Potential due to thin disk

Size: px
Start display at page:

Download "Potential due to thin disk"

Transcription

1 Stellar Dynamics & Structure of Galaxies hanout #9 Potential ue to thin isk H << Coul use above an write own potential as sum over rings. But metho oes not work at r = a. Instea use cylinrical polar,,φ,z), coorinates Expect Φ Φ, z) an Φ, z) = Φ, z) by symmetry. Outsie isk 2 Φ =. 1 Φ ) + 2 Φ z 2 = We solve this by separation of variables, letting Φ,z) = J)Zz) Zz) 1 J) ) 1 J ) = J }{{} 1 Z function of so 2 Z + J) 2 z 2Zz) = 2 Z z 2 }{{} function of z = k 2, say z 2 k2 Z = 9-1) Z = A expkz) + B exp kz) an 1 J ) + k 2 J) = 9-2) 47

2 We woul quite like Φ, ) an Φ, ) to be zero, so is the appropriate solution for Zz). Zz) = A exp k z ) The equation 9-2) is the efining equation for a Bessel function. These are the analogues of sines an cosines now for cylinrical as oppose to linear problems e.g. rum beats). So while similarly 2 y z y = has solutions sinkz), coskz)9-3) 1 s y ) + k 2 y = s s s has solutions J ks),y ks) 9-4) which you can look up in e.g. Abramowitz & Stegun Hanbook of Mathematical Functions. Examples are given on the next page. 48

3 Note that as x J x) 1 an Y x). More generally the equation 1 s s s y s ) + k 2 ν s 2 ) y = has solutions J ν ks),y ν ks), so we get while a whole family of Bessel functions characterize by the inex ν. Also there are moifie Bessel functions where k ik 2 y z 2 k2 y = has solutions sinikz), cosikz) or expkz) Similarly 1 s s s y ) k 2 y = s I ks) K ks) an 1 s s y ) ) k 2 + ν2 y = s s s 2 I ν ks),k ν ks) see Abramowitz + Stegun Hanbook of Mathematical functions An we can take this even further. By analogy with Fourier transforms where sin, cos form the basis, we have J,Y Hankel transforms. Given a function gr), then the Hankel transform of g is gk) = gr)j ν kr)rr 49

4 an the inverse transform is: gr) = gk)j ν r)kk [ look these up in books of Hankel transforms! ] eturning to the axisymmetric plane istribution, we have 9-1) Zz) = exp k z ) 9-2) J) = J kr) choose J to get Φ finite at = Let k > then Φ k,z) = Ce kz J k) z > Ce kz J k) z < This is true k >, but a specific k for each Φ k. General potential k Φ k Φ,z) = fk)e k z J k)k 9-5) Here fk) is a weighting function, corresponing to the C values in the sum. So what we nee to o for a particular mass istribution is fin fk). If we are going to relate it to a mass istribution, the next thing we shoul o is look at the z = plane, i.e. the region we have neglecte so far since we have taken 2 Φ = an so consiere regions outsie the plane. Note that Φ k is continuous across z = but Φ k is not ue to z epenence.that is where the mass is, so that is not a surprise. 2 Φ k = except at z = an Φ k as z, satisfies conitions for potential from an isolate mass istribution. Still nee to link with ρ or Σ)) in the plane. 5

5 Use Gauss Theorem Poisson s equation plus ivergence theorem) to etermine Σ in the z = plane. Over the cyliner 4πGρV = 2 ΦV =. Φ)V = Φ. ˆn 2 S Consier the limit in which the cyliner height. Then if A is the area of an en of the cyliner LHS = 4πGΣA HS = [ ] Φ z z=+ [ ] ) Φ A z z= Equating these [ ] + Φ = 4πGΣ) z LHS = kfk)e k+ J k)k kfk) z= e k J k)k = kfk)j k)k kfk)j k)k = 2 kfk)j k)k Σ) = 1 fk)j k)kk 2πG 51

6 Hence etermine fk) [an hence Φ] from inverse Hankel transform fk) = 2πG Σ)J k)r Thus the process for termining Φ from ρ in this case is Σ f Φ. Note: For etermining the circular velocity nee Φ, whch becomes J x) an for Bessel function J have JJ x x) = J 1 x) [Example]. x, This has been a bit longwine, but the steps are clear. They are: Summary of erivation of Φ for thin axisymmetric isk 1. 2 Φ = outsie isk. Solve by separation of variables. 2. Solutions of form Φ k,z) = Ce k z J k) k > 3. Φ k as,z an satisfies 2 Φ = is potential of an isolate ensity istribution 4. General Φ can be written as Φ,z) = Φ k,z)fk)k where fk) is an appropriate weight function. 5. Use Gauss theorem to etermine Σ) = 1 fk)j k)kk 2πG 6. Hence fk) = 2πG Σ)J k) So given Σ, use item 6) to etermine fk), an then 5) to obtain Φ. The circular velocity in the plane of a plane istribution of matter is given by vc) 2 = Φ z= 52

7 an we have x = k J k) = k x J x = kj 1 k) Then since we have equation 9-5) [Φ,z) = fk)e k z J k)k] then Examples a) Mestel isk v 2 C) = fk)j 1 k)kk A Mestel isk has the surface ensity istribution Σ) = Σ Thus M< ) = 2πΣ ) = 2π Σ = 2πΣ as fk) = 2πGΣ J k) = 2πGΣ k From Grashteyn an yzkik J ν bx)x = 1 b 53 eν) > 1 b >

8 Φ,z) = 2πGΣ e k z J k) k k an v 2 c) = 2πGΣ J 1 k)k v 2 c) = 2πGΣ = const Note that vc 2 GM) ) = exactly in this case even though istribution is a isk, not spherical. More generally, fin vc 2 GM) to within 1% [reasonable accuracy] for most smooth Σ istributions. see figure on next page) Conclue that measurement of v c ) is a goo measure of mass insie. 54

9 Exponential Disk Here Σ) = Σ exp [ /] 9-6) This has finite mass M = = 2πΣ 2 = 2πΣ 2 2πΣ exp [ /] e x xx } {{ } =1 Then fk) = 2πGΣ e / J k) [ Grashteyn + yzhik : e αx J βx) xx = α [β 2 + α 2 ] 3/2 ] [ Actually they have something ) which requires a little work: J ν βx)x ν+1 x = 2α2β)ν Γν ) π α2 + β 2 ) ν+3 2 an you nee to put in ν =, Γ3/2) = π/2. Then put α = 1/ an β = k.] Hence Use fk) = 2πGΣ 2 [1 + k ) 2 ] 3/2 Φ,z) = 2πGΣ 2 J k)e k z 1 + k ) 2) 3/2 k ) ) Jνxy)x 1 1 x 2 + a 2 ) = I 1/2 ν/2 2 ay K ν/2 2 ay 55

10 You can o this with help from Grashteyn + yzhik again, using ) for ea) >, y >, eν) > 1, an I z) = I 1z), K z) = K 1z) J ν xy) x x2 + a 2 = I ν/2 1 2 ay)k ν/2 1 2 ay) a of this gives J ν xy) x a x 2 + a = y 2 3/2 2 I ν/2 1 2 ay)k ν/2 1 2 ay) + y 2 I ν/2 1 2 ay)k ν/2 1 2 ay) so for ν = or J xy) x a x 2 + a = y 2 3/2 2 I 1 2 ay)k ay) + y 2 I ay)k 1 2 ay) J ν xy) x x 2 + a = y [I 2 3/2 1 2a 2 ay)k ay) I ay)k 1 ] 2 ay) Then with x = k, y = an a = 1/ this becomes J ν k) k 1 + k) = [ I 23/2 2 2 )K 1 ) I 1 )K ] ) Also you fin for the circular velocity with y = /2 ) v 2 C = Φ = 4πΣ y 2 [I K I 1 K 1 ] which is helpfully left as an example... 56

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 20 Quantum Mechanics in Three Dimensions Lecture 20 Physics 342 Quantum Mechanics I Monay, March 24th, 2008 We begin our spherical solutions with the simplest possible case zero potential.

More information

1 Boas, p. 643, problem (b)

1 Boas, p. 643, problem (b) Physics 6C Solutions to Homework Set #6 Fall Boas, p. 643, problem 3.5-3b Fin the steay-state temperature istribution in a soli cyliner of height H an raius a if the top an curve surfaces are hel at an

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

The Press-Schechter mass function

The Press-Schechter mass function The Press-Schechter mass function To state the obvious: It is important to relate our theories to what we can observe. We have looke at linear perturbation theory, an we have consiere a simple moel for

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

PH 132 Exam 1 Spring Student Name. Student Number. Lab/Recitation Section Number (11,,36)

PH 132 Exam 1 Spring Student Name. Student Number. Lab/Recitation Section Number (11,,36) PH 13 Exam 1 Spring 010 Stuent Name Stuent Number ab/ecitation Section Number (11,,36) Instructions: 1. Fill out all of the information requeste above. Write your name on each page.. Clearly inicate your

More information

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II)

Laplace s Equation in Cylindrical Coordinates and Bessel s Equation (II) Laplace s Equation in Cylinrical Coorinates an Bessel s Equation (II Qualitative properties of Bessel functions of first an secon kin In the last lecture we foun the expression for the general solution

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Chapter 4. Electrostatics of Macroscopic Media

Chapter 4. Electrostatics of Macroscopic Media Chapter 4. Electrostatics of Macroscopic Meia 4.1 Multipole Expansion Approximate potentials at large istances 3 x' x' (x') x x' x x Fig 4.1 We consier the potential in the far-fiel region (see Fig. 4.1

More information

Chapter 2 Governing Equations

Chapter 2 Governing Equations Chapter 2 Governing Equations In the present an the subsequent chapters, we shall, either irectly or inirectly, be concerne with the bounary-layer flow of an incompressible viscous flui without any involvement

More information

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling.

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling. Chapter 8 Analytic Functions Stuents nee encouragement. So if a stuent gets an answer right, tell them it was a lucky guess. That way, they evelop a goo, lucky feeling. 1 8.1 Complex Derivatives -Jack

More information

Mathematics 116 HWK 25a Solutions 8.6 p610

Mathematics 116 HWK 25a Solutions 8.6 p610 Mathematics 6 HWK 5a Solutions 8.6 p6 Problem, 8.6, p6 Fin a power series representation for the function f() = etermine the interval of convergence. an Solution. Begin with the geometric series = + +

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Linear First-Order Equations

Linear First-Order Equations 5 Linear First-Orer Equations Linear first-orer ifferential equations make up another important class of ifferential equations that commonly arise in applications an are relatively easy to solve (in theory)

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Physics Courseware Electromagnetism

Physics Courseware Electromagnetism Phsics Courseware Electromagnetism Electric potential Problem.- a) Fin the electric potential at points P, P an P prouce b the three charges Q, Q an Q. b) Are there an points where the electric potential

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10

Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 Calculus I Sec 2 Practice Test Problems for Chapter 4 Page 1 of 10 This is a set of practice test problems for Chapter 4. This is in no way an inclusive set of problems there can be other types of problems

More information

Solutions to MATH 271 Test #3H

Solutions to MATH 271 Test #3H Solutions to MATH 71 Test #3H This is the :4 class s version of the test. See pages 4 7 for the 4:4 class s. (1) (5 points) Let a k = ( 1)k. Is a k increasing? Decreasing? Boune above? Boune k below? Convergant

More information

3.6. Let s write out the sample space for this random experiment:

3.6. Let s write out the sample space for this random experiment: STAT 5 3 Let s write out the sample space for this ranom experiment: S = {(, 2), (, 3), (, 4), (, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} This sample space assumes the orering of the balls

More information

Electricity and Magnetism Computer Lab #1: Vector algebra and calculus

Electricity and Magnetism Computer Lab #1: Vector algebra and calculus Electricity an Magnetism Computer Lab #: Vector algebra an calculus We are going to learn how to use MathCa. First we use MathCa as a calculator. Type: 54.4+.-(/5+4/5)^= To get the power we type hat. 54.4.

More information

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum

Analytic Scaling Formulas for Crossed Laser Acceleration in Vacuum October 6, 4 ARDB Note Analytic Scaling Formulas for Crosse Laser Acceleration in Vacuum Robert J. Noble Stanfor Linear Accelerator Center, Stanfor University 575 San Hill Roa, Menlo Park, California 945

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

G j dq i + G j. q i. = a jt. and

G j dq i + G j. q i. = a jt. and Lagrange Multipliers Wenesay, 8 September 011 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx

Many problems in physics, engineering, and chemistry fall in a general class of equations of the form. d dx. d dx Math 53 Notes on turm-liouville equations Many problems in physics, engineering, an chemistry fall in a general class of equations of the form w(x)p(x) u ] + (q(x) λ) u = w(x) on an interval a, b], plus

More information

The Standard Atmosphere. Dr Andrew French

The Standard Atmosphere. Dr Andrew French The Stanar Atmosphere Dr Anrew French 1 The International Stanar Atmosphere (ISA) is an iealize moel of the variation of average air pressure an temperature with altitue. Assumptions: The atmosphere consists

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

The thin plate theory assumes the following deformational kinematics:

The thin plate theory assumes the following deformational kinematics: MEG6007 (Fall, 2017) - Solutions of Homework # 8 (ue on Tuesay, 29 November 2017) 8.0 Variational Derivation of Thin Plate Theory The thin plate theory assumes the following eformational kinematics: u

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Problem Set 2: Solutions

Problem Set 2: Solutions UNIVERSITY OF ALABAMA Department of Physics an Astronomy PH 102 / LeClair Summer II 2010 Problem Set 2: Solutions 1. The en of a charge rubber ro will attract small pellets of Styrofoam that, having mae

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

Conservation Laws. Chapter Conservation of Energy

Conservation Laws. Chapter Conservation of Energy 20 Chapter 3 Conservation Laws In orer to check the physical consistency of the above set of equations governing Maxwell-Lorentz electroynamics [(2.10) an (2.12) or (1.65) an (1.68)], we examine the action

More information

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth

MA 2232 Lecture 08 - Review of Log and Exponential Functions and Exponential Growth MA 2232 Lecture 08 - Review of Log an Exponential Functions an Exponential Growth Friay, February 2, 2018. Objectives: Review log an exponential functions, their erivative an integration formulas. Exponential

More information

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics

Maxwell s Equations 5/9/2016. EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations for static fields. Review Electrostatics and Magnetostatics Generate by Foxit PDF Creator Foxit oftware 5/9/216 3332 lectromagnetic II Chapter 9 Maxwell s quations Islamic University of Gaza lectrical ngineering Department Prof. Dr. Hala J l-khozonar 216 1 2 Review

More information

and from it produce the action integral whose variation we set to zero:

and from it produce the action integral whose variation we set to zero: Lagrange Multipliers Monay, 6 September 01 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

Mathematical Methods wks 5,6: PDEs

Mathematical Methods wks 5,6: PDEs Mathematical Methos wks 5,6: PDEs John Magorrian, magog@thphys.ox.ac.uk These are work-in-progress notes for the secon-year course on mathematical methos. The most up-to-ate version is available from http://www-thphys.physics.ox.ac.uk/people/johnmagorrian/mm.

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

Function Spaces. 1 Hilbert Spaces

Function Spaces. 1 Hilbert Spaces Function Spaces A function space is a set of functions F that has some structure. Often a nonparametric regression function or classifier is chosen to lie in some function space, where the assume structure

More information

TMA4195 Mathematical modelling Autumn 2012

TMA4195 Mathematical modelling Autumn 2012 Norwegian University of Science an Technology Department of Mathematical Sciences TMA495 Mathematical moelling Autumn 202 Solutions to exam December, 202 Dimensional matrix A: τ µ u r m - - s 0-2 - - 0

More information

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus

Mathcad Lecture #5 In-class Worksheet Plotting and Calculus Mathca Lecture #5 In-class Worksheet Plotting an Calculus At the en of this lecture, you shoul be able to: graph expressions, functions, an matrices of ata format graphs with titles, legens, log scales,

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

Entanglement is not very useful for estimating multiple phases

Entanglement is not very useful for estimating multiple phases PHYSICAL REVIEW A 70, 032310 (2004) Entanglement is not very useful for estimating multiple phases Manuel A. Ballester* Department of Mathematics, University of Utrecht, Box 80010, 3508 TA Utrecht, The

More information

Chapter 6: Energy-Momentum Tensors

Chapter 6: Energy-Momentum Tensors 49 Chapter 6: Energy-Momentum Tensors This chapter outlines the general theory of energy an momentum conservation in terms of energy-momentum tensors, then applies these ieas to the case of Bohm's moel.

More information

(3-3) = (Gauss s law) (3-6)

(3-3) = (Gauss s law) (3-6) tatic Electric Fiels Electrostatics is the stuy of the effects of electric charges at rest, an the static electric fiels, which are cause by stationary electric charges. In the euctive approach, few funamental

More information

Approximate Constraint Satisfaction Requires Large LP Relaxations

Approximate Constraint Satisfaction Requires Large LP Relaxations Approximate Constraint Satisfaction Requires Large LP Relaxations oah Fleming April 19, 2018 Linear programming is a very powerful tool for attacking optimization problems. Techniques such as the ellipsoi

More information

5-4 Electrostatic Boundary Value Problems

5-4 Electrostatic Boundary Value Problems 11/8/4 Section 54 Electrostatic Bounary Value Problems blank 1/ 5-4 Electrostatic Bounary Value Problems Reaing Assignment: pp. 149-157 Q: A: We must solve ifferential equations, an apply bounary conitions

More information

Introduction to variational calculus: Lecture notes 1

Introduction to variational calculus: Lecture notes 1 October 10, 2006 Introuction to variational calculus: Lecture notes 1 Ewin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE-106 91 Stockholm, Sween Abstract I give an informal summary of variational

More information

Good luck! (W (t(j + 1)) W (tj)), n 1.

Good luck! (W (t(j + 1)) W (tj)), n 1. Av Matematisk statistik TENTAMEN I SF940 SANNOLIKHETSTEORI/EXAM IN SF940 PROBABILITY THE- ORY, WEDNESDAY OCTOBER 5, 07, 0800-300 Examinator : Boualem Djehiche, tel 08-7907875, email: boualem@kthse Tillåtna

More information

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics. PHYS 220, Engineering Physics, Chapter 24 Capacitance an Dielectrics Instructor: TeYu Chien Department of Physics an stronomy University of Wyoming Goal of this chapter is to learn what is Capacitance,

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

Final Exam: Sat 12 Dec 2009, 09:00-12:00

Final Exam: Sat 12 Dec 2009, 09:00-12:00 MATH 1013 SECTIONS A: Professor Szeptycki APPLIED CALCULUS I, FALL 009 B: Professor Toms C: Professor Szeto NAME: STUDENT #: SECTION: No ai (e.g. calculator, written notes) is allowe. Final Exam: Sat 1

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

12 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011

12 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 1 th Annual Johns Hopkins Math Tournament Saturay, February 19, 011 Geometry Subject Test 1. [105] Let D x,y enote the half-isk of raius 1 with its curve bounary externally tangent to the unit circle at

More information

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form

LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1. where a(x) and b(x) are functions. Observe that this class of equations includes equations of the form LINEAR DIFFERENTIAL EQUATIONS OF ORDER 1 We consier ifferential equations of the form y + a()y = b(), (1) y( 0 ) = y 0, where a() an b() are functions. Observe that this class of equations inclues equations

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

Proof by Mathematical Induction.

Proof by Mathematical Induction. Proof by Mathematical Inuction. Mathematicians have very peculiar characteristics. They like proving things or mathematical statements. Two of the most important techniques of mathematical proof are proof

More information

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS UNIT NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

Partial Differential Equations

Partial Differential Equations Chapter Partial Differential Equations. Introuction Have solve orinary ifferential equations, i.e. ones where there is one inepenent an one epenent variable. Only orinary ifferentiation is therefore involve.

More information

On Ruby s solid angle formula and some of its generalizations

On Ruby s solid angle formula and some of its generalizations On Ruby s soli angle formula an some of its generalizations Samuel Friot arxiv:4.3985v [nucl-ex] 5 Oct 4 Abstract Institut e Physique Nucléaire Orsay Université Paris-Su, INP3-NRS, F-945 Orsay eex, France

More information

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 1. CfE Edition

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 1. CfE Edition Higher Mathematics Contents 1 1 Representing a Circle A 1 Testing a Point A 3 The General Equation of a Circle A 4 Intersection of a Line an a Circle A 4 5 Tangents to A 5 6 Equations of Tangents to A

More information

MATHEMATICS BONUS FILES for faculty and students

MATHEMATICS BONUS FILES for faculty and students MATHMATI BONU FIL for faculty an stuents http://www.onu.eu/~mcaragiu1/bonus_files.html RIVD: May 15, 9 PUBLIHD: May 5, 9 toffel 1 Maxwell s quations through the Major Vector Theorems Joshua toffel Department

More information

arxiv: v1 [physics.flu-dyn] 8 May 2014

arxiv: v1 [physics.flu-dyn] 8 May 2014 Energetics of a flui uner the Boussinesq approximation arxiv:1405.1921v1 [physics.flu-yn] 8 May 2014 Kiyoshi Maruyama Department of Earth an Ocean Sciences, National Defense Acaemy, Yokosuka, Kanagawa

More information

Center of Gravity and Center of Mass

Center of Gravity and Center of Mass Center of Gravity an Center of Mass 1 Introuction. Center of mass an center of gravity closely parallel each other: they both work the same way. Center of mass is the more important, but center of gravity

More information

PHYS 414 Problem Set 2: Turtles all the way down

PHYS 414 Problem Set 2: Turtles all the way down PHYS 414 Problem Set 2: Turtles all the way own This problem set explores the common structure of ynamical theories in statistical physics as you pass from one length an time scale to another. Brownian

More information

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like)

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like) Stockton Univeristy Chemistry Program, School of Natural Sciences an Mathematics 101 Vera King Farris Dr, Galloway, NJ CHEM 340: Physical Chemistry II Solving the Schröinger Equation for the 1 Electron

More information

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions Math 3 Winter 2 Avance Bounary Value Problems I Bessel s Equation an Bessel Functions Department of Mathematical an Statistical Sciences University of Alberta Bessel s Equation an Bessel Functions We use

More information

Lecture 2 - First order linear PDEs and PDEs from physics

Lecture 2 - First order linear PDEs and PDEs from physics 18.15 - Introuction to PEs, Fall 004 Prof. Gigliola Staffilani Lecture - First orer linear PEs an PEs from physics I mentione in the first class some basic PEs of first an secon orer. Toay we illustrate

More information

The Three-dimensional Schödinger Equation

The Three-dimensional Schödinger Equation The Three-imensional Schöinger Equation R. L. Herman November 7, 016 Schröinger Equation in Spherical Coorinates We seek to solve the Schröinger equation with spherical symmetry using the metho of separation

More information

Physics 2212 K Quiz #2 Solutions Summer 2016

Physics 2212 K Quiz #2 Solutions Summer 2016 Physics 1 K Quiz # Solutions Summer 016 I. (18 points) A positron has the same mass as an electron, but has opposite charge. Consier a positron an an electron at rest, separate by a istance = 1.0 nm. What

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Lecture 2: Correlated Topic Model

Lecture 2: Correlated Topic Model Probabilistic Moels for Unsupervise Learning Spring 203 Lecture 2: Correlate Topic Moel Inference for Correlate Topic Moel Yuan Yuan First of all, let us make some claims about the parameters an variables

More information

Problem 3.84 of Bergman. Consider one-dimensional conduction in a plane composite wall. The outer surfaces are exposed to a fluid at T

Problem 3.84 of Bergman. Consider one-dimensional conduction in a plane composite wall. The outer surfaces are exposed to a fluid at T 1/10 bergman3-84.xmc Problem 3.84 of Bergman. Consier one-imensional conuction in a plane composite wall. The outer surfaces are expose to a flui at T 5 C an a convection heat transfer coefficient of h1000

More information