A note on adiabatic theorem for Markov chains and adiabatic quantum computation. Yevgeniy Kovchegov Oregon State University

Size: px
Start display at page:

Download "A note on adiabatic theorem for Markov chains and adiabatic quantum computation. Yevgeniy Kovchegov Oregon State University"

Transcription

1 A note on adiabatic theorem for Markov chains and adiabatic quantum computation Yevgeniy Kovchegov Oregon State University

2 Introduction Max Born and Vladimir Fock in 1928: a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian s spectrum (see Wikipedia page on adiabatic theorem).

3 Introduction A way of expressing Hamiltonians via reversible Markov chains Corresponding theorem for Markov chains.

4 Quantum adiabatic theorem Given two Hamiltonians, H initial and H final, acting on a quantum system. Let H(s) = (1 s)h initial + sh final System evolves according to H(t/T ) on t : 0 T (adiabatic evolution).

5 Quantum adiabatic theorem H(s) = (1 s)h initial + sh final System evolves according to H(t/T ) on t : 0 T (adiabatic evolution). Adiabatic thm of quantum mechanics: For T large enough, the final state of the system will be close to the ground state of H final, i.e. ɛ close in l 2 norm whenever T C ɛβ 3, where β is the least spectral gap of H(s) over all s [0, 1].

6 Mixing and relaxation times Definition. If µ and ν are two probability distributions over Ω, the total variation distance is µ ν T V = 1 2 x Ω µ(x) ν(x) = sup µ(a) ν(a) A Ω Observe that the total variation distance measures the coincidence between the distributions on a scale from zero to one.

7 Mixing and relaxation times Definition. Suppose P is an irreducible and aperiodic Markov chain with stationary distribution π, i.e. πp = π. Given an ɛ > 0, the mixing time t mix (ɛ) is defined as t mix (ɛ) = inf { t : νp t π T V ɛ, for all ν }

8 Mixing and relaxation ( ) times Suppose P = p(x, y) is reversible: x,y π(x)p(x, y) = π(y)p(y, x) x, y Ω P is reversible P is self-adjoint w.r.t. π All real eigenvalues. β = 1 λ 2 is the spectral gap of P. The relaxation time is defined as τ rlx = 1 β

9 Mixing and relaxation times Theorem. If P is a reversible, irreducible and aperiodic Markov chain. Then (τ rlx 1) log(2ɛ) 1 t mix (ɛ) τ rlx log(ɛ min x Ω π(x)) 1

10 Adiabatic time Given P initial and P final, where P final is irreducible and aperiodic. Let P s = (1 s)p initial + sp final π f is the stationary distribution for P final. Definition. Given ɛ > 0, a time T ɛ is called the adiabatic time if it is the least T such that max ν νp 1T P 2T P T 1 P 1 π f T V ɛ, T where the maximum is taken over all probability distributions ν over Ω.

11 Adiabatic theorem for Markov chains Theorem A (K.2008) Let t mix denote the mixing time for P final. Then the adiabatic time ( tmix (ɛ/2) 2 ) T ɛ = O ɛ

12 Proof: νp 1T P 2T P T 1 P 1 = T! T where u N = νp 1T P 2T P NT of the terms. N!T T N u NP T N final + E, and E is the rest Hence, by triangle inequality, max ν νp 1T P 2T P T 1 P 1 π f T V T max ν νp T N final π f T V where 0 S N 1 T! N!T T N. T! N!T T N + S N,

13 Proof: Let T = Kt mix (ɛ/2) and N = (K 1)t mix (ɛ/2) Then and max ν simplifies to νp T N final π f T V ɛ/2 e T N log xdx+(t N) log T ( K 1 e ) K 1 t mix (ɛ/2) T! N!T T N T! N!T T N 1

14 Proof: max ν νp 1T P 2T P T 1 P 1 π f T V T max ν νp T N final π f T V where 0 S N 1 T! N!T T N 0 S N 1 T! 1 N!T T N T! N!T T N + S N, and ( K 1 e ) K 1 t mix (ɛ/2)

15 Proof: Need the least K such that 1 ( K 1 e ) K 1 t mix (ɛ/2) ɛ/2 and since log(1 + x) = x x2 2 + O(x3 ), the least such K is approximated as follows K t mix (ɛ/2) 2 log (1 ɛ/2) t mix(ɛ/2) ɛ Thus for T = Kt mix (ɛ/2) t mix(ɛ/2) 2 ɛ, max ν νp 1T P 2T P T 1 P 1 π f T V ɛ T

16 Mixing and relaxation times Theorem. If P is a reversible, irreducible and aperiodic Markov chain. Then (τ rlx 1) log(2ɛ) 1 t mix (ɛ) τ rlx log(ɛ min x Ω π(x)) 1 Theorem A (K.2008) Let t mix denote the mixing time for P final. Then the adiabatic time ( tmix (ɛ/2) 2 ) T ɛ = O ɛ

17 A Corollary If P final is reversible, irreducible and aperiodic with its spectral gap β > 0, then T ɛ = O log 2 ɛ + log 1 min x Ω π f (x) ɛβ 2

18 Continuous time Markov processes Suppose Q is a bounded Markov generator for a continuous time Markov chain P (t), and λ max i Ω j:j i q(i, j) Uniformization: P (t) = n=0 (λt) n e λt Pλ n n!, where P λ = I+ 1 λ Q

19 Mixing times: continuous time Definition. P (t) is an irreducible continuous time Markov chain with stationary distribution π. Given an ɛ > 0, the mixing time t mix (ɛ) is defined as t mix (ɛ) = inf {t : νp (t) π T V ɛ, all ν}

20 Continuous time Suppose Q initial and Q final are bounded Markov generators, and π f is the only stationary distribution for Q final. Let Q[s] = (1 s)q initial + sq final be a time non-homogeneous generator. Given T > 0, let P T (s, t) (0 s t T ) denote a matrix of transition probabilities of a Markov process generated by Q [ t T ].

21 Adiabatic time: continuous time Definition. Given ɛ > 0, a time T ɛ is called the adiabatic time if it is the least T such that max νp ν T (0, T ) π f T V ɛ, where the maximum is taken over all probability distributions ν over Ω.

22 Adiabatic theorem for Markov processes. Let λ max i Ω j:j i q initial (i, j) and λ max i Ω j:j i q final (i, j) q initial (i, j) and q final (i, j) are the rates in Q initial and Q final respectively.

23 Adiabatic theorem for Markov processes. λ max i Ω Then j:j i q initial (i, j), λ, max i Ω j:j i q final (i, j) Theorem B.(K. 2008) Let t mix denote the mixing time for Q final. Then adiabatic time T ɛ λt mix(ɛ/2) 2 ɛ

24 Proof: λ max i Ω j:j i q t (i, j), where q t (i, j) are rates in Q [ t T ] (0 t T ). Let T = Kt mix (ɛ/2) and N = (K 1)t mix (ɛ/2), so that max ν νp final (T N) π f T V ɛ/2, where P final (t) = e tq final, transition probability generated by Q final. Let P 0 = I + 1 λ Q initial and P 1 = I + 1 λ Q final.

25 Proof: νp T (0, T ) = u N n=0 where u N = νp T (0, N) and (λ(t N) n e λ(t N) I n n!, I n = n! (T N) n [(1 x1 /T )P 0 + (x 1 /T )P 1 ] [(1 x n /T )P 0 +(x n /T )P 1 ]dx 1... dx n, over N < x 1 < x 2 < < x n < T.

26 Proof: Hence νp T (0, T ) = u N ( n=0 (λ(t N) n e λ(t N) (T N) n T n n! P n 1 TN x 1... x n dx 1... dx n ) +E = e λt mix(ɛ/2) u N ( n=0 λ n [(1 1 2K )t mix(ɛ/2)] n n! P n 1 +E = e λt mix(ɛ/2) u N P final ( λ ( 1 1 2K ) tmix (ɛ/2) ) +E where E is the rest of the terms. )

27 Proof: νp T (0, T ) = e λt mix(ɛ/2) u N P final ( λ ( 1 1 2K ) tmix (ɛ/2) ) +E where E is the rest of the terms. Thus, the total variation distance, max νp ν T (0, T ) π f T V e λtmix(ɛ/2) ɛ/2+s N whenever λ ( 1 2K 1 ) 1, i.e. K λ 2(λ 1), easy condition.

28 Proof: max νp T (0, T ) π f T V e λtmix(ɛ/2) ɛ/2+s N ν Here S N = E π f T V 1 e λt mix(ɛ/2) n=0 λ n [(1 1 2K )t mix(ɛ/2)] n n! = 1 e λt mix (ɛ/2) 2K ɛ/2 whenever K λt mix(ɛ/2) ɛ, and therefore T ɛ λt mix(ɛ/2) 2 ɛ

A note on adiabatic theorem for Markov chains

A note on adiabatic theorem for Markov chains Yevgeniy Kovchegov Abstract We state and prove a version of an adiabatic theorem for Markov chains using well known facts about mixing times. We extend the result to the case of continuous time Markov

More information

Adiabatic times for Markov chains and applications

Adiabatic times for Markov chains and applications Adiabatic times for Markov chains and applications Kyle Bradford and Yevgeniy Kovchegov Department of Mathematics Oregon State University Corvallis, OR 97331-4605, USA bradfork, kovchegy @math.oregonstate.edu

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

MARKOV CHAINS AND HIDDEN MARKOV MODELS

MARKOV CHAINS AND HIDDEN MARKOV MODELS MARKOV CHAINS AND HIDDEN MARKOV MODELS MERYL SEAH Abstract. This is an expository paper outlining the basics of Markov chains. We start the paper by explaining what a finite Markov chain is. Then we describe

More information

Modern Discrete Probability Spectral Techniques

Modern Discrete Probability Spectral Techniques Modern Discrete Probability VI - Spectral Techniques Background Sébastien Roch UW Madison Mathematics December 22, 2014 1 Review 2 3 4 Mixing time I Theorem (Convergence to stationarity) Consider a finite

More information

CONVERGENCE THEOREM FOR FINITE MARKOV CHAINS. Contents

CONVERGENCE THEOREM FOR FINITE MARKOV CHAINS. Contents CONVERGENCE THEOREM FOR FINITE MARKOV CHAINS ARI FREEDMAN Abstract. In this expository paper, I will give an overview of the necessary conditions for convergence in Markov chains on finite state spaces.

More information

215 Problem 1. (a) Define the total variation distance µ ν tv for probability distributions µ, ν on a finite set S. Show that

215 Problem 1. (a) Define the total variation distance µ ν tv for probability distributions µ, ν on a finite set S. Show that 15 Problem 1. (a) Define the total variation distance µ ν tv for probability distributions µ, ν on a finite set S. Show that µ ν tv = (1/) x S µ(x) ν(x) = x S(µ(x) ν(x)) + where a + = max(a, 0). Show that

More information

Characterization of cutoff for reversible Markov chains

Characterization of cutoff for reversible Markov chains Characterization of cutoff for reversible Markov chains Yuval Peres Joint work with Riddhi Basu and Jonathan Hermon 23 Feb 2015 Joint work with Riddhi Basu and Jonathan Hermon Characterization of cutoff

More information

Characterization of cutoff for reversible Markov chains

Characterization of cutoff for reversible Markov chains Characterization of cutoff for reversible Markov chains Yuval Peres Joint work with Riddhi Basu and Jonathan Hermon 3 December 2014 Joint work with Riddhi Basu and Jonathan Hermon Characterization of cutoff

More information

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution.

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution. Lecture 7 1 Stationary measures of a Markov chain We now study the long time behavior of a Markov Chain: in particular, the existence and uniqueness of stationary measures, and the convergence of the distribution

More information

MARKOV CHAINS AND MIXING TIMES

MARKOV CHAINS AND MIXING TIMES MARKOV CHAINS AND MIXING TIMES BEAU DABBS Abstract. This paper introduces the idea of a Markov chain, a random process which is independent of all states but its current one. We analyse some basic properties

More information

Confidence intervals for the mixing time of a reversible Markov chain from a single sample path

Confidence intervals for the mixing time of a reversible Markov chain from a single sample path Confidence intervals for the mixing time of a reversible Markov chain from a single sample path Daniel Hsu Aryeh Kontorovich Csaba Szepesvári Columbia University, Ben-Gurion University, University of Alberta

More information

The cutoff phenomenon for random walk on random directed graphs

The cutoff phenomenon for random walk on random directed graphs The cutoff phenomenon for random walk on random directed graphs Justin Salez Joint work with C. Bordenave and P. Caputo Outline of the talk Outline of the talk 1. The cutoff phenomenon for Markov chains

More information

Homework set 3 - Solutions

Homework set 3 - Solutions Homework set 3 - Solutions Math 495 Renato Feres Problems 1. (Text, Exercise 1.13, page 38.) Consider the Markov chain described in Exercise 1.1: The Smiths receive the paper every morning and place it

More information

Mixing times via super-fast coupling

Mixing times via super-fast coupling s via super-fast coupling Yevgeniy Kovchegov Department of Mathematics Oregon State University Outline 1 About 2 Definition Coupling Result. About Outline 1 About 2 Definition Coupling Result. About Coauthor

More information

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M.

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M. Lecture 10 1 Ergodic decomposition of invariant measures Let T : (Ω, F) (Ω, F) be measurable, and let M denote the space of T -invariant probability measures on (Ω, F). Then M is a convex set, although

More information

Coupling AMS Short Course

Coupling AMS Short Course Coupling AMS Short Course January 2010 Distance If µ and ν are two probability distributions on a set Ω, then the total variation distance between µ and ν is Example. Let Ω = {0, 1}, and set Then d TV

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 7. Reversal This chapter talks about time reversal. A Markov process is a state X t which changes with time. If we run time backwards what does it look like? 7.1.

More information

Stochastic optimization Markov Chain Monte Carlo

Stochastic optimization Markov Chain Monte Carlo Stochastic optimization Markov Chain Monte Carlo Ethan Fetaya Weizmann Institute of Science 1 Motivation Markov chains Stationary distribution Mixing time 2 Algorithms Metropolis-Hastings Simulated Annealing

More information

Path Coupling and Aggregate Path Coupling

Path Coupling and Aggregate Path Coupling Path Coupling and Aggregate Path Coupling 0 Path Coupling and Aggregate Path Coupling Yevgeniy Kovchegov Oregon State University (joint work with Peter T. Otto from Willamette University) Path Coupling

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

A CLASS OF MARKOV CHAINS WITH NO SPECTRAL GAP

A CLASS OF MARKOV CHAINS WITH NO SPECTRAL GAP PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 4, Number, December 03, Pages 437 436 S 000-9939(03)697-7 Article electronically published on August 6, 03 A CLASS OF MARKOV CHAINS WITH NO SPECTRAL

More information

Adiabatic Quantum Computation An alternative approach to a quantum computer

Adiabatic Quantum Computation An alternative approach to a quantum computer An alternative approach to a quantum computer ETH Zürich May 2. 2014 Table of Contents 1 Introduction 2 3 4 Literature: Introduction E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

25.1 Markov Chain Monte Carlo (MCMC)

25.1 Markov Chain Monte Carlo (MCMC) CS880: Approximations Algorithms Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla Topic: Approx counting/sampling, MCMC methods Date: 4/4/07 The previous lecture showed that, for self-reducible problems,

More information

Some Definition and Example of Markov Chain

Some Definition and Example of Markov Chain Some Definition and Example of Markov Chain Bowen Dai The Ohio State University April 5 th 2016 Introduction Definition and Notation Simple example of Markov Chain Aim Have some taste of Markov Chain and

More information

A generalization of Dobrushin coefficient

A generalization of Dobrushin coefficient A generalization of Dobrushin coefficient Ü µ ŒÆ.êÆ ÆÆ 202.5 . Introduction and main results We generalize the well-known Dobrushin coefficient δ in total variation to weighted total variation δ V, which

More information

Stochastic Processes (Week 6)

Stochastic Processes (Week 6) Stochastic Processes (Week 6) October 30th, 2014 1 Discrete-time Finite Markov Chains 2 Countable Markov Chains 3 Continuous-Time Markov Chains 3.1 Poisson Process 3.2 Finite State Space 3.2.1 Kolmogrov

More information

Chapter 2. Markov Chains. Introduction

Chapter 2. Markov Chains. Introduction Chapter 2 Markov Chains Introduction A Markov chain is a sequence of random variables {X n ; n = 0, 1, 2,...}, defined on some probability space (Ω, F, IP), taking its values in a set E which could be

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

Quantum algorithms based on quantum walks. Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre / 39

Quantum algorithms based on quantum walks. Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre / 39 Quantum algorithms based on quantum walks Jérémie Roland Université Libre de Bruxelles Quantum Information & Communication Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 1 / 39 Outline

More information

LECTURE NOTES FOR MARKOV CHAINS: MIXING TIMES, HITTING TIMES, AND COVER TIMES IN SAINT PETERSBURG SUMMER SCHOOL, 2012

LECTURE NOTES FOR MARKOV CHAINS: MIXING TIMES, HITTING TIMES, AND COVER TIMES IN SAINT PETERSBURG SUMMER SCHOOL, 2012 LECTURE NOTES FOR MARKOV CHAINS: MIXING TIMES, HITTING TIMES, AND COVER TIMES IN SAINT PETERSBURG SUMMER SCHOOL, 2012 By Júlia Komjáthy Yuval Peres Eindhoven University of Technology and Microsoft Research

More information

CONVERGENCE RATE OF MCMC AND SIMULATED ANNEAL- ING WITH APPLICATION TO CLIENT-SERVER ASSIGNMENT PROBLEM

CONVERGENCE RATE OF MCMC AND SIMULATED ANNEAL- ING WITH APPLICATION TO CLIENT-SERVER ASSIGNMENT PROBLEM Stochastic Analysis and Applications CONVERGENCE RATE OF MCMC AND SIMULATED ANNEAL- ING WITH APPLICATION TO CLIENT-SERVER ASSIGNMENT PROBLEM THUAN DUONG-BA, THINH NGUYEN, BELLA BOSE School of Electrical

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

Markov Chains for Everybody

Markov Chains for Everybody Markov Chains for Everybody An Introduction to the theory of discrete time Markov chains on countable state spaces. Wilhelm Huisinga, & Eike Meerbach Fachbereich Mathematik und Informatik Freien Universität

More information

Flip dynamics on canonical cut and project tilings

Flip dynamics on canonical cut and project tilings Flip dynamics on canonical cut and project tilings Thomas Fernique CNRS & Univ. Paris 13 M2 Pavages ENS Lyon November 5, 2015 Outline 1 Random tilings 2 Random sampling 3 Mixing time 4 Slow cooling Outline

More information

Weak convergence in Probability Theory A summer excursion! Day 3

Weak convergence in Probability Theory A summer excursion! Day 3 BCAM June 2013 1 Weak convergence in Probability Theory A summer excursion! Day 3 Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM June 2013 2 Day 1: Basic

More information

Simulation - Lectures - Part III Markov chain Monte Carlo

Simulation - Lectures - Part III Markov chain Monte Carlo Simulation - Lectures - Part III Markov chain Monte Carlo Julien Berestycki Part A Simulation and Statistical Programming Hilary Term 2018 Part A Simulation. HT 2018. J. Berestycki. 1 / 50 Outline Markov

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

The coupling method - Simons Counting Complexity Bootcamp, 2016

The coupling method - Simons Counting Complexity Bootcamp, 2016 The coupling method - Simons Counting Complexity Bootcamp, 2016 Nayantara Bhatnagar (University of Delaware) Ivona Bezáková (Rochester Institute of Technology) January 26, 2016 Techniques for bounding

More information

Detailed Proofs of Lemmas, Theorems, and Corollaries

Detailed Proofs of Lemmas, Theorems, and Corollaries Dahua Lin CSAIL, MIT John Fisher CSAIL, MIT A List of Lemmas, Theorems, and Corollaries For being self-contained, we list here all the lemmas, theorems, and corollaries in the main paper. Lemma. The joint

More information

Finding is as easy as detecting for quantum walks

Finding is as easy as detecting for quantum walks Finding is as easy as detecting for quantum walks Jérémie Roland Hari Krovi Frédéric Magniez Maris Ozols LIAFA [ICALP 2010, arxiv:1002.2419] Jérémie Roland (NEC Labs) QIP 2011 1 / 14 Spatial search on

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC Markov chains Let S = {1, 2,..., N} be a finite set consisting of N states. A Markov chain Y 0, Y 1, Y 2,... is a sequence of random variables, with Y t S for all points in time

More information

The parallel replica method for Markov chains

The parallel replica method for Markov chains The parallel replica method for Markov chains David Aristoff (joint work with T Lelièvre and G Simpson) Colorado State University March 2015 D Aristoff (Colorado State University) March 2015 1 / 29 Introduction

More information

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING ERIC SHANG Abstract. This paper provides an introduction to Markov chains and their basic classifications and interesting properties. After establishing

More information

Final. due May 8, 2012

Final. due May 8, 2012 Final due May 8, 2012 Write your solutions clearly in complete sentences. All notation used must be properly introduced. Your arguments besides being correct should be also complete. Pay close attention

More information

COUPLING TIMES FOR RANDOM WALKS WITH INTERNAL STATES

COUPLING TIMES FOR RANDOM WALKS WITH INTERNAL STATES COUPLING TIMES FOR RANDOM WALKS WITH INTERNAL STATES ELYSE AZORR, SAMUEL J. GHITELMAN, RALPH MORRISON, AND GREG RICE ADVISOR: YEVGENIY KOVCHEGOV OREGON STATE UNIVERSITY ABSTRACT. Using coupling techniques,

More information

The Theory behind PageRank

The Theory behind PageRank The Theory behind PageRank Mauro Sozio Telecom ParisTech May 21, 2014 Mauro Sozio (LTCI TPT) The Theory behind PageRank May 21, 2014 1 / 19 A Crash Course on Discrete Probability Events and Probability

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ),

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ), MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 4: Steady-State Theory Contents 4.1 The Concept of Stochastic Equilibrium.......................... 1 4.2

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Quantitative Model Checking (QMC) - SS12

Quantitative Model Checking (QMC) - SS12 Quantitative Model Checking (QMC) - SS12 Lecture 06 David Spieler Saarland University, Germany June 4, 2012 1 / 34 Deciding Bisimulations 2 / 34 Partition Refinement Algorithm Notation: A partition P over

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

Discrete solid-on-solid models

Discrete solid-on-solid models Discrete solid-on-solid models University of Alberta 2018 COSy, University of Manitoba - June 7 Discrete processes, stochastic PDEs, deterministic PDEs Table: Deterministic PDEs Heat-diffusion equation

More information

University of Toronto Department of Statistics

University of Toronto Department of Statistics Norm Comparisons for Data Augmentation by James P. Hobert Department of Statistics University of Florida and Jeffrey S. Rosenthal Department of Statistics University of Toronto Technical Report No. 0704

More information

Glauber Dynamics for Ising Model I AMS Short Course

Glauber Dynamics for Ising Model I AMS Short Course Glauber Dynamics for Ising Model I AMS Short Course January 2010 Ising model Let G n = (V n, E n ) be a graph with N = V n < vertices. The nearest-neighbor Ising model on G n is the probability distribution

More information

Lecture 7. We can regard (p(i, j)) as defining a (maybe infinite) matrix P. Then a basic fact is

Lecture 7. We can regard (p(i, j)) as defining a (maybe infinite) matrix P. Then a basic fact is MARKOV CHAINS What I will talk about in class is pretty close to Durrett Chapter 5 sections 1-5. We stick to the countable state case, except where otherwise mentioned. Lecture 7. We can regard (p(i, j))

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Capacitary inequalities in discrete setting and application to metastable Markov chains. André Schlichting

Capacitary inequalities in discrete setting and application to metastable Markov chains. André Schlichting Capacitary inequalities in discrete setting and application to metastable Markov chains André Schlichting Institute for Applied Mathematics, University of Bonn joint work with M. Slowik (TU Berlin) 12

More information

TOTAL VARIATION CUTOFF IN BIRTH-AND-DEATH CHAINS

TOTAL VARIATION CUTOFF IN BIRTH-AND-DEATH CHAINS TOTAL VARIATION CUTOFF IN BIRTH-AND-DEATH CHAINS JIAN DING, EYAL LUBETZKY AND YUVAL PERES ABSTRACT. The cutoff phenomenon describes a case where a Markov chain exhibits a sharp transition in its convergence

More information

Lecture 4.6: Some special orthogonal functions

Lecture 4.6: Some special orthogonal functions Lecture 4.6: Some special orthogonal functions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics

More information

SUPPLEMENT TO PAPER CONVERGENCE OF ADAPTIVE AND INTERACTING MARKOV CHAIN MONTE CARLO ALGORITHMS

SUPPLEMENT TO PAPER CONVERGENCE OF ADAPTIVE AND INTERACTING MARKOV CHAIN MONTE CARLO ALGORITHMS Submitted to the Annals of Statistics SUPPLEMENT TO PAPER CONERGENCE OF ADAPTIE AND INTERACTING MARKO CHAIN MONTE CARLO ALGORITHMS By G Fort,, E Moulines and P Priouret LTCI, CNRS - TELECOM ParisTech,

More information

Quantum Systems: Dynamics and Control 1

Quantum Systems: Dynamics and Control 1 Quantum Systems: Dynamics and Control 1 Mazyar Mirrahimi and Pierre Rouchon 3 February, 18 1 See the web page: http://cas.ensmp.fr/~rouchon/masterupmc/index.html INRIA Paris, QUANTIC research team 3 Mines

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #3 Recap of Last lass Time Dependent Perturbation Theory Linear Response Function and Spectral Decomposition

More information

Markov Chains and Jump Processes

Markov Chains and Jump Processes Markov Chains and Jump Processes An Introduction to Markov Chains and Jump Processes on Countable State Spaces. Christof Schuette, & Philipp Metzner Fachbereich Mathematik und Informatik Freie Universität

More information

CONDITIONAL LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES

CONDITIONAL LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES CONDITIONAL LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES ION GRAMA, EMILE LE PAGE, AND MARC PEIGNÉ Abstract. Consider the product G n = g n...g 1 of the random matrices g 1,..., g n in GL d, R and the

More information

Wave function methods for the electronic Schrödinger equation

Wave function methods for the electronic Schrödinger equation Wave function methods for the electronic Schrödinger equation Zürich 2008 DFG Reseach Center Matheon: Mathematics in Key Technologies A7: Numerical Discretization Methods in Quantum Chemistry DFG Priority

More information

Markov Processes on Discrete State Spaces

Markov Processes on Discrete State Spaces Markov Processes on Discrete State Spaces Theoretical Background and Applications. Christof Schuette 1 & Wilhelm Huisinga 2 1 Fachbereich Mathematik und Informatik Freie Universität Berlin & DFG Research

More information

Approximate Counting and Markov Chain Monte Carlo

Approximate Counting and Markov Chain Monte Carlo Approximate Counting and Markov Chain Monte Carlo A Randomized Approach Arindam Pal Department of Computer Science and Engineering Indian Institute of Technology Delhi March 18, 2011 April 8, 2011 Arindam

More information

Automorphic Equivalence Within Gapped Phases

Automorphic Equivalence Within Gapped Phases 1 Harvard University May 18, 2011 Automorphic Equivalence Within Gapped Phases Robert Sims University of Arizona based on joint work with Sven Bachmann, Spyridon Michalakis, and Bruno Nachtergaele 2 Outline:

More information

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write Lecture 3: Expected Value 1.) Definitions. If X 0 is a random variable on (Ω, F, P), then we define its expected value to be EX = XdP. Notice that this quantity may be. For general X, we say that EX exists

More information

Lecture 28: April 26

Lecture 28: April 26 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 28: April 26 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

Free Entropy for Free Gibbs Laws Given by Convex Potentials

Free Entropy for Free Gibbs Laws Given by Convex Potentials Free Entropy for Free Gibbs Laws Given by Convex Potentials David A. Jekel University of California, Los Angeles Young Mathematicians in C -algebras, August 2018 David A. Jekel (UCLA) Free Entropy YMC

More information

Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms

Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms Simultaneous drift conditions for Adaptive Markov Chain Monte Carlo algorithms Yan Bai Feb 2009; Revised Nov 2009 Abstract In the paper, we mainly study ergodicity of adaptive MCMC algorithms. Assume that

More information

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap Institute of Fundamental Sciences Massey University New Zealand 29 August 2017 A. A. Kapaev Memorial Workshop Michigan

More information

arxiv: v2 [math.na] 20 Dec 2016

arxiv: v2 [math.na] 20 Dec 2016 SAIONARY AVERAGING FOR MULI-SCALE CONINUOUS IME MARKOV CHAINS USING PARALLEL REPLICA DYNAMICS ING WANG, PER PLECHÁČ, AND DAVID ARISOFF arxiv:169.6363v2 [math.na 2 Dec 216 Abstract. We propose two algorithms

More information

Mixing time for a random walk on a ring

Mixing time for a random walk on a ring Mixing time for a random walk on a ring Stephen Connor Joint work with Michael Bate Paris, September 2013 Introduction Let X be a discrete time Markov chain on a finite state space S, with transition matrix

More information

Frames of exponentials on small sets

Frames of exponentials on small sets Frames of exponentials on small sets J.-P. Gabardo McMaster University Department of Mathematics and Statistics gabardo@mcmaster.ca Joint work with Chun-Kit Lai (San Francisco State Univ.) Workshop on

More information

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have Lectures 16-17: Poisson Approximation 1. The Law of Rare Events Theorem 2.6.1: For each n 1, let X n,m, 1 m n be a collection of independent random variables with PX n,m = 1 = p n,m and PX n,m = = 1 p

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Introduction to Quantum Spin Systems

Introduction to Quantum Spin Systems 1 Introduction to Quantum Spin Systems Lecture 2 Sven Bachmann (standing in for Bruno Nachtergaele) Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/10/11 2 Basic Setup For concreteness, consider

More information

Edge Flip Chain for Unbiased Dyadic Tilings

Edge Flip Chain for Unbiased Dyadic Tilings Sarah Cannon, Georgia Tech,, David A. Levin, U. Oregon Alexandre Stauffer, U. Bath, March 30, 2018 Dyadic Tilings A dyadic tiling is a tiling on [0,1] 2 by n = 2 k dyadic rectangles, rectangles which are

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information

Vertex and edge expansion properties for rapid mixing

Vertex and edge expansion properties for rapid mixing Vertex and edge expansion properties for rapid mixing Ravi Montenegro Abstract We show a strict hierarchy among various edge and vertex expansion properties of Markov chains. This gives easy proofs of

More information

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Yongsheng Han, Ji Li, and Guozhen Lu Department of Mathematics Vanderbilt University Nashville, TN Internet Analysis Seminar 2012

More information

APM 541: Stochastic Modelling in Biology Discrete-time Markov Chains. Jay Taylor Fall Jay Taylor (ASU) APM 541 Fall / 92

APM 541: Stochastic Modelling in Biology Discrete-time Markov Chains. Jay Taylor Fall Jay Taylor (ASU) APM 541 Fall / 92 APM 541: Stochastic Modelling in Biology Discrete-time Markov Chains Jay Taylor Fall 2013 Jay Taylor (ASU) APM 541 Fall 2013 1 / 92 Outline 1 Motivation 2 Markov Processes 3 Markov Chains: Basic Properties

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

MSc MT15. Further Statistical Methods: MCMC. Lecture 5-6: Markov chains; Metropolis Hastings MCMC. Notes and Practicals available at

MSc MT15. Further Statistical Methods: MCMC. Lecture 5-6: Markov chains; Metropolis Hastings MCMC. Notes and Practicals available at MSc MT15. Further Statistical Methods: MCMC Lecture 5-6: Markov chains; Metropolis Hastings MCMC Notes and Practicals available at www.stats.ox.ac.uk\ nicholls\mscmcmc15 Markov chain Monte Carlo Methods

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

Mathematical Aspects of Mixing Times in Markov Chains

Mathematical Aspects of Mixing Times in Markov Chains Mathematical Aspects of Mixing Times in Markov Chains Mathematical Aspects of Mixing Times in Markov Chains Ravi Montenegro Department of Mathematical Sciences University of Massachusetts Lowell Lowell,

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information