watt 2008: 10,000,000 bit/s/ha, 0.01 watt A factor ,000,000, 000,000

4 La progression de Marconi à Wifi

5 Comparison: road traffic Road traffic increase : < 10 5 =100,000?

6 One of the futures of wireless mobile networking Internet of things Galaxies of mobile or static sensors Everywhere with short ranges Increasing number

7 Networks: information in space-time Basically: a network is A set of physical objects: routers Which relay information From arbitrary sources To arbitrary destination. time destination Concept of information path (simple or multiple) source space

8 The limits of mobile Transport capacity networking Point to point Shannon law Bit per second per Hz (no spatial reuse) I p2p = 1 log2 log 1+ S N 0 S z N 0

9 Random spatial reuse Emitters are distributed as Poisson process in the plan density ν z j Signals sum α S = z z j α N 0 = z z i i j Removing spatial reuse: I p2p = α 4π sin 4π α S N 0 2 /α 1 log2 log 1+ S N 0 z - PJ, «Éléments de théorie analytique de l'information, modélisation et évaluation de performances, Baccelli, Blaszczyszyn «Stochastic geometry and wireless networks», 2009

10 Random spatial reuse

11 Optimal spatial reuse Random is not far from optimal - PJ, Malik, «Optimizing Local Capacity of Wireless Ad Hoc Networks», 2011

12 - PJ, «Shannon capacity in poisson wireless network model», 2009 The limits of mobile networking multi-point capacity I m2p = α D log2 z i S = z z i α z i D = 4 3

13 The space capacity paradox Increasing density increases capacity Overall Capacity (including relaying) C b = n I p2p Transport Capacity C n = O C b = O(I n p2p n) n - Gupta, Kumar, «The capacity of wireless networks», 2000 n

14 Introducing time in mobile networking A mobility model: independent random walks Average speed s z j (t) z j (0) L L

15 Time capacity paradox Increasing delay increases capacity Flying postman of Grossglauser-Tse Total transport capacity C n = n 2 I p2p D(t) Average delay: D n = O L s n S(0) Much larger than «hot potatoes» routing - Grossglauser, Tse, «Mobility increases the capacity of ad-hoc wireless networks» 2001

16 Angle routing Capacity C n = O n logn I p2p delay D n = O L s PJ, Malik, Mans, Silva, «On the Throughput-Delay Trade-off in Georouting Networks», Infocom 2012

17 Algorithm Direct routing (hot potatoes) Delayed routing (postman routing) Georouting (angle routing) On urban area Total transport capacity Delivery delay 100 Mbps immediate 50 Gbps One month 10 Gbps One hour I p2p =100 kbps L =1 hour s n =1,000,000

18 Time capacity paradox Mobility can create connectivity in disconnected networks S End-to-end path D S S X X path path disruption! X D D node link Delay Tolerant Networks

19 Time capacity paradox

20 Time capacity paradox Mobility creates capacity capacity capacity Information propagation time T( z ) Permanently disconnected time Permanently connected time

21 Model of network Radio propagation Nodes communicates within a unit disk Transmission/reception are instantaneous c =

22 Information propagation speed Density ν Turn rate τ z speed s z

23 Epidemic broadcast Gossips propagate from node to node Node forwards information to all neighbor Repeats information to new neighbor Broadcast delay T(n) : An arbitrary source Time to reach all mobile nodes

24 Dynamic Properties At any time t Neighbor probability Contact rate P( x i (t) x j (t) 1)= πν n P(x fν i met x j during [ t,t + dt[) = dt n f = 2 (s) Exponential Time to next contact

25 Erdos-Renyi DTN model Conjecture on DTN (Towsley, Chlamtac, Nain, etc) contact times are iid exponential and have frequency f. The contact tree grows exponentially T(n) = O(log n) Pellegrini, Miorandi, Carreras, Chlamtac, «A graph-based model for disconnected ad hoc networks,» 2007 Zhang, Neglia, Kurose, Towsley, «Performance modeling of epidemic routing», 2007

26 Erdos-Renyi epidemic contact theory Time to reach k+1 nodes from k E( k T +1 k (n))= n (n k)kfν Logarithmic estimate of epidemic delay k E( T(n) )= E T +1 k (n) k<n ( ) E( T(n) ) = 2logn fν + O 1 = O logn n s

27 How to kill a conjecture Simulation first Epidemic flooding n ( ) O(logn) Is Ω n not

28 Why it fails? Discrete plane Based on network size N nodes Contact times are I.I.d Neighbor states are I.I.d Asymptotics on generating functions Continuous plane Based on time Speed s and density ν I.I.d Random walk model Exponential time to contact Average case analysis

29 Why ER model fails! A Contact times and neighbor status are not I.I.d Triangular inequality B P( AC <1 AB <1& BC <1)> P(AC <1) Ω(1) O( ν n ) B Devroye 1988

30 What is missing to ER model Space considerations! Nodes are confined to move in a finite dimension space Collocation are not I.I.d Source We define source T(x n ) x 0 We define as time to reach x n

31 Space-time path cumulation Accumulate all possible paths Restricted to 2D embedding Weighted with probabilities z j (t) S(0)

32 Path density We define q(z,t) = E(# path ending on (z,t)) q(z,t) Warning: is not a probability distribution p(z,t) = P( path ending on (z,t)) q(z,t) time space

33 Information propagation speed p n (z,t) = P T(x n ) < t x n (0) x 0 (0) = z ( ) n n n 0 Quantity c is a propagation speed upper bound if lim z,n p n z, z = 0 c c x 0 z x n The information propagates like a wave. n It takes Ω to cover n nodes (for the c same density)

34 Information propagation speed Upper bound of information propagation speed via Bessel functions Any quantity c such that lim z P(T( z ) < z z ) = 0 c θ Is the smallest ratio in the kernel of ρ D(ρ,θ) = (τ + θ) 2 ρ 2 v 2 τ 2πνsI 0(ρ) I k () are modified Bessel functions 1 πν 2 ρ I 1 (ρ)

35 Information propagation speed time theory speed s =1 turn rate τ = 0.1 node density ν = 0.25 space

36 Wave propagation PJ, Mans, Rodolakis, «Information Propagation Speed in Mobile and Delay Tolerant Networks», 2010

Upper Bounds on Expected Hitting Times in Mostly-Covered Delay-Tolerant Networks

Upper Bounds on Expected Hitting Times in Mostly-Covered Delay-Tolerant Networks Upper Bounds on Expected Hitting Times in Mostly-Covered Delay-Tolerant Networks Max F. Brugger, Kyle Bradford, Samina Ehsan, Bechir Hamdaoui, Yevgeniy Kovchegov Oregon State University, Corvallis, OR

More information

A Capacity Upper Bound for Large Wireless Networks with Generally Distributed Nodes

A Capacity Upper Bound for Large Wireless Networks with Generally Distributed Nodes Capacity Upper Bound for Large Wireless Networks with Generally Distributed Nodes Guoqiang Mao, Zihuai Lin School of Electrical and Information Engineering The University of Sydney Email: {guoqiang.mao,

More information

Data Loss Modeling and Analysis in Partially-Covered Delay-Tolerant Networks

Data Loss Modeling and Analysis in Partially-Covered Delay-Tolerant Networks Data Loss Modeling and Analysis in Partially-Covered Delay-Tolerant Networks Kyle Bradford, Max Brugger, Samina Ehsan, Bechir Hamdaoui, Yevgeniy Kovchegov Oregon State University, Corvallis, OR 9733 bradfork,bruggerm,ehsans,hamdaoub,kovchegy@onid.orst.edu

More information

Capacity estimates of wireless networks in Poisson shot model over uniform or fractal Cantor maps. Philippe Jacquet Bell Labs

Capacity estimates of wireless networks in Poisson shot model over uniform or fractal Cantor maps. Philippe Jacquet Bell Labs Capacity estimates of wireless networks in Poisson shot model over uniform or fractal Cantor maps Philippe Jacquet Bell Labs Simons Conference on Networks and Stochastic Geometry Classic model: Wireless

More information

Dynamic Power Allocation and Routing for Time Varying Wireless Networks

Dynamic Power Allocation and Routing for Time Varying Wireless Networks Dynamic Power Allocation and Routing for Time Varying Wireless Networks X 14 (t) X 12 (t) 1 3 4 k a P ak () t P a tot X 21 (t) 2 N X 2N (t) X N4 (t) µ ab () rate µ ab µ ab (p, S 3 ) µ ab µ ac () µ ab (p,

More information

Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges: Information Propagation Speed Properties

Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges: Information Propagation Speed Properties Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges: Information Propagation Speed Properties Emmanuel Baccelli, Philippe Jacquet, Bernard Mans, Georgios Rodolakis To cite this version:

More information

Shortest Paths & Link Weight Structure in Networks

Shortest Paths & Link Weight Structure in Networks Shortest Paths & Link Weight Structure in etworks Piet Van Mieghem CAIDA WIT (May 2006) P. Van Mieghem 1 Outline Introduction The Art of Modeling Conclusions P. Van Mieghem 2 Telecommunication: e2e A ETWORK

More information

Message Delivery Probability of Two-Hop Relay with Erasure Coding in MANETs

Message Delivery Probability of Two-Hop Relay with Erasure Coding in MANETs 01 7th International ICST Conference on Communications and Networking in China (CHINACOM) Message Delivery Probability of Two-Hop Relay with Erasure Coding in MANETs Jiajia Liu Tohoku University Sendai,

More information

Exact Speed and Transmission Cost in a Simple One-Dimensional Wireless Delay-Tolerant Network

Exact Speed and Transmission Cost in a Simple One-Dimensional Wireless Delay-Tolerant Network Exact Speed and Transmission Cost in a Simple One-Dimensional Wireless Delay-Tolerant Network D. Cheliotis, I. Kontoyiannis, M. Loulakis $, S. Toumpis Department of Mathematics, University of Athens, Panepistimiopolis,

More information

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random Susceptible-Infective-Removed Epidemics and Erdős-Rényi random graphs MSR-Inria Joint Centre October 13, 2015 SIR epidemics: the Reed-Frost model Individuals i [n] when infected, attempt to infect all

More information

Information Propagation Speed in Bidirectional Vehicular Delay Tolerant Networks

Information Propagation Speed in Bidirectional Vehicular Delay Tolerant Networks Information Propagation Speed in Bidirectional Vehicular Delay Tolerant Networks Emmanuel Baccelli, Philippe Jacquet, Bernard Mans, Georgios Rodolakis INRIA, France, {firstname.lastname}@inria.fr Macquarie

More information

The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks

The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks 1 The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks Urs Niesen, Piyush Gupta, and Devavrat Shah Abstract arxiv:0809.1344v5 [cs.it] 21 Jan 2010 We consider the question of determining

More information

Dynamic Connectivity and Path Formation Time in Poisson Networks

Dynamic Connectivity and Path Formation Time in Poisson Networks Noname manuscript No. (will be inserted by the editor) Dynamic Connectivity and Path Formation Time in Poisson Networks Radha Krishna Ganti Martin Haenggi Received: date / Accepted: date Abstract The connectivity

More information

A New Random Graph Model with Self-Optimizing Nodes: Connectivity and Diameter

A New Random Graph Model with Self-Optimizing Nodes: Connectivity and Diameter A New Random Graph Model with Self-Optimizing Nodes: Connectivity and Diameter Richard J. La and Maya Kabkab Abstract We introduce a new random graph model. In our model, n, n 2, vertices choose a subset

More information

Capacity and Delay Tradeoffs for Ad-Hoc Mobile Networks

Capacity and Delay Tradeoffs for Ad-Hoc Mobile Networks IEEE TRASACTIOS O IFORMATIO THEORY 1 Capacity and Delay Tradeoffs for Ad-Hoc Mobile etworks Michael J. eely University of Southern California mjneely@usc.edu http://www-rcf.usc.edu/ mjneely Eytan Modiano

More information

Delay-Based Connectivity of Wireless Networks

Delay-Based Connectivity of Wireless Networks Delay-Based Connectivity of Wireless Networks Martin Haenggi Abstract Interference in wireless networks causes intricate dependencies between the formation of links. In current graph models of wireless

More information

ABSTRACT. Eunyoung Seo Doctor of Philosophy, 2012

ABSTRACT. Eunyoung Seo Doctor of Philosophy, 2012 ABSTRACT Title of dissertation: MOBILE AD HOC NETWORKS- ITS CONNECTIVITY AND ROUTING OVERHEAD Eunyoung Seo Doctor of Philosophy, 2012 Dissertation directed by: Professor Richard J. La Department of Electrical

More information

The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks

The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks 1 The Balanced Unicast and Multicast Capacity Regions of Large Wireless Networks Urs Niesen, Piyush Gupta, and Devavrat Shah Abstract arxiv:0809.1344v3 [cs.it] 24 Jun 2009 We consider the question of determining

More information

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Reimer Kühn Disordered Systems Group Department of Mathematics, King s College London Random Graphs and Random Processes, KCL

More information

Crossing Over the Bounded Domain: From Exponential To Power-law Intermeeting

Crossing Over the Bounded Domain: From Exponential To Power-law Intermeeting Crossing Over the Bounded Domain: From Exponential To Power-law Intermeeting time in MANET Han Cai, Do Young Eun Department of Electrical and Computer Engineering North Carolina State University Motivation

More information

Criticality of Large Delay Tolerant Networks via Directed Continuum Percolation in Space-Time

Criticality of Large Delay Tolerant Networks via Directed Continuum Percolation in Space-Time Criticality of Large Delay Tolerant Networks via Directed Continuum Percolation in Space-Time Esa Hyytiä and Jörg Ott Department of Communications and Networking Aalto University, Finland Abstract We study

More information

R ij = 2. Using all of these facts together, you can solve problem number 9.

R ij = 2. Using all of these facts together, you can solve problem number 9. Help for Homework Problem #9 Let G(V,E) be any undirected graph We want to calculate the travel time across the graph. Think of each edge as one resistor of 1 Ohm. Say we have two nodes: i and j Let the

More information

Distributed Optimization over Networks Gossip-Based Algorithms

Distributed Optimization over Networks Gossip-Based Algorithms Distributed Optimization over Networks Gossip-Based Algorithms Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Random

More information

Hyperbolic metric spaces and their applications to large complex real world networks II

Hyperbolic metric spaces and their applications to large complex real world networks II Hyperbolic metric spaces Hyperbolic metric spaces and their applications to large complex real world networks II Gabriel H. Tucci Bell Laboratories Alcatel-Lucent May 17, 2010 Tucci Hyperbolic metric spaces

More information

Capacity Limit, Link Scheduling and Power Control in Wireless Networks. Shan Zhou

Capacity Limit, Link Scheduling and Power Control in Wireless Networks. Shan Zhou Capacity Limit, Link Scheduling and Power Control in Wireless Networks by Shan Zhou A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April

More information

DTN-Meteo: Forecasting DTN Performance under Heterogeneous Mobility

DTN-Meteo: Forecasting DTN Performance under Heterogeneous Mobility : Forecasting DTN Performance under Heterogeneous Mobility Andreea Picu Dr. Thrasyvoulos Spyropoulos Computer Engineering and Networks Laboratory (TIK) Communication Systems Group (CSG) June 21, 2012 1

More information

Signalling Analysis for Adaptive TCD Routing in ISL Networks *

Signalling Analysis for Adaptive TCD Routing in ISL Networks * COST 272 Packet-Oriented Service delivery via Satellite Signalling Analysis for Adaptive TCD Routing in ISL Networks * Ales Svigelj, Mihael Mohorcic, Gorazd Kandus Jozef Stefan Institute, Ljubljana, Slovenia

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 011 MODULE 3 : Stochastic processes and time series Time allowed: Three Hours Candidates should answer FIVE questions. All questions carry

More information

Bounds on Information Propagation Delay in Interference-Limited ALOHA Networks

Bounds on Information Propagation Delay in Interference-Limited ALOHA Networks Bounds on Information Propagation Delay in Interference-Limited ALOHA Networks Radha Krishna Ganti and Martin Haenggi Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556,

More information

Quality of Real-Time Streaming in Wireless Cellular Networks : Stochastic Modeling and Analysis

Quality of Real-Time Streaming in Wireless Cellular Networks : Stochastic Modeling and Analysis Quality of Real-Time Streaming in Wireless Cellular Networs : Stochastic Modeling and Analysis B. Blaszczyszyn, M. Jovanovic and M. K. Karray Based on paper [1] WiOpt/WiVid Mai 16th, 2014 Outline Introduction

More information

6.207/14.15: Networks Lecture 4: Erdös-Renyi Graphs and Phase Transitions

6.207/14.15: Networks Lecture 4: Erdös-Renyi Graphs and Phase Transitions 6.207/14.15: Networks Lecture 4: Erdös-Renyi Graphs and Phase Transitions Daron Acemoglu and Asu Ozdaglar MIT September 21, 2009 1 Outline Phase transitions Connectivity threshold Emergence and size of

More information

Giuseppe Bianchi, Ilenia Tinnirello

Giuseppe Bianchi, Ilenia Tinnirello Capacity of WLAN Networs Summary Per-node throughput in case of: Full connected networs each node sees all the others Generic networ topology not all nodes are visible Performance Analysis of single-hop

More information

Performance of Ad Hoc Networks with Two-Hop Relay Routing and Limited Packet Lifetime

Performance of Ad Hoc Networks with Two-Hop Relay Routing and Limited Packet Lifetime Performance of Ad Hoc Networks with Two-Hop Relay Routing and Limited Packet Lifetime Ahmad Al Hanbali Philippe Nain and Eitan Altman INRIA B.P. 93 69 Sophia Antipolis Cedex France {aalhanbanainaltman}@sophia.inria.fr

More information

Critical Density Thresholds in Distributed Wireless Networks

Critical Density Thresholds in Distributed Wireless Networks Critical Density Thresholds in Distributed Wireless Networks Bhaskar Krishnamachari, Stephen B. Wicker, Rámon Béjar, Marc Pearlman Cornell University, Ithaca, NY 14853 {bhaskar@ece,wicker@ece,bejar@cs,pearlman@ece}.cornell.edu

More information

EUSIPCO

EUSIPCO EUSIPCO 3 569736677 FULLY ISTRIBUTE SIGNAL ETECTION: APPLICATION TO COGNITIVE RAIO Franc Iutzeler Philippe Ciblat Telecom ParisTech, 46 rue Barrault 753 Paris, France email: firstnamelastname@telecom-paristechfr

More information

Connectivity of Wireless Sensor Networks with Constant Density

Connectivity of Wireless Sensor Networks with Constant Density Connectivity of Wireless Sensor Networks with Constant Density Sarah Carruthers and Valerie King University of Victoria, Victoria, BC, Canada Abstract. We consider a wireless sensor network in which each

More information

Facets of Information

Facets of Information Facets of Information W. Szpankowski Department of Computer Science Purdue University W. Lafayette, IN 47907 January 30, 2009 AofA and IT logos QUALCOMM, San Diego, 2009 Thanks to Y. Choi, Purdue, P. Jacquet,

More information

Information Propagation Speed in Mobile and Delay Tolerant Networks

Information Propagation Speed in Mobile and Delay Tolerant Networks Information Propagation Speed in Mobile and Delay Tolerant Networks Philippe Jacquet, Bernard Mans To cite this version: Philippe Jacquet, Bernard Mans. Information Propagation Speed in Mobile and Delay

More information

On Distribution and Limits of Information Dissemination Latency and Speed In Mobile Cognitive Radio Networks

On Distribution and Limits of Information Dissemination Latency and Speed In Mobile Cognitive Radio Networks This paper was presented as part of the Mini-Conference at IEEE INFOCOM 11 On Distribution and Limits of Information Dissemination Latency and Speed In Mobile Cognitive Radio Networks Lei Sun Wenye Wang

More information

Adventures in random graphs: Models, structures and algorithms

Adventures in random graphs: Models, structures and algorithms BCAM January 2011 1 Adventures in random graphs: Models, structures and algorithms Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM January 2011 2 LECTURE

More information

1 Complex Networks - A Brief Overview

1 Complex Networks - A Brief Overview Power-law Degree Distributions 1 Complex Networks - A Brief Overview Complex networks occur in many social, technological and scientific settings. Examples of complex networks include World Wide Web, Internet,

More information

Failure-Resilient Ad Hoc and Sensor Networks in a Shadow Fading Environment

Failure-Resilient Ad Hoc and Sensor Networks in a Shadow Fading Environment Failure-Resilient Ad Hoc and Sensor Networks in a Shadow Fading Environment Christian Bettstetter DoCoMo Euro-Labs, Future Networking Lab, Munich, Germany lastname at docomolab-euro.com Abstract This paper

More information

Asymptotics, asynchrony, and asymmetry in distributed consensus

Asymptotics, asynchrony, and asymmetry in distributed consensus DANCES Seminar 1 / Asymptotics, asynchrony, and asymmetry in distributed consensus Anand D. Information Theory and Applications Center University of California, San Diego 9 March 011 Joint work with Alex

More information

Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting

Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting Swapna B.T., Atilla Eryilmaz, and Ness B. Shroff Departments of ECE and CSE The Ohio State University Columbus, OH 43210

More information

1646 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 4, APRIL 2016

1646 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 4, APRIL 2016 646 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 4, APRIL 6 On the Throughput Capacity Study for Aloha Mobile Ad Hoc Networks Yin Chen, Member, IEEE, Yulong Shen, Member, IEEE, Jinxiao Zhu, Xiaohong

More information

Random Waypoint Model in n-dimensional Space

Random Waypoint Model in n-dimensional Space Date: September 5, 24 Issue: COST279TD(4)32 Random Waypoint Model in n-dimensional Space Esa Hyytiä and Jorma Virtamo 2 Networking Laboratory, Helsinki University of Technology, P.O. Box 3, FIN 25 HUT,

More information

Scaling Laws of Single-Hop Cognitive Networks

Scaling Laws of Single-Hop Cognitive Networks IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 8, AUGUST 2009 4089 Scaling Laws of Single-Hop Cognitive Networks Mai Vu and Vahid Tarokh Abstract We consider a cognitive network consisting of

More information

Achieving Non-Zero Information Velocity in. Wireless Networks

Achieving Non-Zero Information Velocity in. Wireless Networks Achieving Non-Zero Information Velocity in Wireless Networks Srikanth K. Iyer and Rahul Vaze arxiv:50.0038v [cs.it] 2 Jan 205 Abstract In wireless networks, where each node transmits independently of other

More information

Cooperative HARQ with Poisson Interference and Opportunistic Routing

Cooperative HARQ with Poisson Interference and Opportunistic Routing Cooperative HARQ with Poisson Interference and Opportunistic Routing Amogh Rajanna & Mostafa Kaveh Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN USA. Outline

More information

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes 6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes Daron Acemoglu and Asu Ozdaglar MIT September 16, 2009 1 Outline Erdös-Renyi random graph model Branching processes Phase transitions

More information

Towards a theory of information for energy-efficient communication

Towards a theory of information for energy-efficient communication Towards a theory of information for energy-efficient communication Pulkit Grover Wireless Foundations and Berkeley Wireless Research Center, UC Berkeley with Anant Sahai, Hari Palaiyanur, Kristen Woyach

More information

The message delay in mobile ad hoc networks

The message delay in mobile ad hoc networks Performance Evaluation 62 (2005) 210 228 The message delay in mobile ad hoc networks Robin Groenevelt a,b,, Philippe ain a, Ger Koole c a IRIA, BP 93, 06902 Sophia Antipolis, France b Université de ice,

More information

The Complexity of a Reliable Distributed System

The Complexity of a Reliable Distributed System The Complexity of a Reliable Distributed System Rachid Guerraoui EPFL Alexandre Maurer EPFL Abstract Studying the complexity of distributed algorithms typically boils down to evaluating how the number

More information

Risk sensitive optimal control framework applied to delay tolerant networks

Risk sensitive optimal control framework applied to delay tolerant networks Risk sensitive optimal control framework applied to delay tolerant networks Eitan Altman, Veeraruna Kavitha +, Francesco De Pellegrini, Vijay Kamble and Vivek Borkar Maestro group, INRIA, Sophia Antipolis,

More information

Entropy Vectors and Network Information Theory

Entropy Vectors and Network Information Theory Entropy Vectors and Network Information Theory Sormeh Shadbakht and Babak Hassibi Department of Electrical Engineering Caltech Lee Center Workshop May 25, 2007 1 Sormeh Shadbakht and Babak Hassibi Entropy

More information

OPTIMAL CACHING POLICY OF STOCHASTIC UPDATING INFORMATION IN DELAY TOLERANT NETWORKS. Yahui Wu, Mingxing Liu, Su Deng, Hongbin Huang.

OPTIMAL CACHING POLICY OF STOCHASTIC UPDATING INFORMATION IN DELAY TOLERANT NETWORKS. Yahui Wu, Mingxing Liu, Su Deng, Hongbin Huang. Computing and Informatics, Vol. 33, 2014, 965 991 OPTIMAL CACHING POLICY OF STOCHASTIC UPDATING INFORMATION IN DELAY TOLERANT NETWORKS Yahui Wu, Mingxing Liu, Su Deng, Hongbin Huang Science and Technology

More information

Optimal Utility-Lifetime Trade-off in Self-regulating Wireless Sensor Networks: A Distributed Approach

Optimal Utility-Lifetime Trade-off in Self-regulating Wireless Sensor Networks: A Distributed Approach Optimal Utility-Lifetime Trade-off in Self-regulating Wireless Sensor Networks: A Distributed Approach Hithesh Nama, WINLAB, Rutgers University Dr. Narayan Mandayam, WINLAB, Rutgers University Joint work

More information

Computing and Communicating Functions over Sensor Networks

Computing and Communicating Functions over Sensor Networks Computing and Communicating Functions over Sensor Networks Solmaz Torabi Dept. of Electrical and Computer Engineering Drexel University solmaz.t@drexel.edu Advisor: Dr. John M. Walsh 1/35 1 Refrences [1]

More information

Continuum Equilibria for Routing in Dense Static Ad-hoc Networks

Continuum Equilibria for Routing in Dense Static Ad-hoc Networks Continuum Equilibria for Routing in Dense Static Ad-hoc Networks Eitan Altman, Pierre Bernhard, Merouane Debbah, Alonso Silva Abstract We consider massively dense ad-hoc networks and study their continuum

More information

October Characterizing Information Propagation Through Inter-Vehicle Communication on a Simple Network of Two Parallel Roads

October Characterizing Information Propagation Through Inter-Vehicle Communication on a Simple Network of Two Parallel Roads 1. Report No. SWUTC/10/161005-1 4. Title and Subtitle Technical Report Documentation Page. Government Accession No. 3. Recipient's Catalog No. 5. Report Date Characterizing Information Propagation Through

More information

Window Flow Control Systems with Random Service

Window Flow Control Systems with Random Service Window Flow Control Systems with Random Service Alireza Shekaramiz Joint work with Prof. Jörg Liebeherr and Prof. Almut Burchard April 6, 2016 1 / 20 Content 1 Introduction 2 Related work 3 State-of-the-art

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 5 Routing Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Warning These notes are not self-contained, probably not understandable, unless you also

More information

DYNAMIC MODEL OF URBAN TRAFFIC AND OPTIMUM MANAGEMENT OF ITS FLOW AND CONGESTION

DYNAMIC MODEL OF URBAN TRAFFIC AND OPTIMUM MANAGEMENT OF ITS FLOW AND CONGESTION Dynamic Systems and Applications 26 (2017) 575-588 DYNAMIC MODEL OF URBAN TRAFFIC AND OPTIMUM MANAGEMENT OF ITS FLOW AND CONGESTION SHI AN WANG AND N. U. AHMED School of Electrical Engineering and Computer

More information

On Source-Channel Communication in Networks

On Source-Channel Communication in Networks On Source-Channel Communication in Networks Michael Gastpar Department of EECS University of California, Berkeley gastpar@eecs.berkeley.edu DIMACS: March 17, 2003. Outline 1. Source-Channel Communication

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Mathematical Foundations of Complex Networked Information Systems

Mathematical Foundations of Complex Networked Information Systems Mathematical Foundations of Complex Networked Information Systems CIME school/ Newcom++ school Verres (AO) 22-26 June 2009 ORGANIZERS: Fabio Fagnani, Politecnico di Torino Sandro Zampieri, Università di

More information

Mathematical Analysis of IEEE Energy Efficiency

Mathematical Analysis of IEEE Energy Efficiency Information Engineering Department University of Padova Mathematical Analysis of IEEE 802.11 Energy Efficiency A. Zanella and F. De Pellegrini IEEE WPMC 2004 Padova, Sept. 12 15, 2004 A. Zanella and F.

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014 Midterm Exam 2 Last name First name SID Rules. DO NOT open the exam until instructed

More information

Introduction The Poissonian City Variance and efficiency Flows Conclusion References. The Poissonian City. Wilfrid Kendall.

Introduction The Poissonian City Variance and efficiency Flows Conclusion References. The Poissonian City. Wilfrid Kendall. The Poissonian City Wilfrid Kendall w.s.kendall@warwick.ac.uk Mathematics of Phase Transitions Past, Present, Future 13 November 2009 A problem in frustrated optimization Consider N cities x (N) = {x 1,...,

More information

Almost giant clusters for percolation on large trees

Almost giant clusters for percolation on large trees for percolation on large trees Institut für Mathematik Universität Zürich Erdős-Rényi random graph model in supercritical regime G n = complete graph with n vertices Bond percolation with parameter p(n)

More information

Information in Aloha Networks

Information in Aloha Networks Achieving Proportional Fairness using Local Information in Aloha Networks Koushik Kar, Saswati Sarkar, Leandros Tassiulas Abstract We address the problem of attaining proportionally fair rates using Aloha

More information

EE 550: Notes on Markov chains, Travel Times, and Opportunistic Routing

EE 550: Notes on Markov chains, Travel Times, and Opportunistic Routing EE 550: Notes on Markov chains, Travel Times, and Opportunistic Routing Michael J. Neely University of Southern California http://www-bcf.usc.edu/ mjneely 1 Abstract This collection of notes provides a

More information

Secure, Reliable, and Resilient Design of Wireless Sensor Networks via Random Graph Modeling. Osman Yağan

Secure, Reliable, and Resilient Design of Wireless Sensor Networks via Random Graph Modeling. Osman Yağan Texas A&M University, October 20th, 2016 1 Secure, Reliable, and Resilient Design of Wireless Sensor Networks via Random Graph Modeling Osman Yağan Dept. of ECE and CyLab Carnegie Mellon University oyagan@ece.cmu.edu

More information

Part 2: Random Routing and Load Balancing

Part 2: Random Routing and Load Balancing 1 Part 2: Random Routing and Load Balancing Sid C-K Chau Chi-Kin.Chau@cl.cam.ac.uk http://www.cl.cam.ac.uk/~ckc25/teaching Problem: Traffic Routing 2 Suppose you are in charge of transportation. What do

More information

Effective Carrier Sensing in CSMA Networks under Cumulative Interference

Effective Carrier Sensing in CSMA Networks under Cumulative Interference INFOCOM 2010 Effective Carrier Sensing in MA Networks under Cumulative Interference Liqun Fu Soung Chang Liew Jianwei Huang Department of Information Engineering, The Chinese University of Hong Kong Introduction

More information

Distributed Systems Gossip Algorithms

Distributed Systems Gossip Algorithms Distributed Systems Gossip Algorithms He Sun School of Informatics University of Edinburgh What is Gossip? Gossip algorithms In a gossip algorithm, each node in the network periodically exchanges information

More information

Lecture 06 01/31/ Proofs for emergence of giant component

Lecture 06 01/31/ Proofs for emergence of giant component M375T/M396C: Topics in Complex Networks Spring 2013 Lecture 06 01/31/13 Lecturer: Ravi Srinivasan Scribe: Tianran Geng 6.1 Proofs for emergence of giant component We now sketch the main ideas underlying

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

When Does Content Float? Characterizing Availability of Anchored Information in Opportunistic Content Sharing

When Does Content Float? Characterizing Availability of Anchored Information in Opportunistic Content Sharing When Does Content Float? Characterizing Availability of Anchored Information in Opportunistic Content Sharing Esa Hyytiä, Jorma Virtamo, Pasi Lassila, Jussi Kangasharju, Jörg Ott Aalto University School

More information

Concentration of Measures by Bounded Size Bias Couplings

Concentration of Measures by Bounded Size Bias Couplings Concentration of Measures by Bounded Size Bias Couplings Subhankar Ghosh, Larry Goldstein University of Southern California [arxiv:0906.3886] January 10 th, 2013 Concentration of Measure Distributional

More information

The range of tree-indexed random walk

The range of tree-indexed random walk The range of tree-indexed random walk Jean-François Le Gall, Shen Lin Institut universitaire de France et Université Paris-Sud Orsay Erdös Centennial Conference July 2013 Jean-François Le Gall (Université

More information

Security Versus Capacity Tradeoffs in Large Wireless Networks Using Keyless Secrecy

Security Versus Capacity Tradeoffs in Large Wireless Networks Using Keyless Secrecy Security Versus Capacity Tradeoffs in Large Wireless Networks Using Keyless Secrecy Abstract We investigate the scalability of a class of algorithms that exploit dynamics of wireless fading channels to

More information

Flow-level performance of wireless data networks

Flow-level performance of wireless data networks Flow-level performance of wireless data networks Aleksi Penttinen Department of Communications and Networking, TKK Helsinki University of Technology CLOWN seminar 28.8.08 1/31 Outline 1. Flow-level model

More information

Implementing Information paths in a Dense Wireless Sensor Network

Implementing Information paths in a Dense Wireless Sensor Network Implementing Information paths in a Dense Wireless Sensor Network Masoumeh Haghpanahi, Mehdi Kalantari and Mark Shayman Department of Electrical & Computer Engineering, University of Maryland {masoumeh,mehkalan,shayman}@eng.umd.edu

More information

Optimal Forwarding in Delay Tolerant Networks with Multiple Destinations

Optimal Forwarding in Delay Tolerant Networks with Multiple Destinations 20 International Symposium of Modeling and Optimization of Mobile, Ad Hoc, and Wireless Networks Optimal Forwarding in Delay Tolerant Networks with Multiple Destinations Chandramani Singh, Anurag umar,

More information

Load Balancing in Distributed Service System: A Survey

Load Balancing in Distributed Service System: A Survey Load Balancing in Distributed Service System: A Survey Xingyu Zhou The Ohio State University zhou.2055@osu.edu November 21, 2016 Xingyu Zhou (OSU) Load Balancing November 21, 2016 1 / 29 Introduction and

More information

WiFi MAC Models David Malone

WiFi MAC Models David Malone WiFi MAC Models David Malone November 26, MACSI Hamilton Institute, NUIM, Ireland Talk outline Introducing the 82.11 CSMA/CA MAC. Finite load 82.11 model and its predictions. Issues with standard 82.11,

More information

Energy Optimal Control for Time Varying Wireless Networks. Michael J. Neely University of Southern California

Energy Optimal Control for Time Varying Wireless Networks. Michael J. Neely University of Southern California Energy Optimal Control for Time Varying Wireless Networks Michael J. Neely University of Southern California http://www-rcf.usc.edu/~mjneely Part 1: A single wireless downlink (L links) L 2 1 S={Totally

More information

Conservation laws and some applications to traffic flows

Conservation laws and some applications to traffic flows Conservation laws and some applications to traffic flows Khai T. Nguyen Department of Mathematics, Penn State University ktn2@psu.edu 46th Annual John H. Barrett Memorial Lectures May 16 18, 2016 Khai

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

Near Optimal Broadcast with Network Coding in Large Sensor Networks

Near Optimal Broadcast with Network Coding in Large Sensor Networks Near Optimal Broadcast with Network Coding in Large Sensor Networks Cédric Adjih, Song Yean Cho, Philippe Jacquet To cite this version: Cédric Adjih, Song Yean Cho, Philippe Jacquet. Near Optimal Broadcast

More information

Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix

Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix PACS: 43.58.-e Georges,

More information

Dynamic Connectivity and Packet Propagation Delay in ALOHA Wireless Networks

Dynamic Connectivity and Packet Propagation Delay in ALOHA Wireless Networks Dynamic Connectivity and Pacet Propagation Delay in ALOHA Wireless Networs Radha Krishna Ganti and Martin Haenggi Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556, USA

More information

TCP over Cognitive Radio Channels

TCP over Cognitive Radio Channels 1/43 TCP over Cognitive Radio Channels Sudheer Poojary Department of ECE, Indian Institute of Science, Bangalore IEEE-IISc I-YES seminar 19 May 2016 2/43 Acknowledgments The work presented here was done

More information

5. Density evolution. Density evolution 5-1

5. Density evolution. Density evolution 5-1 5. Density evolution Density evolution 5-1 Probabilistic analysis of message passing algorithms variable nodes factor nodes x1 a x i x2 a(x i ; x j ; x k ) x3 b x4 consider factor graph model G = (V ;

More information

TOUR: Time-sensitive Opportunistic Utility- based Routing in Delay Tolerant Networks

TOUR: Time-sensitive Opportunistic Utility- based Routing in Delay Tolerant Networks TEMPLE UNIVERSITY TOUR: Time-sensitive Opportunistic Utility- based Routing in Delay Tolerant Networks Mingjun Xiao a,b, Jie Wu b, Cong Liu c, and Liusheng Huang a a University of Science and Technology

More information

Fairness and Optimal Stochastic Control for Heterogeneous Networks

Fairness and Optimal Stochastic Control for Heterogeneous Networks λ 91 λ 93 Fairness and Optimal Stochastic Control for Heterogeneous Networks sensor network wired network wireless 9 8 7 6 5 λ 48 λ 42 4 3 0 1 2 λ n R n U n Michael J. Neely (USC) Eytan Modiano (MIT) Chih-Ping

More information

Efficient routing in Poisson small-world networks

Efficient routing in Poisson small-world networks Efficient routing in Poisson small-world networks M. Draief and A. Ganesh Abstract In recent work, Jon Kleinberg considered a small-world network model consisting of a d-dimensional lattice augmented with

More information

DCS: Distributed Asynchronous Clock Synchronization in Delay Tolerant Networks

DCS: Distributed Asynchronous Clock Synchronization in Delay Tolerant Networks IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1 DCS: Distributed Asynchronous Clock Synchronization in Delay Tolerant Networks Bong Jun Choi, Student Member, IEEE, Hao Liang, Student Member, IEEE,

More information

ON SPATIAL GOSSIP ALGORITHMS FOR AVERAGE CONSENSUS. Michael G. Rabbat

ON SPATIAL GOSSIP ALGORITHMS FOR AVERAGE CONSENSUS. Michael G. Rabbat ON SPATIAL GOSSIP ALGORITHMS FOR AVERAGE CONSENSUS Michael G. Rabbat Dept. of Electrical and Computer Engineering McGill University, Montréal, Québec Email: michael.rabbat@mcgill.ca ABSTRACT This paper

More information