Experimental studies on low-rise structural walls

Size: px
Start display at page:

Download "Experimental studies on low-rise structural walls"

Transcription

1 Materials and Structures/Matériaux et Constructions, Vol. 31, August-September 1998, pp Experimental studies on low-rise structural walls Y. L. Mo 1 and J. Y. Kuo 2 1) Professor, Dept. of Civil Eng., National Cheng Kung University, Tainan, Taiwan. 2) Graduate Student, Dept. of Civil Eng., National Cheng Kung University, Tainan, Taiwan. SCIENTIFIC REPORTS Paper received: February 28, 1997; Paper accepted: May 13,1997 A B S T R A C T Based on equilibrium and compatibility conditions, as well as a softening stress-strain relationship for concrete, a truss model theory was presented to predict the behavior of low-rise structural walls under static loads. In this paper, shake table tests on low-rise structural walls are performed, so that the previously proposed truss model theory can be examined by the test results, and the effect of acceleration frequency on such walls is studied. It is found that both the experimental ductility and dissipated energy decrease with increasing acceleration frequency, and when such walls are subjected to dynamic forces, the static truss model theory can be used for the prediction of the shear strength, but not for the prediction of the displacement at the maximum shear force. R É S U M É Un modèle théorique de treillis, basé sur les conditions d équilibre et de compatibilité, ainsi que sur la relation contrainte-déformation de radoucissement du béton, a été présenté afin de prédire le comportement des murs porteurs à hauteur limitée sous charge statique. Dans cet article, des essais sur de tels murs ont été réalisés sur table à secousses, afin de comparer les résultats des essais avec le modèle théorique précédemment proposé, et d étudier l effet de la fréquence de l accélération sur de tels murs. On a constaté que la ductilité expérimentale et l énergie dissipée décroissent avec l accroissement de la fréquence d accélération. Lorsque de tels murs sont soumis à des forces dynamiques, le modèle théorique de treillis statique peut être utilisé pour prédire la résistance au cisaillement, mais ne peut pas prédire le déplacement de l effort tranchant maximal. 1. INTRODUCTION During the earthquakes of the last three decades, buildings incorporating shearwalls have exhibited very satisfactory earthquake performance [1-3]. Such walls are used in a variety of buildings and can be divided into two groups: (1) the high-rise shearwalls and (2) the lowrise shearwalls. A high-rise shearwall is governed by flexural behavior and its behavior is readily predictable. In contrast, the behavior of a low-rise shearwall is governed mainly by shear which is more difficult to predict. In [4] a static theory is presented to predict the shear behavior of low-rise shearwalls. The theory uses the truss model concept coupled with a softening stressstrain relationship of concrete. When compared to the test results of 24 low-rise walls available in the literature [5-8], the theory was shown to predict the shear strength, shear distortion, steel strains, and concrete strains with acceptable accuracy throughout the loading history. The theory applies to low-rise shearwalls with a height-to-width ratio less than unity. The shearwalls are assumed to have boundary columns that are strong enough to resist the applied bending moment and the shear force without premature failure, which means that bending failure and sliding-shear failure will not occur. Within these limitations, the mean value and the standard deviation of the test-to-calculated shear-strength ratio of the wall tests described in [4] are and 14.7 percent, respectively. In [4], the behavioral history of the low-rise shearwalls is traced by solving a set of simultaneous equations iteratively. Such a trial-and-error method is suitable for analysis but not for design purposes. In [9] it is shown that a direct solution without iteration can be developed to predict the behavioral history. In particular, shear strength can be explicitly represented in simple forms. Based on these representations, a set of design recommendations is proposed in [9]. The design recommendations given in [9] can be used for static loads but are not applicable to dynamic loads. The response analysis of low-rise structural walls subjected to dynamic shear forces requires a realistic conceptual model that accounts for the continually varying stiffness and energy absorbing characteristics of such walls. Therefore, the purpose of this paper is to describe the results of shake table tests on such walls as a basis for the development of a dynamic analytical model. Further, the effect of acceleration frequency on such walls is also studied /98 RILEM 465

2 Materials and Structures/Matériaux et Constructions, Vol. 31, August-September STATIC ANALYSIS The softened truss model theory for low-rise structural walls [4] consists of three parts and is summarized below. 2.1 Equilibrium conditions Low-rise structural walls can be represented by the truss model shown in Fig. 1. From the equilibrium equations, the average shear stress τ and the angle of inclination of concrete struts α may be obtained in terms of the average stress in the concrete struts σ d : τ= σ d sin cos (1) cos 2 α = Af l l (2) btσd where A l = area of longitudinal steel; f l = stress of longitudinal steel; b = effective width of the wall; t = thickness of the wall. 2.2 Compatibility conditions The compatibility conditions of the truss model provide two basic equations. From these equations, the shear distortion in the wall γ and the strain in the longitudinal steel ε l in the wall may be obtained in terms of the compressive strain in the diagonal concrete struts ε d, as follows: γ ε α 2 = d tan ε = tan 2 α 1 ε l ( ) 2.3 Stress-strain relationship d Vecchio and Collins [11] tested 89 cm 89 cm 7 cm reinforced-concrete panels subjected to pure shear. From these tests a stress-strain curve was proposed for the softening diagonal concrete struts. For the ascending portion of the curve, the equation is: (3) (4) εd σ λ ε d d = fc 2 (5) εo 2 εo where f c = maximum compressive stress of a standard concrete cylinder; ε o strain at maximum compressive stress, usually taken as 0.002; and λ = coefficient for the softening effect (1/λ is defined as the softening coefficient). For the descending portion of the curve, the equation is: f ε ε c d p σd = 2 1 (6) λ 2εo ε p where ε p = ε o / λ. The coefficient λ is found from: εl + εt + 2εd λ = 03. (7) εd In addition, it is acceptable to assume that for lowrise structural walls the transverse steel strain ε t is zero [4]. Neglecting the small effect of the constant 0.3 in equation (7), and substituting equation (4) into equation (7), λ may be expressed in a simple form [4]. λ = 1 cosα 2.4 Solutions The relationships within the set of the seven quantities (τ, α, l, λ, σ d, γ and d ) may be obtained by assuming the value of one quantity, ε d, and solving the six equations (1-4, 5 or 6, and 8), as shown in Fig TEST PROGRAM 12 Four shake table tests were performed on one eighth small-scale low-rise framed shearwalls. The parameter of the tests is the input acceleration frequency to study its effect on the behavior of such walls. All the test walls had the same dimensions and reinforcement, as shown in Fig. 3. The last number in the specimen designation refers to the acceleration frequency (Table 1). (8) Table 1 Principal test results compared to theory Specimen f c V y,test V y,calc V y,test V u,test V u,calc V u,test δ y,calc δ u,test δ u,calc µ test µ calc Dissipated Failure V Energy (MPa) (kn) (kn) y,calc V (kn) (kn) u,calc Mode (mm) (mm) (mm) (kn-mm) H-HZ B H-HZ A H-HZ A H-HZ A Average Failure Mode A: The wall concrete crushed. Failure Mode B: The wall concrete had crushed; afterwards, steel anchorage of boundary element failed. 466

3 Mo, Kuo Fig. 1 Equilibrium of shearwall subjected to shear force. 3.1 Concrete The target compressive strength for the ready-mix concrete was 17 MPa in all the specimens due to the capacity limit of the shake table. Fifteen standard cylinders were cast with each pour and tested frequently to monitor concrete strength with age. The nominal maximum size of the coarse aggregate was 9.5 mm. 3.2 Reinforcement Deformed 12.7, 9.5 and 4 mm diameter bars were used in the specimens with yielding stresses of 226, 235 and 259 MPa, respectively. The 12.7 mm diameter bars were used in the boundary elements of the walls, while the 9.5 mm diameter bars were used in both the top beam and the bottom foundation. In the walls, the longitudinal steel consisted of four 4 mm diameter bars in each specimen, providing a steel ratio of percent of the effective area of the walls. Similarly, the transverse steel consisted of three 4 mm diameter bars in each specimen, providing a percent steel ratio. In other words, the steel ratios in both the longitudinal and transverse directions of the wall are greater than the ACI minimum requirement of 0.25 percent [12]. Fig. 2 Flow chart of the solution procedure for shearwall. 467

4 Materials and Structures/Matériaux et Constructions, Vol. 31, August-September 1998 at various locations in the specimen. Actual testing started with the excitation of the shake table to give the acceleration histories shown in Fig. 5. The frequencies of testing on Specimens H-HZ4, H-HZ6, H-HZ8 and H-HZ10 are 4, 6, 8 and 10 Hz, respectively. All the data were collected by a data acquisition system, and a continuous plot of the input acceleration history was observed from the monitor of the control system. 4. TEST RESULTS 4.1 Primary curves Fig. 3 Test specimen. 3.3 Instrumentation Fig. 4 shows the test configuration and the location of the transducers. Four strain gages were used for each specimen and were located in the two internal longitudinal rebars (Fig. 3). They were glued on the smooth-grinding surface of the reinforcing bars, so that the yielding of the steel can be measured with these strain gages. The horizontal displacement of the wall was measured at both the top plate and the bottom foundation using LVDTs. The fixation of LVDTs was very stiff to avoid the error of the displacement measurement. The LVDT at the bottom foundation was used to ensure that no foundation slip occurred during excitations. One accelerometer was attached to the top plate and the other to the foundation. To control the input acceleration another accelerometer was used on the shake table. Totally 800 kg mass was fixed by the screws at the top and bottom of the top plate to produce the inertia force and to remain within the capacity limit of 900 kg of the shake table. 3.4 Testing Details of the test setup are shown in Fig. 4. All the specimens were tested under horizontal excitations. Preparations before each test included alignment of the specimen and of strains, displacements, and accelerations The envelopes of hysteretic loops for all the four specimens are shown in Figs The theoretical predictions under monotonic loading according to [4] are also plotted in the corresponding figures. Before yielding of the bars, the theoretical curves in Figs. 6-9 are close to the corresponding test curves. In the ultimate state, the calculated shear strengths are also in good agreement with the experimental values. The average V u,test / V c,calc is 1.02 with a standard deviation of However, the calculated displacements at the maximum shear forces, δ u,calc, are always less than the experimental values, δ u,test, as shown in Table 1. It can also be observed from Table 1 that the effect of the acceleration frequency on the shear strength is not apparent. However, the effect of acceleration frequency on the displacement at the maximum shear force is significant because the displacement at the maximum shear force decreases with increasing acceleration frequency. In other words, when the walls are subjected to dynamic forces, the static truss model theory [4] can be used for the prediction of the shear strength but not for the prediction of the displacement at the maximum shear force. 4.2 Ductility and energy dissipation The effect of acceleration frequency on the walls can be observed from the ductility and energy dissipation, as shown in Table. 1. The calculated ductility, µ calc, is defined as the calculated displacement at the maximum shear force, δ u,calc, divided by the calculated displacement at the occurrence of steel yielding, δ y,calc. Similarly, the experimental ductility, µ test, is defined as the experimental displacement at the maximum shear force, δ u,test, divided by the calculated displacement at the occurrence of steel yielding, δ y,calc. Since the average yielding value of the measured strains of reinforcing bars was difficult to determine, the calculated value for yielding was used. It is noted that the maximum measured strain is Also, the experimental dissipated energy is determined by inte- 468

5 Mo, Kuo (b) Fig. 4 Test setup. grating the areas bounded by all the experimental hysteretic loops. The hysteretic loops for all four specimens are shown in Figs A few high points of each figure were used to draw the envelope because they represent the static horizontal force-displacement relationship. From Table 1 the following observations can be made: 1. The theoretical ductilities remain almost the same for all cases. 2. The experimental ductilities decrease with increasing acceleration frequency and are greater than the theoretical values. 3. Similar to ductility, the experimental dissipated energies also decrease with increasing acceleration frequency. However, it is not unlikely that the decrease of ductility and dissipated energy with increasing frequency is not caused by the higher frequency, but rather by the increase of damage associated with the larger number of loading cycles. Unfortunately, the tests have not been designed in a way so that the effects of frequency and number of cycles may be seperated. 4.3 Failure modes The failure modes of all four specimens are given in Table 1 and can be classified into two types, namely, concrete crushing (denoted by A in Table 1), as shown in Fig. 14, and concrete crushing followed by anchorage failure of boundary element (denoted by B in Table 1). It can be seen from Table 1 that specimen H-Hz4 needs longer development lengths of boundary element steel to avoid anchorage failure due to the occurrence of greater displacement at the ultimate state. 469

6 Materials and Structures/Matériaux et Constructions, Vol. 31, August-September 1998 Fig. 5 Acceleration histories. Fig. 6 Primary curves of specimen H-HZ4. Fig. 7 Primary curves of specimen H-HZ6. 470

7 Fig. 8 Primary curves of specimen H-HZ8. Fig. 9 Primary curves of specimen H-HZ10. Fig. 10 Hysteretic loops of specimen H-HZ4. Fig. 11 Hysteretic loops of specimen H-HZ6. Fig. 12 Hysteretic loops of specimen H-HZ8. Fig. 13 Hysteretic loops of specimen H-HZ

8 Materials and Structures/Matériaux et Constructions, Vol. 31, August-September 1998 Sheu, Professor G. Yao and Professor D. S. Hsu, at National Cheng Kung University, are acknowledged for their generous support of this experimental study. REFERENCES Fig. 14 Ultimate state of specimen H-HZ8. 5. CONCLUSIONS 1. When low-rise framed shearwalls are subjected to dynamic forces, the static truss model theory can be used for the prediction of the shear strength, but not for the prediction of the displacement at the maximum shear force. 2. Both the experimental ductility and dissipated energy decrease with increasing acceleration frequency. 3. Longer development lengths of boundary elements to avoid anchorage failure are needed due to the occurrence of greater displacement at the ultimate state when the walls are subjected to dynamic forces. 4. The primary curve of the walls needs to be studied further considering dynamic effects. ACKNOWLEDGMENTS Support for this research by the National Science Council, Taiwan, ROC, under grant NSC P B, is gratefully acknowledged. Professor M.S. [1] Fintel, M., Performance of buildings with shear walls in earthquakes of the last thirty years, PCI Journal 40 (3) (May-June 1995) [2] Ghosh, S. K., Observations on the performance of structures in the Kobe earthquake of January 17, 1995, Ibid. (March-April 1995) [3] Iverson, J. K. and Hawkins, N. M., Performance of precast/prestressed building structures during Northridge earthquake, Ibid. 39 (2) (March-April 1994) [4] Hsu, T. T. C. and Mo, Y. L., Softening of concrete in low-rise shearwalls,, ACI Journal, Proceedings 82 (6) (Nov.-Dec. 1985) [5] Barda, F., Shear Strength of Low-rise Walls with Boundary Elements, PhD thesis, Lehigh University, Bethlehem, 1972, 265 pp. [6] Barda, F., Hanson, J. M. and Corley, W. G., Shear Strength of Low-Rise Walls with Boundary Elements, Reinforced Concrete Structures in Seismic Zones, SP-53, American Concrete Institute, Detroit, 1977, [7] Galletly, G. D., Behavior of Reinforced Concrete Shear Walls Under Static Load (Department of Civil and Sanitary Engineering, Massachusetts Institute of Technology, Cambridge, Aug. 1952) 123 pp. [8] Benjamin, J. R. and Williams, H. A., The behavior of one-story reinforced concrete shear walls, Proceedings, ASCE, ST3, (May 1957) [9] Mau, S. T. and Hsu, T. T. C., Shear design and analysis of lowrise structural walls, ACI Journal Proceedings 83 (2) (Mar.-Apr. 1986) [10] Mo, Y. L., Analysis and design of low-rise structural walls under dynamically applied shear forces, ACI Structural Journal 85 (2) (March-April 1988) [11] Vecchio, F. and Collins, M. P., Stress-strain characteristics of reinforced concrete in pure shear, Final Report, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, International Association for Bridge and Structural Engineering, Zürich, 1981, [12] ACI Committee 318, Building Code Requirements for Reinforced Concrete (ACI 318-9), American Concrete Institute, Detroit,

Constitutive Modeling of Reinforced Concrete Panel Behavior under Cyclic Loading

Constitutive Modeling of Reinforced Concrete Panel Behavior under Cyclic Loading Constitutive Modeling of Reinforced Concrete Panel Behavior under Cyclic Loading K. Orakcal & D. Ulugtekin Bogazici University, Istanbul, Turkey L. M. Massone University of Chile, Santiago, Chile SUMMARY:

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE J. Sakai 1, S. Unjoh 2 and H. Ukon 3 1 Senior Researcher, Center for Advanced Engineering Structural Assessment and

More information

Lap splice length and details of column longitudinal reinforcement at plastic hinge region

Lap splice length and details of column longitudinal reinforcement at plastic hinge region Lap length and details of column longitudinal reinforcement at plastic hinge region Hong-Gun Park 1) and Chul-Goo Kim 2) 1), 2 Department of Architecture and Architectural Engineering, Seoul National University,

More information

Dynamic analysis of a reinforced concrete shear wall with strain rate effect. Synopsis. Introduction

Dynamic analysis of a reinforced concrete shear wall with strain rate effect. Synopsis. Introduction Dynamic analysis of a reinforced concrete shear wall with strain rate effect Synopsis A simplified analysis method for a reinforced concrete shear wall structure considering strain rate effects is presented.

More information

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results Chapter 4 Test results and discussion This chapter presents a discussion of the results obtained from eighteen beam specimens tested at the Structural Technology Laboratory of the Technical University

More information

Role of Force Resultant Interaction on Ultra-High Performance Concrete

Role of Force Resultant Interaction on Ultra-High Performance Concrete First International Interactive Symposium on UHPC 216 Role of Force Resultant Interaction on Ultra-High Performance Concrete Author(s) & Affiliation: Titchenda Chan (1), Kevin R. Mackie (1), and Jun Xia

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

NONLINEAR SEISMIC SOIL-STRUCTURE (SSI) ANALYSIS USING AN EFFICIENT COMPLEX FREQUENCY APPROACH

NONLINEAR SEISMIC SOIL-STRUCTURE (SSI) ANALYSIS USING AN EFFICIENT COMPLEX FREQUENCY APPROACH NONLINEAR SEISMIC SOIL-STRUCTURE (SSI) ANALYSIS USING AN EFFICIENT COMPLEX FREQUENCY APPROACH Dan M. GHIOCEL 1 ABSTRACT The paper introduces a novel approach for modeling nonlinear hysteretic behavior

More information

New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara

New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara New model for Shear Failure of R/ Beam-olumn Joints Hitoshi Shiohara Dept. of Architectural Engineering, The University of Tokyo, Tokyo 3-8656, Japan; PH +8(3)584-659; FAX+8(3)584-656; email:shiohara@arch.t.u-tokyo.ac.jp

More information

TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING

TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No.257 TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING Marc BOUCHON 1, Nebojsa

More information

Behavior and Modeling of Existing Reinforced Concrete Columns

Behavior and Modeling of Existing Reinforced Concrete Columns Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1498 EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING Zongming HUANG

More information

Experimental study of the behaviour of reinforced highstrength concrete short corbels

Experimental study of the behaviour of reinforced highstrength concrete short corbels Materials and Structures/Matériaux et Constructions, Vol. 34, April 2001, pp 155-162 Experimental study of the behaviour of reinforced highstrength concrete short corbels M. Bourget 1, Y. Delmas 1 and

More information

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global

More information

Impact resistance of laterally confined fibre reinforced concrete plates

Impact resistance of laterally confined fibre reinforced concrete plates Materials and Structures/Matériaux et Constructions, Vol. 34, December 2001, pp 612-618 SCIENTIFIC REPORTS Impact resistance of laterally confined fibre reinforced concrete plates P. Sukontasukkul 1, S.

More information

Prediction of the Lateral Load Displacement Curves for RC Squat Walls Failing in Shear

Prediction of the Lateral Load Displacement Curves for RC Squat Walls Failing in Shear PESDES 2017 International Workshop on Performance-Based Seismic Design of Structures Prediction of the Lateral Load Displacement Curves for RC Squat Walls Failing in Shear Shyh-Jiann Hang Director National

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Truss Model for Shear Strength of Structural Concrete Walls Author(s) Citation Chandra, Jimmy; Chanthabouala,

More information

Failure interaction curves for combined loading involving torsion, bending, and axial loading

Failure interaction curves for combined loading involving torsion, bending, and axial loading Failure interaction curves for combined loading involving torsion, bending, and axial loading W M Onsongo Many modern concrete structures such as elevated guideways are subjected to combined bending, torsion,

More information

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 699 AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS Manabu YOSHIMURA, Yoshikazu TAKAINE and Takaya NAKAMURA

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Engineering Structures 29 (2007) 163 175 www.elsevier.com/locate/engstruct Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Gerasimos M. Kotsovos a, Christos Zeris

More information

APPROCHE MACRO-CINEMATIQUE POUR LA MODELISATION DE POUTRES-VOILE CONTINUES

APPROCHE MACRO-CINEMATIQUE POUR LA MODELISATION DE POUTRES-VOILE CONTINUES Quatorzième édition des Journées scientifiques du Regroupement francophone pour la recherche et la formation sur le béton (RF) 2 B Sherbrooke, Québec, Canada 22-23 août 213 AROCHE MACRO-CINEMATIQUE OUR

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns

Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns Jun Won Kang 1a and Jeeho Lee 2 1 Department of Civil Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066,

More information

SYSTEM IDENTIFICATION & DAMAGE ASSESSMENT OF STRUCTURES USING OPTICAL TRACKER ARRAY DATA

SYSTEM IDENTIFICATION & DAMAGE ASSESSMENT OF STRUCTURES USING OPTICAL TRACKER ARRAY DATA SYSTEM IDENTIFICATION & DAMAGE ASSESSMENT OF STRUCTURES USING OPTICAL TRACKER ARRAY DATA Chin-Hsiung Loh 1,* and Chuan-Kai Chan 1 1 Department of Civil Engineering, National Taiwan University Taipei 10617,

More information

FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION

FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION Journal of the Chinese Institute of Engineers, Vol. 31, No., pp. 15-9 (8) 15 FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION Cheng-Cheng Chen* and Chao-Lin Cheng

More information

On The Ultimate Strength of RC Shear Wall under Multi-Axes Seismic Loading Condition

On The Ultimate Strength of RC Shear Wall under Multi-Axes Seismic Loading Condition On The Ultimate Strength of RC Shear Wall under Multi-Axes Seismic Loading Condition KITADA Yoshio JNES (Japan Nuclear Energy Safety Organization), Tokyo, Japan 0 BACKGROUND AND PURPOSES OF THE STUDY There

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Bond-Slip Characteristics between Cold-Formed Metal and Concrete

Bond-Slip Characteristics between Cold-Formed Metal and Concrete Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2014) - 22nd International Specialty Conference on Cold-Formed Steel Structures

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 354 SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS In-Kil Choi, Young-Sun

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXILE FIER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS Hu Shaoqing Supervisor: Susumu KONO ** MEE8165 ASTRACT FRP with low Young

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Finite element analysis of diagonal tension failure in RC beams

Finite element analysis of diagonal tension failure in RC beams Finite element analysis of diagonal tension failure in RC beams T. Hasegawa Institute of Technology, Shimizu Corporation, Tokyo, Japan ABSTRACT: Finite element analysis of diagonal tension failure in a

More information

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWO-PHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi

More information

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

Influence of column web stiffening on the seismic behaviour of beam-tocolumn Influence of column web stiffening on the seismic behaviour of beam-tocolumn joints A.L. Ciutina & D. Dubina The Politehnica University of Timisoara, Romania ABSTRACT: The present paper summarises the

More information

Non-linear Shear Model for R/C Piers. J. Guedes, A.V. Pinto, P. Pegon

Non-linear Shear Model for R/C Piers. J. Guedes, A.V. Pinto, P. Pegon Non-linear Shear Model for R/C Piers J. Guedes, A.V. Pinto, P. Pegon EUR 24153 EN - 2010 The mission of the JRC-IPSC is to provide research results and to support EU policy-makers in their effort towards

More information

THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS

THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 64 THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS Norikazu ONOZATO

More information

BI-DIRECTIONAL SEISMIC ANALYSIS AND DESIGN OF BRIDGE STEEL TRUSS PIERS ALLOWING A CONTROLLED ROCKING RESPONSE

BI-DIRECTIONAL SEISMIC ANALYSIS AND DESIGN OF BRIDGE STEEL TRUSS PIERS ALLOWING A CONTROLLED ROCKING RESPONSE Proceedings of the 8 th U.S. National Conference on Earthquake Engineering April 18-22, 2006, San Francisco, California, USA Paper No. 1954 BI-DIRECTIONAL SEISMIC ANALYSIS AND DESIGN OF BRIDGE STEEL TRUSS

More information

Collapse modes of structures under strong motions of earthquake

Collapse modes of structures under strong motions of earthquake ANNALS OF GEOPHYSICS, VOL. 45, N. 6, December 2002 Collapse modes of structures under strong motions of earthquake Hiroshi Akiyama Real Estate Science, School of Science and Technology, Nihon University,

More information

Where and are the factored end moments of the column and >.

Where and are the factored end moments of the column and >. 11 LIMITATION OF THE SLENDERNESS RATIO----( ) 1-Nonsway (braced) frames: The ACI Code, Section 6.2.5 recommends the following limitations between short and long columns in braced (nonsway) frames: 1. The

More information

Parametric analysis and torsion design charts for axially restrained RC beams

Parametric analysis and torsion design charts for axially restrained RC beams Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 1-27 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.

More information

SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS

SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS Giulio RANZO 1 And M J N PRIESTLEY SUMMARY experimental study conducted on three large size specimens are reported. The test units, designed with

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT

More information

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS Dr. Maurizio Guadagnini Dr. Kypros Pilakoutas Professor Peter Waldron Centre for Dept. of Civil and Structural Engineering The University of Sheffield, UK Outline

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

A numerical parametric study on the plate inclination angle of steel plate shear walls

A numerical parametric study on the plate inclination angle of steel plate shear walls Journal of Structural Engineering & Applied Mechanics 219 Volume 1 Issue 4 164-173 https://doi.org/1.31462/jseam.219.1164173 www.goldenlightpublish.com RESEARCH ARTICLE A numerical parametric study on

More information

ENERGY DIAGRAM w/ HYSTERETIC

ENERGY DIAGRAM w/ HYSTERETIC ENERGY DIAGRAM ENERGY DIAGRAM w/ HYSTERETIC IMPLIED NONLINEAR BEHAVIOR STEEL STRESS STRAIN RELATIONSHIPS INELASTIC WORK DONE HYSTERETIC BEHAVIOR MOMENT ROTATION RELATIONSHIP IDEALIZED MOMENT ROTATION DUCTILITY

More information

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES

CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES S. Kakay et al. Int. J. Comp. Meth. and Exp. Meas. Vol. 5 No. (017) 116 14 CRACK FORMATION AND CRACK PROPAGATION INTO THE COMPRESSION ZONE ON REINFORCED CONCRETE BEAM STRUCTURES SAMDAR KAKAY DANIEL BÅRDSEN

More information

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING CD02-003 MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING B. Ghiassi 1, M. Soltani 2, A. A. Tasnimi 3 1 M.Sc. Student, School of Engineering, Tarbiat Modares

More information

Dynamic Response of Timber-Plywood Joints under Forced Harmonic Vibrations

Dynamic Response of Timber-Plywood Joints under Forced Harmonic Vibrations Dynamic Response of Timber-Plywood Joints under Forced Harmonic Vibrations Takeyoshi Uematsu Northern Regional Building Research Institute, Hokkaido Research Organization, Asahikawa, Japan. Takuro Hirai,

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure Centrifuge Shaking Table s and FEM Analyses of RC Pile Foundation and Underground Structure Kenji Yonezawa Obayashi Corporation, Tokyo, Japan. Takuya Anabuki Obayashi Corporation, Tokyo, Japan. Shunichi

More information

PREDICTION OF THE CYCLIC BEHAVIOR OF MOMENT RESISTANT BEAM-TO-COLUMN JOINTS OF COMPOSITE STRUCTURAL ELEMENTS

PREDICTION OF THE CYCLIC BEHAVIOR OF MOMENT RESISTANT BEAM-TO-COLUMN JOINTS OF COMPOSITE STRUCTURAL ELEMENTS SDSS Rio 21 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-1, 21 PREDICTION OF THE CYCLIC BEHAVIOR OF MOMENT RESISTANT BEAM-TO-COLUMN

More information

Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL Advanced Earthquake Engineering

Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL Advanced Earthquake Engineering Displacement-based methods EDCE: Civil and Environmental Engineering CIVIL 706 - Advanced Earthquake Engineering EDCE-EPFL-ENAC-SGC 2016-1- Content! Link to force-based methods! Assumptions! Reinforced

More information

INFLUENCE OF INITIAL STATE OF STRESS AND AMPLITUDE OF DISPLACEMENT ON THE CYLIC BEEHAVIOUR OF INTERFACE

INFLUENCE OF INITIAL STATE OF STRESS AND AMPLITUDE OF DISPLACEMENT ON THE CYLIC BEEHAVIOUR OF INTERFACE 57ième CONGRÈS CANADIEN DE GÉOTECHNIQUE 5ième CONGRÈS CONJOINT SCG/AIH-CNN 57TH CANADIAN GEOTECHNICAL CONFERENCE 5TH JOINT CGS/IAH-CNC CONFERENCE INFLUENCE OF INITIAL STATE OF STRESS AND AMPLITUDE OF DISPLACEMENT

More information

CONSTRUCTION-FRIENDLY DUCTILE SHEAR JOINTS FOR PRECAST CONCRETE PANELS

CONSTRUCTION-FRIENDLY DUCTILE SHEAR JOINTS FOR PRECAST CONCRETE PANELS CONSTRUCTION-FRIENDLY DUCTILE SHEAR JOINTS FOR PRECAST CONCRETE PANELS Jesper H. Sørensen, Linh C. Hoang, Gregor Fischer and John F. Olesen Technical University of Denmark (DTU), Department of Civil Engineering,

More information

Consequently, retrofit of many poor existing structures is a very important issue. for Turkey!

Consequently, retrofit of many poor existing structures is a very important issue. for Turkey! Turkey Placed on one of the most active tectonic plates in the world ~96% of the country is under the threat of earthquakes ~98% of the population are live with that risk. Istanbul 1 st degree of earthquake

More information

FLEXURAL MODELLING OF STRAIN SOFTENING AND STRAIN HARDENING FIBER REINFORCED CONCRETE

FLEXURAL MODELLING OF STRAIN SOFTENING AND STRAIN HARDENING FIBER REINFORCED CONCRETE Proceedings, Pro. 53, S.A.R.L., Cachan, France, pp.55-6, 7. FLEXURAL MODELLING OF STRAIN SOFTENING AND STRAIN HARDENING FIBER REINFORCED CONCRETE Chote Soranakom and Barzin Mobasher Department of Civil

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Concrete contribution to initial shear strength of RC hollow bridge columns

Concrete contribution to initial shear strength of RC hollow bridge columns Structural Engineering and Mechanics, Vol. 41, No. 1 (2012) 43-65 43 Concrete contribution to initial shear strength of RC hollow bridge columns Ick-Hyun Kim 1a, Chang-Ho Sun 1b and Myoungsu Shin 2 * 1

More information

Crack Width Prediction for Interior Portion of Inverted 'T' Bent Caps

Crack Width Prediction for Interior Portion of Inverted 'T' Bent Caps Crack Width Prediction for Interior Portion of Inverted 'T' Bent Caps Prepared for Texas Department of Transportation By Rong-Hua Zhu Wirat Wanichakorn and Thomas T. C. Hsu Department of Civil and Environmental

More information

Behavior of RC beams under impact loading: some new findings

Behavior of RC beams under impact loading: some new findings ehavior of R beams under impact loading: some new findings S.M. Soleimani ssociated Engineering Ltd., urnaby,, anada N. anthia & S. Mindess The University of ritish olumbia, Vancouver,, anada STRT: The

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition ABSTRACT: Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition G. Dok ve O. Kırtel Res. Assist., Department of Civil Engineering, Sakarya University,

More information

AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS

AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS Junichi SAKAI 1 And Kazuhiko KAWASHIMA SUMMARY This paper presents a series of uniaxial compressive loading tests

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections *Zeyu Zhou 1) Bo Ye 2) and Yiyi Chen 3) 1), 2), 3) State Key Laboratory of Disaster

More information

Appendix G Analytical Studies of Columns

Appendix G Analytical Studies of Columns Appendix G Analytical Studies of Columns G.1 Introduction Analytical parametric studies were performed to evaluate a number of issues related to the use of ASTM A103 steel as longitudinal and transverse

More information

Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs)

Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs) Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs) Y. Shahbazi 1, M. Eghbalian 2, M.R. Chenaghlou 3, K.Abedi 4 1- PhD Student of structural Engineering, Sahand University

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

Nonlinear numerical simulation of RC frame-shear wall system

Nonlinear numerical simulation of RC frame-shear wall system Nonlinear numerical simulation of RC frame-shear wall system Gang Li 1), Feng Zhang 2), Yu Zhang 3) The Faculty Of Infrastructure Engineering, Dalian University of Technology, Dalian, China 116023 1) gli@dlut.edu.cn

More information

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns W.M. Ghannoum 1 and J.P. Moehle 2 1 Assistant Professor, Dept. of Civil, Architectural, and Environmental Engineering, University

More information

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 6: SHEAR AND TORSION Reinforced

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

The science of elasticity

The science of elasticity The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

More information

DOWEL ACTION AND SHEAR STRENGTH CONTRIBUTION OF HIGH STRENGTH REBAR EMBEDDED IN ULTRA-HIGH PERFORMANCE FIBER REINFORCED CONCRETE

DOWEL ACTION AND SHEAR STRENGTH CONTRIBUTION OF HIGH STRENGTH REBAR EMBEDDED IN ULTRA-HIGH PERFORMANCE FIBER REINFORCED CONCRETE DOWEL ACTION AND SHEAR STRENGTH CONTRIBUTION OF HIGH STRENGTH REBAR EMBEDDED IN ULTRA-HIGH PERFORMANCE FIBER REINFORCED CONCRETE Yulin Xiao (1), Jun Xia (1), Kevin Mackie (1) and Amir Mirmiran (2) (1)

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings

Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Comparison of Structural Models for Seismic Analysis of Multi-Storey Frame Buildings Dj. Ladjinovic, A. Raseta, A. Radujkovic & R. Folic University of Novi Sad, Faculty of Technical Sciences, Novi Sad,

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

Title. Author(s)T. MIZUTANI; Y. NARAZAKI; Y. FUJINO. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)T. MIZUTANI; Y. NARAZAKI; Y. FUJINO. Issue Date Doc URL. Type. Note. File Information Title ANALYSIS OF DAMAGE ON SHINAKANSEN VIADUCT CAUSED BY EARTHQUAKE BASED ON NONLINEAR DYNAMIC ANALYSIS Author(s)T. MIZUTANI; Y. NARAZAKI; Y. FUJINO Issue Date 2013-09-11 Doc URL http://hdl.handle.net/2115/54271

More information

SHAKING TABLE TEST AND ANALYSIS OF REINFORCED CONCRETE WALLS

SHAKING TABLE TEST AND ANALYSIS OF REINFORCED CONCRETE WALLS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 419 SHAKING TABLE TEST AND ANALYSIS OF REINFORCED CONCRETE WALLS Tomoya MATSUI 1, Toshimi KABEYASAWA 2,

More information

CENTRIFUGE MODELING OF PILE FOUNDATIONS SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING IN SILTY SAND

CENTRIFUGE MODELING OF PILE FOUNDATIONS SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING IN SILTY SAND CENTRIFUGE MODELING OF PILE FOUNDATIONS SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING IN SILTY SAND L. González 1, D. Lucas 2 and T. Abdoun 3 1 Assistant Professor, Dept. of Civil Engineering, University

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Shear-Flexure Interaction Modeling for Reinforced Concrete Structural Walls and Columns under Reversed Cyclic Loading Kristijan Kolozvari Department of Civil

More information

Dynamic Analysis and Modeling of Wood-framed Shear Walls

Dynamic Analysis and Modeling of Wood-framed Shear Walls Dynamic Analysis and Modeling of Wood-framed Shear Walls Yasumura, M. 1 ABSTRACT Dynamic performance of wood-framed shear walls was analyzed by means of the non-linear earthquake response analysis and

More information

Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model

Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model Sādhanā Vol. 7, Part, February, pp. 89 5. c Indian Academy of Sciences Evaluation of size effect on shear strength of reinforced concrete deep beams using refined strut-and-tie model GAPPARAO and R SUNDARESAN

More information

Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect

Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect Hsuan-Teh Hu, M.ASCE 1 ; Chiung-Shiann Huang 2 ; Ming-Hsien Wu 3 ; and Yih-Min Wu 4 Downloaded from ascelibrary.org

More information