Functions. 1. Any set of ordered pairs is a relation. Graph each set of ordered pairs. A. B. C.

Size: px
Start display at page:

Download "Functions. 1. Any set of ordered pairs is a relation. Graph each set of ordered pairs. A. B. C."

Transcription

1 Functions 1. Any set of ordered pairs is a relation. Graph each set of ordered pairs. A. x y B. x y C. x y A. B. C. 2. A function is a special type of relation that assigns exactly one value of y for each value of x. Circle the pairs above that have the same value for x and different values of y. Which of the relations above are functions? 3. Finish filling in the tables using the given equations and then plot the points and connect them. A. y = 2x 1 x = y 2 y = x 2 x y B. x y C. x y

2 A. B. C. 4. For each graph, are there any values of x for which there are more than one value for y? A B C. 5. Perform the Vertical Line Test, that is, roll your pencil vertically across each graph left to right. Does it touch any of the lines in more than one place? A B C. 6. A and C are functions. B is not a function. From the above questions, what can you determine is true about the graph of a function. 7. Why does the Vertical Line Test work when checking if a given graph represents a function? 8. Which of the following graphs represent functions? A. B. C.

3 D. E. F. A. B. C. D. E. F.

4 Domain and Range 1. The domain of a function described by this set of ordered pairs in (x, y)-form: {(-2, 4), (-1, 1 ), (0, 0), (1, 1). (2, 4)} is {-2, -1, 0, 1, 2} What variable does the domain represent? 2. Find the domain of the function described by this set of ordered pairs: {(-3, 6), (-1, 2), (5, -10), (0, 0), (2, -4), (3, -6), (4, -8)} 3. The range for the ordered pairs in #1 is {4, 1, 0, 1, 4}. What variable does the range represent? 4. Find the range of the function described by the set of ordered pairs in #2. 5. The domain is the set of values assigned to x, the range is the set of corresponding values of y. Find the domain and range for the following set of ordered pairs: {(2, 4), (5, 9), (a, b), (-6, 4), (7, -12), (-p, q), (0, 0)} Domain: Range: 6. Look at the following graph: Is there a point that corresponds to x = -1? Is -1 in the domain of the graph of this function? Is there a point that corresponds to x = 5? Is 5 in the domain of the graph of this function? For a graph of a function, the domain is any value of x for which there is a corresponding value of y, hence, a point on the graph. The domain for the function represented by this graph is all real numbers > 1.

5 7. Refer to the graph in #6. Is there any point that corresponds to y = -2? Is -2 in the range of the graph of this function? Is there a point that corresponds to y = 10? Is 10 in the range of the graph of this function? What is the range of the function represented by the graph? 8. Find the domain and range of the functions described by the following graphs. A B Domain A = Domain B = Range A = Range B = C D Domain C = Domain D = Range C = Range D =

6 E F Domain E = Domain F = Range E = Range F = G H Domain G = Domain H = Range G = Range H = When a function is given as a rule, y is a function of x and is written as y = f(x). The variable x is called the independent variable because you can choose the value of x you want to evaluate. The domain is the set of permissible values of x. The range is the set of all the possible values you can get out of the function. We call y the dependent variable because it depends on the value of x that you choose. 9. Graph the functions, then state the domain and range for each. a) y = x sinx Range = Domain = b) y = 4sinx Range = Domain =

7 10. For many functions, the domain is the set of all real numbers but sometimes there are values for x that won t work. Determine which values of x are not in the domain of the following functions. a) y = 1/x b) y = 5/(x +3) c) y = (3+x)/x 2 d) y = 2 x 9 x 3 e) y = x +3 f) y = 2 x g) y = 5x 12 h) y = 3 x 11. What arithmetic principle did you use to answer a, b, c, and d? 12. What arithmetic principle did you use to answer e, f, g, and h? The domain of a function is the set of all real numbers except for the values of x that do not give real solutions. 13. Graph the function in #10 on your calculator. What is the range for each of the functions? a) g) b) h) c) d) e) f)

8 Zeros (Roots) of Polynomials 1. Using your calculator, draw the graphs for the following functions. At what point(s) do the graphs cross the x-axis? a) y = 2x + 4 b) y = 4x - 3 c) y = x 2-4 d) y = 2x 2 + 3x - 6 e) y = 3x 3-5x 2-26x 8 f) y = 4x 3-12x 2 + 3x What do the coordinates of these points have in common? The x-coordinates of the points where the graph crosses the x-axis are called the zeroes or real roots of the function. 3. For each of the functions from #1, factor the right hand side of the expression (e and f are done for you!) and solve the equations for y = 0. a) y = 2x + 4 b) y = 4x 3 c) y = x 2 4 d) y = 2x 2 + 3x 6 e) y = 3x 3-5x 2-26x 8 y = (3x + 1)(x - 4)(x + 2) f) y = 4x 3-12x 2 + 3x + 5 y = (2x + 1)(x 1)(2x 5) 4. What do you notice about the solutions in #3 and the points you found in #1? 5. If the polynomials are factored, how can you guess the zeroes without graphing?

9 6. Look at your answers in #1. How many times did each graph cross the x-axis? Do you see any relationship between the degree of the polynomial function and the number of times the graph crosses the x-axis? a) b) c) d) e) f) 7. Write an equation for a polynomial function which has zeroes of -2 and 5. Think about what degree this polynomial will be. Enter your equation into your calculator to check your answer graphically. 8. Write a polynomial function of least degree which has zeroes at -1, 2, and 5. What degree will this polynomial be? Enter your equation into your calculator to check your answer graphically. 9. Graph the functions y = (x - 3)(x + 4), y = 3(x - 3)(x + 4), and y = 0.5(x - 3)(x + 4). Do they have different zeroes? What can you conclude about other functions represented by y = k(x - 3)(x + 4), where the constant k represents any real number Write two more possible equations for the polynomial with same zeroes described in #7, one with the same degree and another one of different degree.

10 11. Write two more possible equations for the polynomial with the same zeroes described in #8, one with the same degree and another one of different degree. 12. Write an expression for the function represented by each of the following graphs. Enter your equation into your calculator to check your answer graphically. A B A. B. 13. How many zeroes do the following equations have? Graph each equation to check your answer. y = 12x 2-6x - 6 y = 6x 4 + 5x 3-15x y = 2x 5 + x 4-39x 3-6x x - 32 y = 6x x 2-4x Consider the function y = x 2-4x + 4. How many zeroes do you think this function could have? Now graph the function. Does it cross the x-axis as many times as you thought it would? Why do you think this happened? When you factor the expression, you get y = (x - 2)(x - 2) = (x 2) 2. There are still two real roots (2 and 2) but they are not distinct numbers. This happens any time the factors are the same. We call x = 2 a double root.

11 15. The degree of a polynomial tells you the most number of times the graph of a function will cross the x-axis. There could be fewer real roots, but never more. How many times would you expect the graph of y = 2x 2 + 2x + 4 to cross the x-axis? How many times does it cross? How many real roots does this function have? 16. Consider the function y = x 3 + 4x 2 + 3x + 5. How many roots do you think this function could have? How many times does the graph actually cross the x-axis? How many real roots does this function have?

12 Local Maxima and Minima 1. Look at the graph of the function y = x 2. What is the lowest point or valley you see on the graph? Is there more than one? Does the entire graph have a highest point or peak? Explain your reasoning. 2. Now look at the graph of the function y = -x 2. What is the highest point or peak you see on the graph? Is there more than one? Does the entire graph have a lowest point of valley? Explain your reasoning. What is happening to the values of y as x increases from -5 to 0? What is happening to the values of y as x increases from 0 to 5?

13 3. Below is a graph of the function y = x *(x - 1)(x + 1) + 2. Look at the point (-0.58, 2.38). Is it the highest point on the entire graph? Is it the highest point in the interval [-2, 0]? If there is a highest point(s) on the graph of a function in an open interval, the point(s) is called the local maxima. What happens to the values of y as x increases in the interval before the local maxima, [-3, -0.58]? What happens to the values of y as x increases in the interval after the local maxima [-0.58, 0]? What can you generalize about the behavior (is it increasing, decreasing?) of the graph immediately before and immediately after the local maxima?

14 Now look at the point (0.58, 1.62). Is it the lowest point on the entire graph? Is it the lowest point in the interval [0, 1]? If there is a lowest point(s) on the graph of a function in an open interval, the point(s) is called the local minima. What happens to the values of y as x increases in the interval before the local minima, [0, 0.58]? What happens to the values of y as x increases in the interval after the local minima [0.58, 3]? the What can you generalize about the behavior (is it increasing, decreasing?) of graph immediately before and immediately after the local minima? If the values of y increase (get bigger) as the values of x in a given interval increase(going left to right), we say the function is increasing in that interval. If the values of y decrease (get smaller) as the values of x in a given interval get bigger (going left to right), we say the function is decreasing in that interval. 4. For the graph of the function y = x*sinx. Find the local maxima and minima and specify the intervals. Where is the function increasing in the interval [-10, 10]? Where is it decreasing in that interval?

15 Extension problem: 5. You want to fold a box with a lid from a sheet of cardboard 20 inches by 25 inches. You cut x by x squares from two corners and x by 12.5 inch rectangles from the other two corners as shown in the diagram below. Write the equation for the volume of the box then determine what value of x would give your box the maximum volume V? x x x

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P (x) = 3, Q(x) = 4x 7, R(x) = x 2 + x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 + 2x +

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x.

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 2. How many local maxima and minima does the polynomial y = 8 x 2 + 7 x + 7 have? 3. How many local maxima and minima does the

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

2-2: Evaluate and Graph Polynomial Functions

2-2: Evaluate and Graph Polynomial Functions 2-2: Evaluate and Graph Polynomial Functions What is a polynomial? -A monomial or sum of monomials with whole number exponents. Degree of a polynomial: - The highest exponent of the polynomial How do we

More information

Ch 7 Summary - POLYNOMIAL FUNCTIONS

Ch 7 Summary - POLYNOMIAL FUNCTIONS Ch 7 Summary - POLYNOMIAL FUNCTIONS 1. An open-top box is to be made by cutting congruent squares of side length x from the corners of a 8.5- by 11-inch sheet of cardboard and bending up the sides. a)

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Graphs of Polynomial Functions

Graphs of Polynomial Functions Graphs of Polynomial Functions By: OpenStaxCollege The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in [link]. Year 2006 2007 2008 2009 2010 2011 2012 2013

More information

Unit 2 Polynomial Expressions and Functions Note Package. Name:

Unit 2 Polynomial Expressions and Functions Note Package. Name: MAT40S Mr. Morris Unit 2 Polynomial Expressions and Functions Note Package Lesson Homework 1: Long and Synthetic p. 7 #3 9, 12 13 Division 2: Remainder and Factor p. 20 #3 12, 15 Theorem 3: Graphing Polynomials

More information

Quadratic Functions. and Equations

Quadratic Functions. and Equations Name: Quadratic Functions and Equations 1. + x 2 is a parabola 2. - x 2 is a parabola 3. A quadratic function is in the form ax 2 + bx + c, where a and is the y-intercept 4. Equation of the Axis of Symmetry

More information

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved.

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved. 3.2 Polynomial Functions and Their Graphs Copyright Cengage Learning. All rights reserved. Objectives Graphing Basic Polynomial Functions End Behavior and the Leading Term Using Zeros to Graph Polynomials

More information

Higher-Degree Polynomial Functions. Polynomials. Polynomials

Higher-Degree Polynomial Functions. Polynomials. Polynomials Higher-Degree Polynomial Functions 1 Polynomials A polynomial is an expression that is constructed from one or more variables and constants, using only the operations of addition, subtraction, multiplication,

More information

Key Features of a Graph. Warm Up What do you think the key features are of a graph? Write them down.

Key Features of a Graph. Warm Up What do you think the key features are of a graph? Write them down. Warm Up What do you think the key features are of a graph? Write them down. 1 Domain and Range x intercepts and y intercepts Intervals of increasing, decreasing, and constant behavior Parent Equations

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the

More information

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Let s review the definition of a polynomial. A polynomial function of degree n is a function of the form P(x) = a n x n + a

More information

SOL Warm-Up Graphing Calculator Active

SOL Warm-Up Graphing Calculator Active A.2c (a) Factoring polynomials SOL Warm-Up 1. Which of the following represents 12x 2 + 6x + 3 in simplified form after factoring out the greatest common factor? A 12(x 2 + 2x + 4) B x(12x 2 + 6x + 3)

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

What makes f '(x) undefined? (set the denominator = 0)

What makes f '(x) undefined? (set the denominator = 0) Chapter 3A Review 1. Find all critical numbers for the function ** Critical numbers find the first derivative and then find what makes f '(x) = 0 or undefined Q: What is the domain of this function (especially

More information

Algebra 2 Notes AII.7 Polynomials Part 2

Algebra 2 Notes AII.7 Polynomials Part 2 Algebra 2 Notes AII.7 Polynomials Part 2 Mrs. Grieser Name: Date: Block: Zeros of a Polynomial Function So far: o If we are given a zero (or factor or solution) of a polynomial function, we can use division

More information

Math 112 (Calculus I) Midterm Exam 3 KEY

Math 112 (Calculus I) Midterm Exam 3 KEY Math 11 (Calculus I) Midterm Exam KEY Multiple Choice. Fill in the answer to each problem on your computer scored answer sheet. Make sure your name, section and instructor are on that sheet. 1. Which of

More information

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7 Maxima and Minima Marius Ionescu November 5, 2012 Marius Ionescu () Maxima and Minima November 5, 2012 1 / 7 Second Derivative Test Fact Suppose the second partial derivatives of f are continuous on a

More information

4 Problem Set 4 Bifurcations

4 Problem Set 4 Bifurcations 4 PROBLEM SET 4 BIFURCATIONS 4 Problem Set 4 Bifurcations 1. Each of the following functions undergoes a bifurcation at the given parameter value. In each case use analytic or graphical techniques to identify

More information

P.7 Solving Inequalities Algebraically and Graphically

P.7 Solving Inequalities Algebraically and Graphically 54 CHAPTER P Prerequisites What you ll learn about Solving Absolute Value Inequalities Solving Quadratic Inequalities Approximating Solutions to Inequalities Projectile Motion... and why These techniques

More information

2 the maximum/minimum value is ( ).

2 the maximum/minimum value is ( ). Math 60 Ch3 practice Test The graph of f(x) = 3(x 5) + 3 is with its vertex at ( maximum/minimum value is ( ). ) and the The graph of a quadratic function f(x) = x + x 1 is with its vertex at ( the maximum/minimum

More information

Aim: Mean value theorem. HW: p 253 # 37, 39, 43 p 272 # 7, 8 p 308 # 5, 6

Aim: Mean value theorem. HW: p 253 # 37, 39, 43 p 272 # 7, 8 p 308 # 5, 6 Mr. Apostle 12/14/16 Do Now: Aim: Mean value theorem HW: p 253 # 37, 39, 43 p 272 # 7, 8 p 308 # 5, 6 test 12/21 Determine all x values where f has a relative extrema. Identify each as a local max or min:

More information

Need help? Try or 4.1 Practice Problems

Need help? Try  or  4.1 Practice Problems Day Date Assignment (Due the next class meeting) Friday 9/29/17 (A) Monday 10/9/17 (B) 4.1 Operations with polynomials Tuesday 10/10/17 (A) Wednesday 10/11/17 (B) 4.2 Factoring and solving completely Thursday

More information

(b)complete the table to show where the function is positive (above the x axis) or negative (below the x axis) for each interval.

(b)complete the table to show where the function is positive (above the x axis) or negative (below the x axis) for each interval. Lesson 3.4 Graph and Equation of Polynomial Functions Part A: Graph of a Polynomial Function the x intercepts of the graph the zeros of the function the roots of the equation Multiplicity (of a zero) A

More information

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2 6-7 Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Identify all the real roots of each equation. 1. x 3 7x 2 + 8x + 16 = 0 1, 4 2. 2x 3 14x 12 = 0 1, 2, 3 3. x 4 + x 3 25x 2 27x = 0 4. x 4 26x 2 + 25

More information

Secondary Math 3 Honors Unit 10: Functions Name:

Secondary Math 3 Honors Unit 10: Functions Name: Secondary Math 3 Honors Unit 10: Functions Name: Parent Functions As you continue to study mathematics, you will find that the following functions will come up again and again. Please use the following

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

y2 + 4y - 5 c a + b 27 i C) ) (16, ) B) (16 3 3, )

y2 + 4y - 5 c a + b 27 i C) ) (16, ) B) (16 3 3, ) MAT 107 Final, Version A, Spring 2008 1) If (4, 4) is the endpoint of a line segment, and (2, 1) is its midpoint, find the other endpoint. A) (0, 7) B) (-2, 0) C) (8, 10) D) (0, -2) 2) Solve for x: A)

More information

CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics

CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics SCHOLAR Study Guide CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics Authored by: Margaret Ferguson Reviewed by: Jillian Hornby Previously authored by: Jane S Paterson Dorothy

More information

WebAssign hw1.1 (Homework)

WebAssign hw1.1 (Homework) WebAssign hw1.1 (Homework) Current Score : / 71 Due : Wednesday, May 31 2017 07:25 AM PDT Michael Lee Math261(Calculus I), section 1049, Spring 2017 Instructor: Michael Lee 1. /1 pointsscalc8 1.1.002.

More information

Polynomials Patterns Task

Polynomials Patterns Task Polynomials Patterns Task Mathematical Goals Roughly sketch the graphs of simple polynomial functions by hand Graph polynomial functions using technology Identify key features of the graphs of polynomial

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.2 Polynomial Functions of Higher Degree Copyright Cengage Learning. All rights reserved. What You Should Learn Use

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

The First Derivative Test

The First Derivative Test The First Derivative Test We have already looked at this test in the last section even though we did not put a name to the process we were using. We use a y number line to test the sign of the first derivative

More information

Supplementary Trig Material

Supplementary Trig Material Supplementary Trig Material Math U See Table of Contents Lesson A: Solving Equations with Radicals and Absolute Value Lesson Practice Worksheet A - 1 Lesson Practice Worksheet A - 2 Lesson B: Solving Inequalities

More information

Solving Polynomial and Rational Inequalities Algebraically. Approximating Solutions to Inequalities Graphically

Solving Polynomial and Rational Inequalities Algebraically. Approximating Solutions to Inequalities Graphically 10 Inequalities Concepts: Equivalent Inequalities Solving Polynomial and Rational Inequalities Algebraically Approximating Solutions to Inequalities Graphically (Section 4.6) 10.1 Equivalent Inequalities

More information

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition:

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: 1.2 Functions and Their Properties A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: Definition: Function, Domain,

More information

Chapter 2 Notes: Polynomials and Polynomial Functions

Chapter 2 Notes: Polynomials and Polynomial Functions 39 Algebra 2 Honors Chapter 2 Notes: Polynomials and Polynomial Functions Section 2.1: Use Properties of Exponents Evaluate each expression (3 4 ) 2 ( 5 8 ) 3 ( 2) 3 ( 2) 9 ( a2 3 ( y 2 ) 5 y 2 y 12 rs

More information

Grade 12 Pre-Calculus Mathematics Notebook. Chapter 3. Polynomial Functions

Grade 12 Pre-Calculus Mathematics Notebook. Chapter 3. Polynomial Functions Grade 1 Pre-Calculus Mathematics Notebook Chapter 3 Polynomial Functions Outcomes: R11 & R1 3.1 Characteristics of Polynomial Functions R1 (p.106-113) Polynomial Function = a function of the form where

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

Name: Class: Date: A. 70 B. 62 C. 38 D. 46

Name: Class: Date: A. 70 B. 62 C. 38 D. 46 Class: Date: Test 2 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Divide: (4x 2 49y 2 ) (2x 7y) A. 2x 7y B. 2x 7y C. 2x 7y D. 2x 7y 2. What is

More information

Investigation 2 (Calculator): f(x) = 2sin(0.5x)

Investigation 2 (Calculator): f(x) = 2sin(0.5x) Section 3.3 Increasing/Decreasing & The 1 st Derivative Test Day 1 Investigation 1 (Calculator): f(x) = x 2 3x + 4 State all extremes on [0, 5]: Original graph: Global min(s): Global max(s): Local min(s):

More information

Polynomial Functions and Models

Polynomial Functions and Models 1 CA-Fall 2011-Jordan College Algebra, 4 th edition, Beecher/Penna/Bittinger, Pearson/Addison Wesley, 2012 Chapter 4: Polynomial Functions and Rational Functions Section 4.1 Polynomial Functions and Models

More information

MATH 20B MIDTERM #2 REVIEW

MATH 20B MIDTERM #2 REVIEW MATH 20B MIDTERM #2 REVIEW FORMAT OF MIDTERM #2 The format will be the same as the practice midterms. There will be six main questions worth 0 points each. These questions will be similar to problems you

More information

Level 2 Mathematics and Statistics, 2017

Level 2 Mathematics and Statistics, 2017 91262 912620 2SUPERVISOR S Level 2 Mathematics and Statistics, 2017 91262 Apply calculus methods in solving problems 2.00 p.m. Friday 24 November 2017 Credits: Five Achievement Achievement with Merit Achievement

More information

Unit 6: Quadratics. Contents

Unit 6: Quadratics. Contents Unit 6: Quadratics Contents Animated gif Program...6-3 Setting Bounds...6-9 Exploring Quadratic Equations...6-17 Finding Zeros by Factoring...6-3 Finding Zeros Using the Quadratic Formula...6-41 Modeling:

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function?

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function? 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

MAPLE Worksheet Number 7 Derivatives in Calculus

MAPLE Worksheet Number 7 Derivatives in Calculus MAPLE Worksheet Number 7 Derivatives in Calculus The MAPLE command for computing the derivative of a function depends on which of the two ways we used to define the function, as a symbol or as an operation.

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

Boyle s Law and Charles Law Activity

Boyle s Law and Charles Law Activity Boyle s Law and Charles Law Activity Introduction: This simulation helps you to help you fully understand 2 Gas Laws: Boyle s Law and Charles Law. These laws are very simple to understand, but are also

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n- 1,, a 2, a 1, a 0, be real numbers with a n 0. The function defined by f (x) a

More information

Module 2, Section 2 Solving Equations

Module 2, Section 2 Solving Equations Principles of Mathematics Section, Introduction 03 Introduction Module, Section Solving Equations In this section, you will learn to solve quadratic equations graphically, by factoring, and by applying

More information

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g.

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g. Rational Functions A rational function is a function that is a ratio of polynomials (in reduced form), e.g. f() = p( ) q( ) where p() and q() are polynomials The function is defined when the denominator

More information

AVERAGE VALUE AND MEAN VALUE THEOREM

AVERAGE VALUE AND MEAN VALUE THEOREM AVERAGE VALUE AND MEAN VALUE THEOREM Section 4.4A Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 3:00 AM 4.4A: Average Value and Mean Value Theorem 1 MATERIALS NEEDED A. Grid Paper B. Compass

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

Cumulative Review. Name. 13) 2x = -4 13) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Cumulative Review. Name. 13) 2x = -4 13) SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Cumulative Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Evaluate the algebraic expression for the given value or values of the variable(s).

More information

1.2 Functions and Their Properties Name:

1.2 Functions and Their Properties Name: 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation.

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation. Math1314-TestReview2-Spring2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Is the point (-5, -3) on the circle defined

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

Introduction to Calculus

Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3

( ) 0. Section 3.3 Graphs of Polynomial Functions. Chapter 3 76 Chapter 3 Section 3.3 Graphs of Polynomial Functions In the previous section we explored the short run behavior of quadratics, a special case of polynomials. In this section we will explore the short

More information

REVIEW, pages Chapter 1: Polynomial Expressions and Functions Review Solutions DO NOT COPY. P 1.1. Write the division statement.

REVIEW, pages Chapter 1: Polynomial Expressions and Functions Review Solutions DO NOT COPY. P 1.1. Write the division statement. REVIEW, pages 72 77 1.1 1. Use long division to divide 7x 3 + 6x 4-7x - 9x 2 + 8 by x 1. Write the division statement. Write the polynomial in descending order: 6x 4 7x 3 9x 2 7x 8 6x 4 6x 3 6x 3 13x 2

More information

Parabolas and lines

Parabolas and lines Parabolas and lines Study the diagram at the right. I have drawn the graph y = x. The vertical line x = 1 is drawn and a number of secants to the parabola are drawn, all centred at x=1. By this I mean

More information

Integration and antiderivatives

Integration and antiderivatives Integration and antiderivatives 1. Evaluate the following:. True or false: d dx lim x / x et dt x cos( 1 4 t ) dt sin x dx = sin(π/) 3. True or false: the following function F (x) is an antiderivative

More information

Written Homework 7 Solutions

Written Homework 7 Solutions Written Homework 7 Solutions MATH 0 - CSM Assignment: pp 5-56 problem 6, 8, 0,,, 5, 7, 8, 20. 6. Find formulas for the derivatives of the following functions; that is, differentiate them. Solution: (a)

More information

The Not-Formula Book for C1

The Not-Formula Book for C1 Not The Not-Formula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes

More information

( ) = 1 x. g( x) = x3 +2

( ) = 1 x. g( x) = x3 +2 Rational Functions are ratios (quotients) of polynomials, written in the form f x N ( x ) and D x ( ) are polynomials, and D x ( ) does not equal zero. The parent function for rational functions is f x

More information

Math 241 Final Exam, Spring 2013

Math 241 Final Exam, Spring 2013 Math 241 Final Exam, Spring 2013 Name: Section number: Instructor: Read all of the following information before starting the exam. Question Points Score 1 5 2 5 3 12 4 10 5 17 6 15 7 6 8 12 9 12 10 14

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

5.3. Exercises on the curve analysis of polynomial functions

5.3. Exercises on the curve analysis of polynomial functions .. Exercises on the curve analysis of polynomial functions Exercise : Curve analysis Examine the following functions on symmetry, x- and y-intercepts, extrema and inflexion points. Draw their graphs including

More information

Semester 1 Review. Name. Period

Semester 1 Review. Name. Period P A (Calculus )dx Semester Review Name Period Directions: Solve the following problems. Show work when necessary. Put the best answer in the blank provided, if appropriate.. Let y = g(x) be a function

More information

Chapter 2. Polynomial and Rational Functions. 2.3 Polynomial Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 2. Polynomial and Rational Functions. 2.3 Polynomial Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter Polynomial and Rational Functions.3 Polynomial Functions and Their Graphs Copyright 014, 010, 007 Pearson Education, Inc. 1 Objectives: Identify polynomial functions. Recognize characteristics

More information

Assessment Exemplars: Polynomials, Radical and Rational Functions & Equations

Assessment Exemplars: Polynomials, Radical and Rational Functions & Equations Class: Date: Assessment Exemplars: Polynomials, Radical and Rational Functions & Equations 1 Express the following polynomial function in factored form: P( x) = 10x 3 + x 2 52x + 20 2 SE: Express the following

More information

BEMIDJI AREA SCHOOLS Outcomes in Mathematics Grade 7

BEMIDJI AREA SCHOOLS Outcomes in Mathematics Grade 7 Outcomes in Mathematics Grade Know that every rational number can be written as the ratio of two integers or as a terminating or repeating decimal. Recognize that π is not rational, but.1.1.1 that it can

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer Week 9 Friday Homework (32849) Question 23456789234567892. Question DetailsSCalcET6 4.2.AE.3. [29377] EXAMPLE 3 To illustrate the Mean Value Theorem with a specific function, let's consider f(x) = 5x 3

More information

Applications of Differentiation

Applications of Differentiation MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Module9 7 Introduction Applications of to Matrices Differentiation y = x(x 1)(x 2) d 2

More information

Math 113 HW #10 Solutions

Math 113 HW #10 Solutions Math HW #0 Solutions 4.5 4. Use the guidelines of this section to sketch the curve Answer: Using the quotient rule, y = x x + 9. y = (x + 9)(x) x (x) (x + 9) = 8x (x + 9). Since the denominator is always

More information

Stat 400 section 4.1 Continuous Random Variables

Stat 400 section 4.1 Continuous Random Variables Stat 400 section 4. Continuous Random Variables notes by Tim Pilachowski Suppose we measure the heights of 5 people to the nearest inch and get the following results: height (in.) 64 65 66 67 68 69 70

More information

MATH Calculus I - Prerequisite Review

MATH Calculus I - Prerequisite Review MATH 241 - Calculus I - Prerequisite Review Give eact answers unless a problem specifies otherwise. + 5 1. Rationalize the numerator and simplify: 10 2. Simplify and give your answer in simplified radical

More information

Math 112 Group Activity: The Vertical Speed of a Shell

Math 112 Group Activity: The Vertical Speed of a Shell Name: Section: Math 112 Group Activity: The Vertical Speed of a Shell A shell is fired straight up by a mortar. The graph below shows its altitude as a function of time. 400 300 altitude (in feet) 200

More information

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following Absolute and Local Extrema Definition 1 (Absolute Maximum). A function f has an absolute maximum at c S if f(x) f(c) x S. We call f(c) the absolute maximum of f on S. Definition 2 (Local Maximum). A function

More information

Tennessee Department of Education

Tennessee Department of Education Tennessee Department of Education Task: Fourth Degree Polynomial Algebra II Pre Problem Work: Create up with a second degree polynomial that has an x 2 and a constant term, but not an x term, and that

More information

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n Chapter 2 Functions and Graphs Section 4 Polynomial and Rational Functions Polynomial Functions A polynomial function is a function that can be written in the form a n n 1 n x + an 1x + + a1x + a0 for

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus 1 Instructor: James Lee Practice Exam 3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine from the graph whether the function

More information

7 + 8x + 9x x + 12x x 6. x 3. (c) lim. x 2 + x 3 x + x 4 (e) lim. (d) lim. x 5

7 + 8x + 9x x + 12x x 6. x 3. (c) lim. x 2 + x 3 x + x 4 (e) lim. (d) lim. x 5 Practice Exam 3 Fundamentals of Calculus, ch. 1-5 1 A falling rock has a height (in meters) as a function of time (in seconds) given by h(t) = pt 2 + qt + r, where p, q, and r are constants. (a) Infer

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

Polynomial Functions and Their Graphs. Definition of a Polynomial Function: numbers, with a n 0. The function defined by

Polynomial Functions and Their Graphs. Definition of a Polynomial Function: numbers, with a n 0. The function defined by Polynomial Functions and Their Graphs Definition of a Polynomial Function: Let n be a nonnegative number and let a n, a n 1, a 2, a 1, a 0 be real numbers, with a n 0. The function defined by f(x) = a

More information

. As x gets really large, the last terms drops off and f(x) ½x

. As x gets really large, the last terms drops off and f(x) ½x Pre-AP Algebra 2 Unit 8 -Lesson 3 End behavior of rational functions Objectives: Students will be able to: Determine end behavior by dividing and seeing what terms drop out as x Know that there will be

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information