New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara

Size: px
Start display at page:

Download "New model for Shear Failure of R/C Beam-Column Joints. Hitoshi Shiohara"

Transcription

1 New model for Shear Failure of R/ Beam-olumn Joints Hitoshi Shiohara Dept. of Architectural Engineering, The University of Tokyo, Tokyo , Japan; PH +8(3) ; FAX+8(3) ; Abstract A new mathematical model for shear failure of R/ -column joint is introduced and the effects of the effects of anchorage strength of bars passing through joint are investigated with the model. The model assumes two independent deformation modes, i.e. mode, due to the opening of the crack at the end of, and joint mode, due to the opening of the diagonal crack in joint, which is equivalent to shear failure of -column joint. The model is demonstrated with example how anchorage capacidty affects the failure mode and strength by the comparison of strengths of the two modes. Introduction urrent building codes for an earthquake resistant design of reinforced concrete moment frame structure provide an empirical limit on joint shear force to avoid failure of -column joints exhibiting degradation of story shear and concentration of shear deformation in -column joint, (AI 995, AIJ 994, SANZ 995). However the limit value for joint shear is empirical and not based on mathematical models. The empirical joint shear strengths in the codes are usually function solely of concrete strength, as seen in the AI code typically, proportional to square root of the concrete compressive strength. In these codes, bond capacity is neglected as a factor which affects the joint shear strength nor failure mode. A new mathematical model for prediction of story shear and failure mode was proposed (Shiohara ) and it is introduced briefly and expanded in this paper. The model can taken into account many parameters including configuration, geometry, reinforcing arrangement, material properties and boundary conditions of various type of -column joints. In this paper, this model is demonstrated to investigate the effect of the bond capacity on the story shear and failure mode of interior -column joints. Modeling of Beam-olumn Joints Behavior at joint shear failure By the re examination of test data of past tests, fundamental causes of joint shear failure were investigated in the paper (Shiohara ). Most test data of -column joint specimen exhibiting joint shear failure showed following sequence of behaviors. At the stage the joint shear failure initiation; or the strength decay begins by cyclic loading, bars slipping into the joint at the in compressive side, while bars slipping out in at tensile side, as shown in the Fig. below. This cause compressive bars slip into the joint, lost the resistance to compressive force, the capacity of decreases and as a result, story shear decreased. Therefore the saturation of anchorage stress is an important factor which need to reflected in the mathematical model to explain the reason of reduction of story shear.

2 Tension ompression olumn Beam Beam end cracks Diagonal cracks Tension ompression olumn Beam slip in slip out B (Beam) Mode J (Joint) Mode Figure ause of story shear degradation Figure Two sets of flexural critical sections Before the initiation of story shear degradation, the longitudinal strain in bars usually distribute as shown in Fig. (a). If joint shear increase and bond slip begins, the bars slip into the joint at the end in compressive side, while bars slip out in tensile side with keeping constant bond resistance, because bond slip occurred in confined concrete. oncurrently, the elongation of bars cause opening of crack in concrete accompanied by bond-slip along bar to satisfy the deformation compatibility in bars and joint concrete. Figure shows two dominant sets of cracks. The elongation of bars may contribute to opening crack at column face as depicted in Fig. (a), which contribute to end rotation. Another possibility is that the elongation of bars may contribute to opening diagonal cracks in joint panel as shown in Fig. (b), which make the rotation of four triangular segments, which causes shear deformation of joint panes. Two deformation modes in -column joints Hereafter the deformation mode shown in Fig. (a) is named B (Beam)-mode. The other deformation mode shown in Fig. (b) is characterized with shear deformation in the joint cause by local crushing of concrete at the center of the joint due to large rotation of the segments. Hereafter the deformation mode is named J (joint)-mode. As shown in the reference, joint shear failure observed in laboratories are well portrayed by J- mode deformation. Flexural Strengths for B-mode and J-mode To predict the how the component of story drift is distributed to two modes of deformation, the following idea may be used. Two deformation modes have their own moment resisting mechanism and strength. Thus the lateral resistance of -column joint for each deformation mode are calculated assuming critical sections for B-mode and J- mode. If the calculated resistance for B-mode is smaller than that for J-mode, contribution of B-

3 mode deformation to total story drift is smaller. By this way, the deformation mode in -column joint may be predictable. The lateral resistance of -column joint subassembledge are discussed in the following sections. N c N b Story shear V b = L c V c L b V c olumn section j c L c / N b N c (Thrust force in columns) N b (Thrust force in s) V c (olumn shear; story shear) V b ( shear) L b (distance of inflection points) L c (distance of column inflection points) j b tanθ θ V b = L c L b V c L c / (Unit for length = column depth) Beam section V c L b / L b / N c Figure 3. Definitions and notations for applied forces to a -column joint substructure ritical Sections at oncrete Bondary Force in Rebars Beam Mode Joint Mode Quadra Flexural Actions Model σcj tanθ Left σcj Left Lower column tanθ σ cj σ cj σ cj σ cj Upper column σ cb Lower column σcj σcj tanθ σ cb Upper column Right tanθ θ tanθ tanθ θ tanθ D tanθ D Right Left A Lower column Left A T 4 T4 T3 T 3 T 3 T T 5 T 5 T T T T T T 4 D Upper column B Lower column Upper column Right Beam B D Right Figure 4. Two sets of critical secions and notations defining internal forces

4 Generic Beam-olumn Joint Substructure The geometry and dimensions of generic -column joint substructure including applied loads are defined in Fig. 3. The geometry and applied loads acting on this structure assumed to be symmetric for simplicity. The depth of columns is assumed unity, a unit of length, while the depth of is assumed tanθ, where θ is the angle of diagonal line of -column joint. The forces are represented by normalized value with coefficient (b c D c σ c ), where σ c is the concrete compressive stress at concrete compressive stress block. ritical Sections Figure 4 shows two sets of critical sections, internal forces and their notations, corresponding to Beam (B)-mode and Joint (J)-mode respectively. B-mode assumes critical sections at ends for flexural action of s, while J-mode assumes critical sections for coupled four flexural actions at diagonal lines in a -column joint. Strength for B-Mode Deformation mode Assumptions and Notations in Analysis By considering the equilibrium of horizontal force and moment at the critical section at the end of as shown in Fig. 4, the relation of the internal force, and moment M b at the critical section is derived as the Eq.. M b j b ( + + N b ) N b = The definitions of notations are shown in Figs. 3 and 4. The shear V b and the column shear V c are calculated from M b. Finally the pseudo joint shear stress B ; strength of B-mode is obtained using assumptions that the length of stress resultants at section j is equal to 7/8 of effective depth of d Effective area of -column joint A eff given by the AIJ Guidelines (AIJ 994) is used. Figure 5 is an example solution for B-mode deformation. () B /σ B ontour line of B /σ B ritical Section for B-mode Figure 5 An example of numerical solution for strength of B (Beam) -Mode

5 Strength for J-Mode Deformation Assumptions and Notations in Analysis Figure 4 includes the notations necessary to define the set of internal forces at the critical sections for the J-mode (Shiohara ). Equilibrium in Forces Acting on the Segments Five equations to define the equilibrium in the system. They are given as follows. + + N b T 5 = L c T 3 T 4 tanθ + tanθ V c = --L c V c L b + -- j c ( T 3 T 4 ) + -- j b ( ) tanθ tanθ θ + tan tan θ + tan θ = + V c = T 3 T 4 + tanθ + tanθ N c = () (3) (4) (5) (6) The simultaneous equations of second order from Eq. () to Eq. (6) yield two set of solution for five unknown variables, provided the value of the other variables are confirmed. By solving the equations from Eq.() to Eq.(6), the story shear V c is calculated. Hereafter, V c, T 3, T 4, and are chosen as an unknown variables, whereas, the, and T 5 is assumed to be given. Finally the pseudo joint shear stress J of J-mode is obtained as a function of and using same assumptions on length of stress resultants at section and effective area of joint used for B mode in the previous section.figure 6 is an example solution for J-mode deformation. contour lines of pseudo joint shear J / f' c ritical Section for J-mode J / f' c.4 T.4 T - - T.4 Figure 6. An example of numerical solution for strength of J (Joint) -Mode

6 : pseudo joint shear stress = : pseudo joint shear stress = B-region B < J = = B-region B < J = = B = J B = J - jj = jb B > J J-region T B > J J-region (a) T 4 =.4 (constant) with less joint hoops (b) in case joint hoop increased.5 times Figure 7. alculated joint shear stress by the new model Difference in Strengths for J-mode and B-mode Figure 7 shows the combination of contour lines by taking maximum value {J, B } for each set of values of (, ). The boundary curves are also plotted on (, ) plane, which connects the points at which J equals to B. Provided the point (, ) locates in the upper left of the boundary curve, the value of J is always larger than B. In this region, the strength of B-mode is smaller and B-mode deformation becomes dominant while the J mode deformation is minor. n the contrary, J-mode deformation becomes dominant if the point (, ) locates in the lower right region. Thus this boundary curves is useful to predict the deformation mode. The two regions divided by the boundary line are called B-region and J-region, where each joint shear deformation becomes dominant. Role of bond capacity in determining failure mode If straight bar has small bond capacity such as plain bar, the anchorage capacity is small and is almost zero. It means the points (, ) always stay on the 45 degree line passing through the origin of the plain. As shown in Fig. 8(a) and (b), the line always lies within the B-region. Therefore, the B-mode deformation is dominant for the -column joint with debonded bars passing through the joint. n the contrary, if anchorage strength is increased by some way including increased number of low strength steel or adding some special anchoring device in -column joint, the J- mode become more dominant. By this way, this model explains how the bond capacity affect the strength and the failure mode. Prediction of Failure Modes Loading path This model has a practical application, by considering a possible loading path in the plain of (, ). There are two physical constraint on the range for and. ne constraint is tensile strength of bars. The other constraint is anchorage capacity of straight bar through -column joint as shown in Fig. 8(a). Upper bound of the value of and is determined by the tensile strength of steel. The upper bound of anchorage force is determined by

7 the anchorage capacity. Figure 8 shows a typical loading pass in column joint. When a -column joint substructure is loaded monotonically, the and will increase proportionally, as far as the bond is capable to resist to the input bond force like a line - shown in Fig. 8. However once the bond capacity attains to its capacity, the loading path will turn the direction moving on the 45 degree line like a line -. If these constraint is taken into account, the behavior of -column joint is predictable when it is subjected monotonically increasing load. Provided bar yield while the point of (, ) remains within the B-region as shown in Fig. 8(a), the behavior is predicted as -yielding failure mode. If enough amount of bars are provided such that the bond strength B u is attained at point 3 and mode switches from B-mode to J-mode before bars yield, the loading pass will be change the direction and moves on the line 3-4 as shown in Fig. 8(b). This type of behavior is of J-mode dominant at ultimate stage, failure mode is described as joint shear failure after yielding. If more bars are provided, loading path reach the point 3 then heads to 4 at which maximum joint strength is reached. If it is loaded further, strength degradation in story shear follows. This type of behavior is of joint shear failure mode. The strength of -column joint of shear failure mode is calculated from the counter line of J-mode, if value of bond strength is given. As can be seen in Fig. 8(c), story shear of -column joint is enhanced by providing larger anchorage capacity to bars. If bars are deb- comp. tens. No load Beam bars yield 3 Anchorage capacity attained tens. No load comp. Mode switch from B to J 3 4 Beam bars yield Anchorage capacity attained (a) Beam yielding tens. (b) Joint shear failure after yielding tens. Story shear degradation starts Finally bars yield 4 5 tens. Story shear degradation and compressive flexural failure starts at ends 3 comp. No load Mode switch from B to J 3 Anchorage capacity attained No load comp. Anchorage capacity attained (c) Joint shear failure without yielding (d) Beam end failure without yielding Figure 8. Prediction of strength and failure mode

8 onded, loading path moves lines --3 as shown in Fig. 8(d) and always stays with in B-region. Hence the failure mode is of end failure without yielding. onclusions A new model is proposed to predicting the effect of anchorage strength affecting the strength and failure modes of rein-forced concrete -column joint. The prediction of the model is as follows,. The new model offer a unified view which enables us to understand the complex behavior of -column joint affected by possible factors, including joint shear force, type and strength of anchorage, material strength and amount of joint hoop, etc. The input joint shear and bond strength and their interaction.they are not independent. Each factor have independent influences on the strength and deformation mode of -column joint.. It is demonstrated that the model can predict that, the anchorage strength is more fundamental factor than joint shear and anchorage strength has influences on strength and failure mode of -column joint. It is also predicted that larger bond capacity increase the joint strength, while the joint shear deformation increase relative to deformation of or column, if sufficient amount of joint hoops is not provided. References American oncrete Institute (AI). (995). Building ode Requirements for Structural concrete and ommentary. AI 38-95, Farmington Hills, Michigan. Architectural Institute of Japan (AIJ), (994). AIJ Structural Design Guidelines for Reinforced oncrete Buildings. Tokyo, Japan. Standard Association of New Zealand (SANZ). (995). oncrete Structures Standard: Part - The Design of oncrete Structure. NZS 3, Wellington, New Zealand. Paulay, T., Park, R., and Priestley, M. J. N., (978). Reinforced oncrete Beam-olumn Joints Under Seismic Actions. J AI, 75(), Shiohara, H. () New Model for Shear Failure of R Interior Beam-olumn onnections, J Struct. Eng., ASE, 7, February, 5-6.

ANALYSIS OF REINFORCED CONCRETE KNEE JOINTS BASED ON QUADRUPLE FLEXURAL RESITANCE. Hitoshi Shiohara 1 and Yong Woo Shin 2.

ANALYSIS OF REINFORCED CONCRETE KNEE JOINTS BASED ON QUADRUPLE FLEXURAL RESITANCE. Hitoshi Shiohara 1 and Yong Woo Shin 2. Proceedings of the 8 th U.S. National Conference on Earthquake Engineering pril 8-, 006, San Francisco, California, US Paper No. 73 NLYSIS F REINFRCED CNCRETE KNEE JINTS SED N QUDRUPLE FLEXURL RESITNCE

More information

Lap splice length and details of column longitudinal reinforcement at plastic hinge region

Lap splice length and details of column longitudinal reinforcement at plastic hinge region Lap length and details of column longitudinal reinforcement at plastic hinge region Hong-Gun Park 1) and Chul-Goo Kim 2) 1), 2 Department of Architecture and Architectural Engineering, Seoul National University,

More information

INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS

INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS Paper N 1458 Registration Code: S-H1463506048 INFLUENCE OF LOADING RATIO ON QUANTIFIED VISIBLE DAMAGES OF R/C STRUCTURAL MEMBERS N. Takahashi (1) (1) Associate Professor, Tohoku University, ntaka@archi.tohoku.ac.jp

More information

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE J. Sakai 1, S. Unjoh 2 and H. Ukon 3 1 Senior Researcher, Center for Advanced Engineering Structural Assessment and

More information

SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS

SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS SEISMIC PERFORMANCE OF LARGE RC CIRCULAR HOLLOW COLUMNS Giulio RANZO 1 And M J N PRIESTLEY SUMMARY experimental study conducted on three large size specimens are reported. The test units, designed with

More information

EXPERIMENTS ON SHEAR-FLEXURAL BEHAVIORS OF MODEL CAST IN PLACE CONCRETE PILES

EXPERIMENTS ON SHEAR-FLEXURAL BEHAVIORS OF MODEL CAST IN PLACE CONCRETE PILES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1403 EXPERIMENTS ON SHEAR-FLEXURAL BEHAVIORS OF MODEL CAST IN PLACE CONCRETE PILES Toshihiko YAMAMOTO

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

3-D FINITE ELEMENT CYCLIC ANALYSIS OF RC BEAM/COLUMN JOINT USING SPECIAL BOND MODEL

3-D FINITE ELEMENT CYCLIC ANALYSIS OF RC BEAM/COLUMN JOINT USING SPECIAL BOND MODEL 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 446 3-D FINITE ELEMENT CYCLIC ANALYSIS OF RC BEAM/COLUMN JOINT USING SPECIAL BOND MODEL Kazuki TAJIMA 1,

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Supplement: Statically Indeterminate Trusses and Frames

Supplement: Statically Indeterminate Trusses and Frames : Statically Indeterminate Trusses and Frames Approximate Analysis - In this supplement, we consider an approximate method of solving statically indeterminate trusses and frames subjected to lateral loads

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXILE FIER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS Hu Shaoqing Supervisor: Susumu KONO ** MEE8165 ASTRACT FRP with low Young

More information

Behavior and Modeling of Existing Reinforced Concrete Columns

Behavior and Modeling of Existing Reinforced Concrete Columns Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What

More information

APPLICATION OF INTENSIVE SHEAR REINFORCEMENT TO SPLICING SLEEVE JOINT OF PRE-FABRICATED REINFORCEMENT ASSEMBLY

APPLICATION OF INTENSIVE SHEAR REINFORCEMENT TO SPLICING SLEEVE JOINT OF PRE-FABRICATED REINFORCEMENT ASSEMBLY 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 587 APPLICATION OF INTENSIVE SHEAR REINFORCEMENT TO SPLICING SLEEVE JOINT OF PRE-FABRICATED REINFORCEMENT

More information

THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS

THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 64 THE SIMPLIFIED ELASTO-PLASTIC ANALYSIS MODEL OF REINFORCED CONCRETE FRAMED SHEAR WALLS Norikazu ONOZATO

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION

FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION Journal of the Chinese Institute of Engineers, Vol. 31, No., pp. 15-9 (8) 15 FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION Cheng-Cheng Chen* and Chao-Lin Cheng

More information

HYSTERETIC PERFORMANCE OF SHEAR PANEL DAMPERS OF ULTRA LOW- YIELD-STRENGTH STEEL FOR SEISMIC RESPONSE CONTROL OF BUILDINGS

HYSTERETIC PERFORMANCE OF SHEAR PANEL DAMPERS OF ULTRA LOW- YIELD-STRENGTH STEEL FOR SEISMIC RESPONSE CONTROL OF BUILDINGS 48 HYSTERETIC PERFORMANCE OF SHEAR PANEL DAMPERS OF ULTRA LOW- YIELD-STRENGTH STEEL FOR SEISMIC RESPONSE CONTROL OF UILDINGS Kiyoshi TANAKA And Yasuhito SASAKI SUMMARY Energy dissipating members play an

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

Nonlinear static analysis PUSHOVER

Nonlinear static analysis PUSHOVER Nonlinear static analysis PUSHOVER Adrian DOGARIU European Erasmus Mundus Master Course Sustainable Constructions under Natural Hazards and Catastrophic Events 520121-1-2011-1-CZ-ERA MUNDUS-EMMC Structural

More information

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES

A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES A METHOD OF LOAD INCREMENTS FOR THE DETERMINATION OF SECOND-ORDER LIMIT LOAD AND COLLAPSE SAFETY OF REINFORCED CONCRETE FRAMED STRUCTURES Konuralp Girgin (Ph.D. Thesis, Institute of Science and Technology,

More information

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS

AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 699 AXIAL COLLAPSE OF REINFORCED CONCRETE COLUMNS Manabu YOSHIMURA, Yoshikazu TAKAINE and Takaya NAKAMURA

More information

Analysis of the Full-scale Seven-story Reinforced Concrete Test Structure

Analysis of the Full-scale Seven-story Reinforced Concrete Test Structure This paper was published in Journal (B), The Faculty of Engineering, University of Tokyo, Vol. XXXVII, No. 2, 1983, pp. 432-478. Analysis of the Full-scale Seven-story Reinforced Concrete Test Structure

More information

PEER/SSC Tall Building Design. Case study #2

PEER/SSC Tall Building Design. Case study #2 PEER/SSC Tall Building Design Case study #2 Typical Plan View at Ground Floor and Below Typical Plan View at 2 nd Floor and Above Code Design Code Design Shear Wall properties Shear wall thickness and

More information

Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns

Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns Michael P. Berry Marc O. Eberhard University of Washington Project funded by the Pacific Earthquake Engineering Research Center

More information

AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS

AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS AN UNLOADING AND RELOADING STRESS-STRAIN MODEL FOR CONCRETE CONFINED BY TIE REINFORCEMENTS Junichi SAKAI 1 And Kazuhiko KAWASHIMA SUMMARY This paper presents a series of uniaxial compressive loading tests

More information

TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING

TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No.257 TESTS ON REINFORCED CONCRETE LOW-RISE SHEAR WALLS UNDER STATIC CYCLIC LOADING Marc BOUCHON 1, Nebojsa

More information

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING CD02-003 MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING B. Ghiassi 1, M. Soltani 2, A. A. Tasnimi 3 1 M.Sc. Student, School of Engineering, Tarbiat Modares

More information

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft)

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft) OS MODELER - EXAMPLES OF APPLICATION Version 1.0 (Draft) Matjaž Dolšek February 2008 Content 1. Introduction... 1 2. Four-storey reinforced concrete frame designed according to EC8... 2 2.1. Description

More information

Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns

Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns Mesh-sensitivity analysis of seismic damage index for reinforced concrete columns Jun Won Kang 1a and Jeeho Lee 2 1 Department of Civil Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066,

More information

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements

Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Engineering Structures 29 (2007) 163 175 www.elsevier.com/locate/engstruct Earthquake-resistant design of indeterminate reinforced-concrete slender column elements Gerasimos M. Kotsovos a, Christos Zeris

More information

Dynamic analysis of a reinforced concrete shear wall with strain rate effect. Synopsis. Introduction

Dynamic analysis of a reinforced concrete shear wall with strain rate effect. Synopsis. Introduction Dynamic analysis of a reinforced concrete shear wall with strain rate effect Synopsis A simplified analysis method for a reinforced concrete shear wall structure considering strain rate effects is presented.

More information

Collapse modes of structures under strong motions of earthquake

Collapse modes of structures under strong motions of earthquake ANNALS OF GEOPHYSICS, VOL. 45, N. 6, December 2002 Collapse modes of structures under strong motions of earthquake Hiroshi Akiyama Real Estate Science, School of Science and Technology, Nihon University,

More information

Reinforced Concrete Structures

Reinforced Concrete Structures Reinforced Concrete Structures MIM 232E Dr. Haluk Sesigür I.T.U. Faculty of Architecture Structural and Earthquake Engineering WG Ultimate Strength Theory Design of Singly Reinforced Rectangular Beams

More information

A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic Demands of Tall Buildings

A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic Demands of Tall Buildings Fawad A. Najam Pennung Warnitchai Asian Institute of Technology (AIT), Thailand Email: fawad.ahmed.najam@ait.ac.th A Modified Response Spectrum Analysis Procedure (MRSA) to Determine the Nonlinear Seismic

More information

DETERMINATION OF DUCTILITY CAPACITY AND OTHER SECTION PROPERTIES OF T-SHAPED RC WALLS IN DIRECT DISPLACEMENT-BASED DESIGN

DETERMINATION OF DUCTILITY CAPACITY AND OTHER SECTION PROPERTIES OF T-SHAPED RC WALLS IN DIRECT DISPLACEMENT-BASED DESIGN DETERMINATION OF DUCTILITY CAPACITY AND OTHER SECTION PROPERTIES OF T-SHAPED RC WALLS IN DIRECT DISPLACEMENT-BASED DESIGN E. Smyrou 1, T.J. Sullivan 2, M.J.N. Priestley 3 and G.M. Calvi 4 1 PhD Candidate,

More information

Chord rotation demand for Effective Catenary Action under Monotonic. Loadings

Chord rotation demand for Effective Catenary Action under Monotonic. Loadings ICCM015, 14-17 th July, Auckland, NZ Chord rotation demand for Effective Catenary Action under Monotonic Loadings *Meng-Hao Tsai Department of Civil Engineering, National Pingtung University of Science

More information

Theoretical assessment of progressive collapse capacity of reinforced concrete structures

Theoretical assessment of progressive collapse capacity of reinforced concrete structures Theoretical assessment of progressive collapse capacity of reinforced concrete structures Alogla, KD, Weekes, L and Augusthus Nelson, L http://dx.doi.org/.10/jmacr.1.00 Title Authors Type URL Theoretical

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

IVIL.COM, C. English - Arabic. Arrow Assume Assumption Available Average Axes Axial Axis

IVIL.COM, C. English - Arabic. Arrow Assume Assumption Available Average Axes Axial Axis Abrupt Action Accuracy Accurate Advantage Algebra Algebraic Algebraic equation English - Arabic Algebraic expression Algebraic sum Allow Allowable Ambiguous Analyze Analysis f sections Structural analysis

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by: 5.11. Under-reinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING

EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1498 EFFECTS OF CONFINED CONCRETE MODELS ON SIMULATING RC COLUMNS UNDER LOW-CYCLIC LOADING Zongming HUANG

More information

Influence of column web stiffening on the seismic behaviour of beam-tocolumn

Influence of column web stiffening on the seismic behaviour of beam-tocolumn Influence of column web stiffening on the seismic behaviour of beam-tocolumn joints A.L. Ciutina & D. Dubina The Politehnica University of Timisoara, Romania ABSTRACT: The present paper summarises the

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure

Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure Centrifuge Shaking Table s and FEM Analyses of RC Pile Foundation and Underground Structure Kenji Yonezawa Obayashi Corporation, Tokyo, Japan. Takuya Anabuki Obayashi Corporation, Tokyo, Japan. Shunichi

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

APPENDIX G I-BEAM SUMMARIES 0.6-IN. STRAND G-1

APPENDIX G I-BEAM SUMMARIES 0.6-IN. STRAND G-1 APPENDIX G I-BEAM SUMMARIES.6-IN. STRAND G-1 Concrete Compressive Strength Embedment Length(L e ) Span Failure Mode Maximum Load Maximum Shear Maximum Moment Maximum Deflection attained Rebound after complete

More information

Finite element analysis of diagonal tension failure in RC beams

Finite element analysis of diagonal tension failure in RC beams Finite element analysis of diagonal tension failure in RC beams T. Hasegawa Institute of Technology, Shimizu Corporation, Tokyo, Japan ABSTRACT: Finite element analysis of diagonal tension failure in a

More information

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d

EDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWO-PHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

Influence of bond-slip on the behaviour of reinforced concrete beam to column joints

Influence of bond-slip on the behaviour of reinforced concrete beam to column joints Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8 Influence of bond-slip on the behaviour of reinforced concrete beam to column joints

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

Prediction of the Lateral Load Displacement Curves for RC Squat Walls Failing in Shear

Prediction of the Lateral Load Displacement Curves for RC Squat Walls Failing in Shear PESDES 2017 International Workshop on Performance-Based Seismic Design of Structures Prediction of the Lateral Load Displacement Curves for RC Squat Walls Failing in Shear Shyh-Jiann Hang Director National

More information

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes)

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes) The Islamic University of Gaza Department of Civil Engineering ENGC 6353 Design of Spherical Shells (Domes) Shell Structure A thin shell is defined as a shell with a relatively small thickness, compared

More information

SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT

SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT SEISMIC PERFORMANCE OF CONCRETE COLUMNS WITH INADEQUATE TRANSVERSE REINFORCEMENT. Alistair Boys 1 Des K. Bull 2 Stefano Pampanin 3 ABSTRACT Existing New Zealand building stock contains a significant number

More information

ANALYSIS: THEORY AND APPLICATION FOR

ANALYSIS: THEORY AND APPLICATION FOR Structural Eng./Earthquake Eng., JSCE, Vol. 17, No. 1, 21s-35s, 2000 April (J. Struct. Mech. Earthquake Eng., JSCE, No. 647/I-51) APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION

More information

SEISMIC PERFORMANCE EVALUATION METHOD FOR A BUILDING WITH CENTER CORE REINFORCED CONCRETE WALLS AND EXTERIOR STEEL FLAME

SEISMIC PERFORMANCE EVALUATION METHOD FOR A BUILDING WITH CENTER CORE REINFORCED CONCRETE WALLS AND EXTERIOR STEEL FLAME SEISMIC PERFORMANCE EVALUATION METHOD FOR A BUILDING WITH CENTER CORE REINFORCED CONCRETE WALLS AND EXTERIOR STEEL FLAME Yoshiyuki MATSUSHIMA, Masaomi TESHIGAWARA 2, Makoto KATO 3 And Kenichi SUGAYA 4

More information

Influence of cracked inertia and moment-curvature curve idealization on pushover analysis

Influence of cracked inertia and moment-curvature curve idealization on pushover analysis Influence of cracked inertia and moment-curvature curve idealization on pushover analysis Vivier Aurélie, Sekkat Dayae, Montens Serge Systra, 3 avenue du Coq, 75009 Paris SUMMARY: The pushover analysis

More information

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES

A NEW SIMPLIFIED AND EFFICIENT TECHNIQUE FOR FRACTURE BEHAVIOR ANALYSIS OF CONCRETE STRUCTURES Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDFCATO Publishers, D-79104 Freiburg, Germany A NEW SMPLFED AND EFFCENT TECHNQUE FOR FRACTURE BEHAVOR ANALYSS OF CONCRETE STRUCTURES K.

More information

QUANTITATIVE ANALYSIS OF ACOUSTIC EMISSION WAVEFORMS AND. M.Ohtsu Department of Civil and Environmental Eng. Kumamoto University Kumamoto 860, Japan

QUANTITATIVE ANALYSIS OF ACOUSTIC EMISSION WAVEFORMS AND. M.Ohtsu Department of Civil and Environmental Eng. Kumamoto University Kumamoto 860, Japan QUANTITATIVE ANALYSIS OF ACOUSTIC EMISSION WAVEFORMS AND PRACTICAL APPLICATION TO CIVIL STRUCTURES IN JAPAN M.Ohtsu Department of Civil and Environmental Eng. Kumamoto University Kumamoto 860, Japan INTRODUCTION

More information

9.5 Compression Members

9.5 Compression Members 9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when

More information

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

COMPUTATIONAL MODEL FOR REINFORCING BAR EMBEDDED IN CONCRETE UNDER COMBINED AXIAL PULLOUT AND TRANSVERSE DISPLACEMENT

COMPUTATIONAL MODEL FOR REINFORCING BAR EMBEDDED IN CONCRETE UNDER COMBINED AXIAL PULLOUT AND TRANSVERSE DISPLACEMENT J. Materials, Conc. Struct., Pavements., JSCE, No. 538/V-31, 227-239, 1996 May COMPUTATIONAL MODEL FOR REINFORCING BAR EMBEDDED IN CONCRETE UNDER COMBINED AXIAL PULLOUT AND TRANSVERSE DISPLACEMENT Koichi

More information

Non-linear Shear Model for R/C Piers. J. Guedes, A.V. Pinto, P. Pegon

Non-linear Shear Model for R/C Piers. J. Guedes, A.V. Pinto, P. Pegon Non-linear Shear Model for R/C Piers J. Guedes, A.V. Pinto, P. Pegon EUR 24153 EN - 2010 The mission of the JRC-IPSC is to provide research results and to support EU policy-makers in their effort towards

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

Towards the design of reinforced concrete eccentric beam±column joints

Towards the design of reinforced concrete eccentric beam±column joints Magazine of oncrete Research, 1999, 51, No. 6, Dec., 397±47 Towards the design of reinforced concrete eccentric beam±column joints R. L. Vollum and J. B. Newman Imperial ollege The authors have previously

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

Appendix K Design Examples

Appendix K Design Examples Appendix K Design Examples Example 1 * Two-Span I-Girder Bridge Continuous for Live Loads AASHTO Type IV I girder Zero Skew (a) Bridge Deck The bridge deck reinforcement using A615 rebars is shown below.

More information

Module 6. Shear, Bond, Anchorage, Development Length and Torsion. Version 2 CE IIT, Kharagpur

Module 6. Shear, Bond, Anchorage, Development Length and Torsion. Version 2 CE IIT, Kharagpur Module 6 Shear, Bond, Anchorage, Development Length and Torsion Lesson 15 Bond, Anchorage, Development Length and Splicing Instruction Objectives: At the end of this lesson, the student should be able

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION

Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. 6: SHEAR AND TORSION Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 6: SHEAR AND TORSION Reinforced

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

A q u a b l u e a t t h e G o l d e n M i l e

A q u a b l u e a t t h e G o l d e n M i l e A q u a b l u e a t t h e G o l d e n M i l e H a t o R e y, P u e r t o R i c o G e n e r a l B u i l d i n g I n f o r m a t i o n Building Facts: 7-story parking structure + luxury apartments 900,000

More information

Parametric analysis and torsion design charts for axially restrained RC beams

Parametric analysis and torsion design charts for axially restrained RC beams Structural Engineering and Mechanics, Vol. 55, No. 1 (2015) 1-27 DOI: http://dx.doi.org/10.12989/sem.2015.55.1.001 1 Parametric analysis and torsion design charts for axially restrained RC beams Luís F.A.

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns

Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns Shear Failure Model for Flexure-Shear Critical Reinforced Concrete Columns W.M. Ghannoum 1 and J.P. Moehle 2 1 Assistant Professor, Dept. of Civil, Architectural, and Environmental Engineering, University

More information

Behavior of RC beams under impact loading: some new findings

Behavior of RC beams under impact loading: some new findings ehavior of R beams under impact loading: some new findings S.M. Soleimani ssociated Engineering Ltd., urnaby,, anada N. anthia & S. Mindess The University of ritish olumbia, Vancouver,, anada STRT: The

More information

CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM

CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2367 CAPACITY DESIGN FOR TALL BUILDINGS WITH MIXED SYSTEM M.UMA MAHESHWARI 1 and A.R.SANTHAKUMAR 2 SUMMARY

More information

Failure interaction curves for combined loading involving torsion, bending, and axial loading

Failure interaction curves for combined loading involving torsion, bending, and axial loading Failure interaction curves for combined loading involving torsion, bending, and axial loading W M Onsongo Many modern concrete structures such as elevated guideways are subjected to combined bending, torsion,

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

- Rectangular Beam Design -

- Rectangular Beam Design - Semester 1 2016/2017 - Rectangular Beam Design - Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction The purposes

More information

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections *Zeyu Zhou 1) Bo Ye 2) and Yiyi Chen 3) 1), 2), 3) State Key Laboratory of Disaster

More information

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6 Page 3 Page 4 Substructure Design. ARRANGEMENT a. Frame A-P3 L = 20 m H = 5.23 m L 2 = 20 m H = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m b. Frame P3-P6 L = 25 m H 3 = 8.39 m L 2 = 3 m H 4 = 8.5 m L

More information

Simulation of Nonlinear Behavior of Wall-Frame Structure during Earthquakes

Simulation of Nonlinear Behavior of Wall-Frame Structure during Earthquakes Simulation of Nonlinear Behavior of Wall-Frame Structure during Earthquakes b Masaomi Teshigawara 1, Hiroshi Fukuama 2, Hiroto Kato 2, Taiki Saito 2, Koichi Kusunoki 2, Tomohisa Mukai 2 ABSTRACT The reinforced

More information

Code Calibration for Implementation of Limit State Design in Japan. Tsuyoshi Takada 1 and Min Wang 2

Code Calibration for Implementation of Limit State Design in Japan. Tsuyoshi Takada 1 and Min Wang 2 Code Calibration for Implementation of Limit State Design in Japan Tsuyoshi Takada and Min Wang Graduate School of Engineering, the University of Tokyo, 7--, Hongo, Bunkyou-ku, Japan takada@load.arch.t.u-tokyo.ac.jp,

More information

10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2

10/14/2011. Types of Shear Failure. CASE 1: a v /d 6. a v. CASE 2: 2 a v /d 6. CASE 3: a v /d 2 V V Types o Shear Failure a v CASE 1: a v /d 6 d V a v CASE 2: 2 a v /d 6 d V a v CASE 3: a v /d 2 d V 1 Shear Resistance Concrete compression d V cz = Shear orce in the compression zone (20 40%) V a =

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information