Susceptible-Infective-Removed Epidemics and Erdős-Rényi random

Size: px
Start display at page:

Download "Susceptible-Infective-Removed Epidemics and Erdős-Rényi random"

Transcription

1 Susceptible-Infective-Removed Epidemics and Erdős-Rényi random graphs MSR-Inria Joint Centre October 13, 2015

2 SIR epidemics: the Reed-Frost model Individuals i [n] when infected, attempt to infect all neighbors independently with probability p in subsequent time slot and then die Focus on complete graph (everyone neighbor of everyone) Associated model: Erdős-Rényi random graph G(n, p): undirected graph on node set [n]. Edge (i, j) present iff ξ ij = 1 where {ξ ij } i<j : i.i.d., Bernoulli (p)

3 SIR epidemics: the Reed-Frost model Individuals i [n] when infected, attempt to infect all neighbors independently with probability p in subsequent time slot and then die Focus on complete graph (everyone neighbor of everyone) Associated model: Erdős-Rényi random graph G(n, p): undirected graph on node set [n]. Edge (i, j) present iff ξ ij = 1 where {ξ ij } i<j : i.i.d., Bernoulli (p) From random graph to epidemic process: use ξ ij to determine if when the first of i and j gets infected, it infects the other

4 SIR epidemics: the Reed-Frost model Individuals i [n] when infected, attempt to infect all neighbors independently with probability p in subsequent time slot and then die Focus on complete graph (everyone neighbor of everyone) Associated model: Erdős-Rényi random graph G(n, p): undirected graph on node set [n]. Edge (i, j) present iff ξ ij = 1 where {ξ ij } i<j : i.i.d., Bernoulli (p) From random graph to epidemic process: use ξ ij to determine if when the first of i and j gets infected, it infects the other For initial set X 0 of infective nodes at time 0, i infected at time t iff d G (X 0, i) = t Set of nodes eventually infected: i X0 Γ(i) where Γ(i): graph s connected component including i

5 Outline Seminal results by Erdős and Rényi ( ) First phase transition: emergence of giant component [Tool: branching processes & Chernoff s inequality] Second phase transition: emergence of connectivity [Tools: 1st and 2nd moment methods; Poisson approximation]

6 Emergence of giant component Analysis of graph s connected components: let C(i): size of i-th largest connected component (in number of nodes) in G(n, p) Theorem Let p = λ/n for fixed λ > 0 Sub-critical case (λ < 1): there exists f (λ) such that lim P(C(1) f (λ) log(n)) = 1 n Super-critical case (λ > 1): there exists g(λ) such that for all δ > 0, lim P( C(1) (1 p ext ) δ, C(2) g(λ) log(n)) = 1, n n where p ext : extinction probability of Poisson (λ) branching process, i.e. smallest root of x = e λ(x 1) in [0, 1]

7 Interpretation Sub-critical regime: Only logarithmically sized components i.e. no global outbreak Super-critical regime: with probability 1 p ext, epidemics started from randomly selected node reaches n[1 p ext + o(1)] others, i.e. macroscopic outbreak Note: only one giant component, others still logarithmic

8 Sub-critical regime Exploration of connected component Γ(i 0 ): initialized with active set A 0 = {i 0 } and killed set B 0 = At time t pick j t A t 1, kill it and activate its neighbours not yet activated (set D t ) A t = A t 1 \ {j t } D t, B t = B t 1 {j t } Notation: A t = A t, D t = D t A t = 1 t + D D t Conditionally on F t 1 = σ(a 0,..., A t 1 ), D t Bin(p, n 1 D 0 D t 1 ) Size C of connected component: C = inf{t > 0 : A t = 0}

9 Sub-critical regime, continued Processes {A t }, {D t } can be extended after end of component s exploration Upper bound: P(C > k) = P(A 1,..., A k > 0) P(A k > 0) Chernoff s bounding technique: P(A k > 0) e kh(1) where h(x) = λh 1 (x/λ), h 1 (x) = x log(x) x + 1: Chernoff s exponent for Poisson (λ) random variable Union bound allows to conclude

10 Super-critical regime λ > 1 Lemma For any k > 0, d 1,..., d k N k, lim n P(D1 k = d 1 k) = k λds s=1 e λ d, s! hence lim n P(C k) = P(Z k) where Z: total population of Poisson (λ) branching process Lemma For any k 1, A k + k 1 Bin(1 (1 p) k, n 1), hence P(C = k) P(Bin(1 (1 p) k, n 1) = k 1) Corollary For any fixed ɛ, δ > 0, there exists A > 0 such that P(C A) p ext ɛ, P( C/n (1 p ext ) δ) 1 p ext ɛ

11 Super-critical regime, continued Fix ɛ, δ > 0. Call connected component small if C A, gigantic if C/n (1 p ext ) δ, failed otherwise. Repeatedly extract connected component until either failure or giant component found Probability of finding giant, i.e. success, in at most M steps: at least M 1 (p ext ɛ) m [1 p ext ɛ] = 1 p ext ɛ 1 p ext + ɛ [1 (p ext ɛ) M ] m=0 Hence probability of success 1 O(ɛ) for M Ω(log(1/ɛ)) Given success, remaining graph: G(n, p) with n n n(1 p ext δ) = n(p ext + δ) a sub-critical Erdős-Rényi graph, as λp ext < 1 (see notes on branching processes)

12 Connectivity By previous result: for fixed λ > 1, giant component of size n(1 p ext ) For fixed λ, graph disconnected Under what regime is graph connected? Theorem For fixed c R, assume np = log(n) + c. Then lim n P(G(n, p) connected) = e e c Corollary If np log(n) +, then lim n P(G(n, p) connected) = 1 If np log(n), then lim n P(G(n, p) connected) = 0

13 Proof strategy Show that number of isolated nodes (i.e. nodes of degree 0) admits asymptotically Poisson (e c ) distribution [Poisson approximation method], hence lim n P(A) = e e c where A = {no isolated vertices in G(n, p)} Show that lim n P(B) = 0 where B = { connected component of size k {2,..., n/2}} Use bounds P(A) P(B) P(G(n, p) connected) = P(A B) P(A)

14 Basic tools: the first and second moment methods Let Z u, u V be indicators of events and X = u V Z u. First moment method: P( u V : Z u = 1) u V E(Z u) = E(X ), hence with high probability none of these events occurs if lim n E(X ) = 0. Application: with high probability no isolated node in G(n, p) if lim n [np log(n)] = +. Second moment method: P( u V, Z u = 0) = P(X = 0) Var(X ) E(X ) 2. Hence if Var(X ) = o(e(x ) 2 ), then with high probability some event occurs. Application: with high probability there is some isolated node in G(n, p) if lim n [np log(n)] =.

15 Variation distance Definition Variation distance between two probability measures µ, ν on (Ω, F): d var (µ, ν) = 2 sup A F µ(a) ν(a) Alternative characterization: if µ, ν admit densities dµ respect to measure π (e.g., π = µ + ν) then d var (µ, ν) = Ω dµ dπ dν dπ dπ dπ, dν dπ with In particular for Ω = N and π = δ n, d var (µ, ν) = µ n ν n n N n N Definition {µ (n) } n N converges in variation to µ iff lim n d var (µ (n), µ) = 0 A strong form of convergence (implies convergence in distribution)

16 Poisson approximation: the Stein-Chen method Theorem Let Z u {0, 1}, u V, X = u V Z u. Denote π u = E(Z u ), λ = E(X ) = u V π u. Assume {Z uv } u,v V,v u such that u V, P({Z uv } v u ) = P({Z v } v u Z u = 1). Then: d var (X, Poisson(λ)) 2 min(1, 1/λ) u V π u π u + E Z uv Z v v u

17 Applications Proposition (Binomial approximation) One has for all n, λ n: d var (Bin(n, λ/n), Poisson(λ)) 2 min(1, λ) λ n Proposition (Isolated nodes) In G(n, p) with np = log(n) + c, noting λ = n(1 p) n 1 e c and X : number of isolated nodes, then d var (X, Poisson(λ)) 2λ[1/n + p/(1 p)] = O(log(n)/n) Hence, lim n P(X = 0) = e e c

18 Stein-Chen method proof arguments Fact: for each λ > 0, A N, function f : N R defined by f (0) = 0, λf (j + 1) j f (j) = I A (j) Poi λ (A), j N is min(1, λ 1 ) Lipschitz Write P(X A) Poi λ (A) = E[λf (X + 1) Xf (X )] = π u E f (X + 1) f (1 + Z uv ) u V v u π u min(1, λ 1 )E Z v Z uv u V v V v u u V π u π u + E Z v Z uv v u

19 Connectivity final arguments Let A k = { connected component of size k}. By union bound, for p = Θ(log(n)/n), P(A 2 ) ( n 2) p(1 p) 2(n 2) O(p) = o(1) Similarly for k n/2, P(A k ) ( ) n k Tk p k 1 (1 p) k(n k) where T k : number of trees on [k] Cayley s theorem: T k = k k 2. Hence P(A k ) ( ) n k k k 2 p k 1 (1 p) k(n k) nk k! kk 2 p k 1 e pkn/2 Conclusion P( 2 k n/2 A k ) follows. 1 1 p k 2 k ek(1+log(np) np/2) 2 k n/2 P(A k ) 0 as n

20 Takeaway messages connectivity of Erdős-Rényi graphs informs behaviour of SIR epidemics on complete graph Emergence of giant component of size n(1 p ext ) as average degree crosses critical value 1 Full connectivity for average degree log(n) + O(1) Proof techniques: branching process approximation, Chernoff bounds; First and second moment methods; Poisson approximation via Stein-Chen method

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes 6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes Daron Acemoglu and Asu Ozdaglar MIT September 16, 2009 1 Outline Erdös-Renyi random graph model Branching processes Phase transitions

More information

6.207/14.15: Networks Lecture 4: Erdös-Renyi Graphs and Phase Transitions

6.207/14.15: Networks Lecture 4: Erdös-Renyi Graphs and Phase Transitions 6.207/14.15: Networks Lecture 4: Erdös-Renyi Graphs and Phase Transitions Daron Acemoglu and Asu Ozdaglar MIT September 21, 2009 1 Outline Phase transitions Connectivity threshold Emergence and size of

More information

Lecture 06 01/31/ Proofs for emergence of giant component

Lecture 06 01/31/ Proofs for emergence of giant component M375T/M396C: Topics in Complex Networks Spring 2013 Lecture 06 01/31/13 Lecturer: Ravi Srinivasan Scribe: Tianran Geng 6.1 Proofs for emergence of giant component We now sketch the main ideas underlying

More information

Random Graphs. EECS 126 (UC Berkeley) Spring 2019

Random Graphs. EECS 126 (UC Berkeley) Spring 2019 Random Graphs EECS 126 (UC Bereley) Spring 2019 1 Introduction In this note, we will briefly introduce the subject of random graphs, also nown as Erdös-Rényi random graphs. Given a positive integer n and

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Chapter 3. Erdős Rényi random graphs

Chapter 3. Erdős Rényi random graphs Chapter Erdős Rényi random graphs 2 .1 Definitions Fix n, considerthe set V = {1,2,...,n} =: [n], andput N := ( n 2 be the numberofedgesonthe full graph K n, the edges are {e 1,e 2,...,e N }. Fix also

More information

Homework 6: Solutions Sid Banerjee Problem 1: (The Flajolet-Martin Counter) ORIE 4520: Stochastics at Scale Fall 2015

Homework 6: Solutions Sid Banerjee Problem 1: (The Flajolet-Martin Counter) ORIE 4520: Stochastics at Scale Fall 2015 Problem 1: (The Flajolet-Martin Counter) In class (and in the prelim!), we looked at an idealized algorithm for finding the number of distinct elements in a stream, where we sampled uniform random variables

More information

Random Graphs. 7.1 Introduction

Random Graphs. 7.1 Introduction 7 Random Graphs 7.1 Introduction The theory of random graphs began in the late 1950s with the seminal paper by Erdös and Rényi [?]. In contrast to percolation theory, which emerged from efforts to model

More information

Branching processes. Chapter Background Basic definitions

Branching processes. Chapter Background Basic definitions Chapter 5 Branching processes Branching processes arise naturally in the study of stochastic processes on trees and locally tree-like graphs. After a review of the basic extinction theory of branching

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

3.2 Configuration model

3.2 Configuration model 3.2 Configuration model 3.2.1 Definition. Basic properties Assume that the vector d = (d 1,..., d n ) is graphical, i.e., there exits a graph on n vertices such that vertex 1 has degree d 1, vertex 2 has

More information

Almost giant clusters for percolation on large trees

Almost giant clusters for percolation on large trees for percolation on large trees Institut für Mathematik Universität Zürich Erdős-Rényi random graph model in supercritical regime G n = complete graph with n vertices Bond percolation with parameter p(n)

More information

Mixing time and diameter in random graphs

Mixing time and diameter in random graphs October 5, 2009 Based on joint works with: Asaf Nachmias, and Jian Ding, Eyal Lubetzky and Jeong-Han Kim. Background The mixing time of the lazy random walk on a graph G is T mix (G) = T mix (G, 1/4) =

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics School of Mathematics and Statistics, University of Sheffield 2018 19 Identically distributed Suppose we have n random variables X 1, X 2,..., X n. Identically

More information

Weak convergence in Probability Theory A summer excursion! Day 3

Weak convergence in Probability Theory A summer excursion! Day 3 BCAM June 2013 1 Weak convergence in Probability Theory A summer excursion! Day 3 Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM June 2013 2 Day 1: Basic

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

Three Disguises of 1 x = e λx

Three Disguises of 1 x = e λx Three Disguises of 1 x = e λx Chathuri Karunarathna Mudiyanselage Rabi K.C. Winfried Just Department of Mathematics, Ohio University Mathematical Biology and Dynamical Systems Seminar Ohio University November

More information

Random Geometric Graphs

Random Geometric Graphs Random Geometric Graphs Mathew D. Penrose University of Bath, UK Networks: stochastic models for populations and epidemics ICMS, Edinburgh September 2011 1 MODELS of RANDOM GRAPHS Erdos-Renyi G(n, p):

More information

The expansion of random regular graphs

The expansion of random regular graphs The expansion of random regular graphs David Ellis Introduction Our aim is now to show that for any d 3, almost all d-regular graphs on {1, 2,..., n} have edge-expansion ratio at least c d d (if nd is

More information

Hard-Core Model on Random Graphs

Hard-Core Model on Random Graphs Hard-Core Model on Random Graphs Antar Bandyopadhyay Theoretical Statistics and Mathematics Unit Seminar Theoretical Statistics and Mathematics Unit Indian Statistical Institute, New Delhi Centre New Delhi,

More information

Eötvös Loránd University, Budapest. 13 May 2005

Eötvös Loránd University, Budapest. 13 May 2005 A NEW CLASS OF SCALE FREE RANDOM GRAPHS Zsolt Katona and Tamás F Móri Eötvös Loránd University, Budapest 13 May 005 Consider the following modification of the Barabási Albert random graph At every step

More information

Erdős-Renyi random graphs basics

Erdős-Renyi random graphs basics Erdős-Renyi random graphs basics Nathanaël Berestycki U.B.C. - class on percolation We take n vertices and a number p = p(n) with < p < 1. Let G(n, p(n)) be the graph such that there is an edge between

More information

On the convergence of sequences of random variables: A primer

On the convergence of sequences of random variables: A primer BCAM May 2012 1 On the convergence of sequences of random variables: A primer Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM May 2012 2 A sequence a :

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Epidemic Models. Maaike Koninx July 12, Bachelor thesis Supervisor: dr. S.G. Cox

Epidemic Models. Maaike Koninx July 12, Bachelor thesis Supervisor: dr. S.G. Cox Epidemic Models Maaike Koninx July 12, 2015 Bachelor thesis Supervisor: dr. S.G. Cox Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Moments and tails. Chapter 2

Moments and tails. Chapter 2 Chapter Moments and tails M X (s) =E e sx, defined for all s R where it is finite, which includes at least s =0. If M X (s) is defined on ( s 0,s 0 ) for some s 0 > 0 then X has finite moments of all orders

More information

THE SECOND LARGEST COMPONENT IN THE SUPERCRITICAL 2D HAMMING GRAPH

THE SECOND LARGEST COMPONENT IN THE SUPERCRITICAL 2D HAMMING GRAPH THE SECOND LARGEST COMPONENT IN THE SUPERCRITICAL 2D HAMMING GRAPH REMCO VAN DER HOFSTAD, MALWINA J. LUCZAK, AND JOEL SPENCER Abstract. The 2-dimensional Hamming graph H(2, n consists of the n 2 vertices

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini April 27, 2018 1 / 80 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES Applied Probability Trust 7 May 22 UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES HAMED AMINI, AND MARC LELARGE, ENS-INRIA Abstract Upper deviation results are obtained for the split time of a

More information

Random regular digraphs: singularity and spectrum

Random regular digraphs: singularity and spectrum Random regular digraphs: singularity and spectrum Nick Cook, UCLA Probability Seminar, Stanford University November 2, 2015 Universality Circular law Singularity probability Talk outline 1 Universality

More information

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1 Lecture I jacques@ucsd.edu Notation: Throughout, P denotes probability and E denotes expectation. Denote (X) (r) = X(X 1)... (X r + 1) and let G n,p denote the Erdős-Rényi model of random graphs. 10 Random

More information

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions Chapter 4 Signed Measures Up until now our measures have always assumed values that were greater than or equal to 0. In this chapter we will extend our definition to allow for both positive negative values.

More information

Math 151. Rumbos Spring Solutions to Review Problems for Exam 3

Math 151. Rumbos Spring Solutions to Review Problems for Exam 3 Math 151. Rumbos Spring 2014 1 Solutions to Review Problems for Exam 3 1. Suppose that a book with n pages contains on average λ misprints per page. What is the probability that there will be at least

More information

Supervised Machine Learning (Spring 2014) Homework 2, sample solutions

Supervised Machine Learning (Spring 2014) Homework 2, sample solutions 58669 Supervised Machine Learning (Spring 014) Homework, sample solutions Credit for the solutions goes to mainly to Panu Luosto and Joonas Paalasmaa, with some additional contributions by Jyrki Kivinen

More information

The diameter and mixing time of critical random graphs.

The diameter and mixing time of critical random graphs. The diameter and mixing time of critical random graphs. March 14, 2007 Joint work with: Asaf Nachmias. Background The Erdos and Rényi random graph G(n, p) is obtained from the complete graph on n vertices

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Random Geometric Graphs

Random Geometric Graphs Random Geometric Graphs Mathew D. Penrose University of Bath, UK SAMBa Symposium (Talk 2) University of Bath November 2014 1 MODELS of RANDOM GRAPHS Erdos-Renyi G(n, p): start with the complete n-graph,

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

THE DIAMETER OF WEIGHTED RANDOM GRAPHS. By Hamed Amini and Marc Lelarge EPFL and INRIA

THE DIAMETER OF WEIGHTED RANDOM GRAPHS. By Hamed Amini and Marc Lelarge EPFL and INRIA Submitted to the Annals of Applied Probability arxiv: math.pr/1112.6330 THE DIAMETER OF WEIGHTED RANDOM GRAPHS By Hamed Amini and Marc Lelarge EPFL and INRIA In this paper we study the impact of random

More information

Stein s method and zero bias transformation: Application to CDO pricing

Stein s method and zero bias transformation: Application to CDO pricing Stein s method and zero bias transformation: Application to CDO pricing ESILV and Ecole Polytechnique Joint work with N. El Karoui Introduction CDO a portfolio credit derivative containing 100 underlying

More information

BALANCING GAUSSIAN VECTORS. 1. Introduction

BALANCING GAUSSIAN VECTORS. 1. Introduction BALANCING GAUSSIAN VECTORS KEVIN P. COSTELLO Abstract. Let x 1,... x n be independent normally distributed vectors on R d. We determine the distribution function of the minimum norm of the 2 n vectors

More information

Shortest Paths in Random Intersection Graphs

Shortest Paths in Random Intersection Graphs Shortest Paths in Random Intersection Graphs Gesine Reinert Department of Statistics University of Oxford reinert@stats.ox.ac.uk September 14 th, 2011 1 / 29 Outline Bipartite graphs and random intersection

More information

Topic 9 Examples of Mass Functions and Densities

Topic 9 Examples of Mass Functions and Densities Topic 9 Examples of Mass Functions and Densities Discrete Random Variables 1 / 12 Outline Bernoulli Binomial Negative Binomial Poisson Hypergeometric 2 / 12 Introduction Write f X (x θ) = P θ {X = x} for

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

s k k! E[Xk ], s <s 0.

s k k! E[Xk ], s <s 0. Chapter Moments and tails M X (s) =E e sx, defined for all s R where it is finite, which includes at least s =0. If M X (s) is defined on ( s 0,s 0 ) for some s 0 > 0 then X has finite moments of all orders

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014 Midterm Exam 2 Last name First name SID Rules. DO NOT open the exam until instructed

More information

A PECULIAR COIN-TOSSING MODEL

A PECULIAR COIN-TOSSING MODEL A PECULIAR COIN-TOSSING MODEL EDWARD J. GREEN 1. Coin tossing according to de Finetti A coin is drawn at random from a finite set of coins. Each coin generates an i.i.d. sequence of outcomes (heads or

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor)

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Matija Vidmar February 7, 2018 1 Dynkin and π-systems Some basic

More information

A New Random Graph Model with Self-Optimizing Nodes: Connectivity and Diameter

A New Random Graph Model with Self-Optimizing Nodes: Connectivity and Diameter A New Random Graph Model with Self-Optimizing Nodes: Connectivity and Diameter Richard J. La and Maya Kabkab Abstract We introduce a new random graph model. In our model, n, n 2, vertices choose a subset

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

arxiv: v1 [math.pr] 25 Mar 2016

arxiv: v1 [math.pr] 25 Mar 2016 Spectral Bounds in Random Graphs Applied to Spreading Phenomena and Percolation arxiv:1603.07970v1 [math.pr] 25 Mar 2016 Rémi Lemonnier 1,2 Kevin Scaman 1 Nicolas Vayatis 1 1 CMLA ENS Cachan, CNRS, Université

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

A simple branching process approach to the phase transition in G n,p

A simple branching process approach to the phase transition in G n,p A simple branching process approach to the phase transition in G n,p Béla Bollobás Department of Pure Mathematics and Mathematical Statistics Wilberforce Road, Cambridge CB3 0WB, UK b.bollobas@dpmms.cam.ac.uk

More information

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23 BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON Somabha Mukherjee 1 University of Pennsylvania March 30, 2018 Joint work with Bhaswar B. Bhattacharya 2 and Sumit Mukherjee 3 1

More information

Induced subgraphs with many repeated degrees

Induced subgraphs with many repeated degrees Induced subgraphs with many repeated degrees Yair Caro Raphael Yuster arxiv:1811.071v1 [math.co] 17 Nov 018 Abstract Erdős, Fajtlowicz and Staton asked for the least integer f(k such that every graph with

More information

Randomized Load Balancing:The Power of 2 Choices

Randomized Load Balancing:The Power of 2 Choices Randomized Load Balancing: The Power of 2 Choices June 3, 2010 Balls and Bins Problem We have m balls that are thrown into n bins, the location of each ball chosen independently and uniformly at random

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability Chapter 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary family

More information

Many cliques in H-free subgraphs of random graphs

Many cliques in H-free subgraphs of random graphs Many cliques in H-free subgraphs of random graphs Noga Alon Alexandr Kostochka Clara Shikhelman November 19, 017 Abstract For two fixed graphs T and H let ex(g(n, p), T, H) be the random variable counting

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

ABSTRACT INTEGRATION CHAPTER ONE

ABSTRACT INTEGRATION CHAPTER ONE CHAPTER ONE ABSTRACT INTEGRATION Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Suggestions and errors are invited and can be mailed

More information

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have Lectures 16-17: Poisson Approximation 1. The Law of Rare Events Theorem 2.6.1: For each n 1, let X n,m, 1 m n be a collection of independent random variables with PX n,m = 1 = p n,m and PX n,m = = 1 p

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

4 Branching Processes

4 Branching Processes 4 Branching Processes Organise by generations: Discrete time. If P(no offspring) 0 there is a probability that the process will die out. Let X = number of offspring of an individual p(x) = P(X = x) = offspring

More information

Branching within branching: a general model for host-parasite co-evolution

Branching within branching: a general model for host-parasite co-evolution Branching within branching: a general model for host-parasite co-evolution Gerold Alsmeyer (joint work with Sören Gröttrup) May 15, 2017 Gerold Alsmeyer Host-parasite co-evolution 1 of 26 1 Model 2 The

More information

Networks: space-time stochastic models for networks

Networks: space-time stochastic models for networks Mobile and Delay Tolerant Networks: space-time stochastic models for networks Philippe Jacquet Alcatel-Lucent Bell Labs France Plan of the talk Short history of wireless networking Information in space-time

More information

Copyright c 2006 Jason Underdown Some rights reserved. choose notation. n distinct items divided into r distinct groups.

Copyright c 2006 Jason Underdown Some rights reserved. choose notation. n distinct items divided into r distinct groups. Copyright & License Copyright c 2006 Jason Underdown Some rights reserved. choose notation binomial theorem n distinct items divided into r distinct groups Axioms Proposition axioms of probability probability

More information

Lecture 7: February 6

Lecture 7: February 6 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 7: February 6 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

RANDOM WALKS AND PERCOLATION IN A HIERARCHICAL LATTICE

RANDOM WALKS AND PERCOLATION IN A HIERARCHICAL LATTICE RANDOM WALKS AND PERCOLATION IN A HIERARCHICAL LATTICE Luis Gorostiza Departamento de Matemáticas, CINVESTAV October 2017 Luis GorostizaDepartamento de Matemáticas, RANDOM CINVESTAV WALKS Febrero AND 2017

More information

Random graphs: Random geometric graphs

Random graphs: Random geometric graphs Random graphs: Random geometric graphs Mathew Penrose (University of Bath) Oberwolfach workshop Stochastic analysis for Poisson point processes February 2013 athew Penrose (Bath), Oberwolfach February

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

Course Notes. Part IV. Probabilistic Combinatorics. Algorithms

Course Notes. Part IV. Probabilistic Combinatorics. Algorithms Course Notes Part IV Probabilistic Combinatorics and Algorithms J. A. Verstraete Department of Mathematics University of California San Diego 9500 Gilman Drive La Jolla California 92037-0112 jacques@ucsd.edu

More information

Defining the Integral

Defining the Integral Defining the Integral In these notes we provide a careful definition of the Lebesgue integral and we prove each of the three main convergence theorems. For the duration of these notes, let (, M, µ) be

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Bipartite decomposition of random graphs

Bipartite decomposition of random graphs Bipartite decomposition of random graphs Noga Alon Abstract For a graph G = (V, E, let τ(g denote the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

1 Mechanistic and generative models of network structure

1 Mechanistic and generative models of network structure 1 Mechanistic and generative models of network structure There are many models of network structure, and these largely can be divided into two classes: mechanistic models and generative or probabilistic

More information

Strong approximation for additive functionals of geometrically ergodic Markov chains

Strong approximation for additive functionals of geometrically ergodic Markov chains Strong approximation for additive functionals of geometrically ergodic Markov chains Florence Merlevède Joint work with E. Rio Université Paris-Est-Marne-La-Vallée (UPEM) Cincinnati Symposium on Probability

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Epidemic spreading is always possible on regular networks

Epidemic spreading is always possible on regular networks Epidemic spreading is always possible on regular networks Charo I. del Genio Warwick Mathematics Institute Centre for Complexity Science Warwick Infectious Disease Epidemiology Research (WIDER) Centre

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

Notes 12 Autumn 2005

Notes 12 Autumn 2005 MAS 08 Probability I Notes Autumn 005 Conditional random variables Remember that the conditional probability of event A given event B is P(A B) P(A B)/P(B). Suppose that X is a discrete random variable.

More information

Critical behavior in inhomogeneous random graphs

Critical behavior in inhomogeneous random graphs Critical behavior in inhomogeneous random graphs Remco van der Hofstad June 1, 21 Abstract We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal

More information

Conditional expectation

Conditional expectation Chapter II Conditional expectation II.1 Introduction Let X be a square integrable real-valued random variable. The constant c which minimizes E[(X c) 2 ] is the expectation of X. Indeed, we have, with

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

HAMILTON CYCLES IN RANDOM REGULAR DIGRAPHS

HAMILTON CYCLES IN RANDOM REGULAR DIGRAPHS HAMILTON CYCLES IN RANDOM REGULAR DIGRAPHS Colin Cooper School of Mathematical Sciences, Polytechnic of North London, London, U.K. and Alan Frieze and Michael Molloy Department of Mathematics, Carnegie-Mellon

More information

Modern Discrete Probability Branching processes

Modern Discrete Probability Branching processes Modern Discrete Probability IV - Branching processes Review Sébastien Roch UW Madison Mathematics November 15, 2014 1 Basic definitions 2 3 4 Galton-Watson branching processes I Definition A Galton-Watson

More information

On Martingales, Markov Chains and Concentration

On Martingales, Markov Chains and Concentration 28 June 2018 When I was a Ph.D. student (1974-77) Markov Chains were a long-established and still active topic in Applied Probability; and Martingales were a long-established and still active topic in

More information

Bivariate scatter plots and densities

Bivariate scatter plots and densities Multivariate descriptive statistics Bivariate scatter plots and densities Plotting two (related) variables is often called a scatter plot. It is a bivariate version of the rug plot. It can show something

More information

Lecture 1: Introduction to Sublinear Algorithms

Lecture 1: Introduction to Sublinear Algorithms CSE 522: Sublinear (and Streaming) Algorithms Spring 2014 Lecture 1: Introduction to Sublinear Algorithms March 31, 2014 Lecturer: Paul Beame Scribe: Paul Beame Too much data, too little time, space for

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Expectations Expectations Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Expectations

More information