Tensor Analysis. Topics in Data Mining Fall Bruno Ribeiro

Size: px
Start display at page:

Download "Tensor Analysis. Topics in Data Mining Fall Bruno Ribeiro"

Transcription

1 Tensor Analysis Topics in Data Mining Fall 2015 Bruno Ribeiro

2 Tensor Basics But First 2

3 Mining Matrices 3

4 Singular Value Decomposition (SVD) } X(i,j) = value of user i for property j i 2 j 5 X(Alice, cholesterol) = 10 X(i,j) = number of times i buys j X(i,j) = how much i pays j 2 X(i,j) = 1 if i and j are friends, 0 otherwise X(i,j) = temperature of sensor j at time i 4

5 SVD Dimensions x 1 X U x 2 x m u 1 u 2 u k Σ V T v 1 v 2 σ 1 σ2 = σ k singular values v k Data Left singular vectors Right singular vectors 5

6 SVD Definition } SVD gives best rank-k approximation of X in L 2 and Frobenius norm σ 1 v 1 σ 2 v 2 u X = 1 + u 2 + Outer product 6

7 SVD Proper ties (I) } Almost unique decomposition σ 1 v 1 σ 2 v 2 u 1 u 2 X = + + } There are two sources of ambiguity Orientation of singular vectors Permute rows of left singular vector and corresponding rows of left singular vector If I is identity matrix: I = UIU T, for all orthonormal U Hypersphere ambiguity Related to rotational ambiguity of PCA 7

8 SVD Proper ties (II) } Theorem (Eckart-Young, 1936) UΣ 1 V T is best rank 1 approximation of X, that is X UΣ 1 V T 2 X Y 2 for every rank 1 matrix Y UΣ 1 V T + UΣ 2 V T is the best rank 2 approximation of X, that is X UΣ 1 V T UΣ 2 V T 2 X Y 2 for every rank 2 matrix Y also for 3, 4,, r 8

9 SVD Properties (III) U and V are orthogonal 9

10 Understanding SVD singular vectors } As U and V have orthogonal rows Now you explain: What do V and U represent? 10

11 My Help } } If X(i,j) = user i buys product j What is XTX? Product-to-product similarity matrix What does V represent? i 2 j 5 2 } What is XXT? User-to-user similarity matrix What does U represent? 11

12 Suggestion for SVD > 2 dimensions? } Simple extension: } Representation of X? 12

13 Tensor Motivation 13

14 App: Social Network Analysis } Traditional focus on static networks and find community structures } Tensors can monitor change of community structure over time Ack: Faloutsos,

15 App: Find Functional Relationships in Brain } See word ( apple ) } Answer fundamental human question ( Is it edible? ) } How do different parts of your brain communicate in the meanwhile? } Functional Connectivity c 1 c F nouns X b b F fmri voxels a 1 a F Ack: Papalexakis et al. SDM 2014 edible things tools 15

16 Tensor Decomposition (KruskalTensor) c 1 c 2 σ 1 b 1 σ 2 b 2 users X a = 1 + a 2 + products 16

17 Tensor Definitions } Krooneberg 1983 slices fibers 17

18 PARAFAC Decomposition (Harshman 1970) } Parallel Factors Decomposition σ 1 c 1 c 2 b 1 σ 2 b 2 } Columns of A, B, C not orthogonal I } If has r factors & r is minimal, then rank(x)= r } Important: possible that rank(x) > min(i,j,k) X J a = 1 + a 2 + } Decomposition often unique* *(Kruskal 1977): A, B, C are unique up to rescaling / counterscaling and joint permutations if where k A is k-th rank of A: max number k A such that every set of k columns of A are linearly independent 18

19 Tucker Tensor Decomposition (Tucker 1966) I x J x K I x r K x s X = A G r x s x t B 19

20 Tucker Decomposition Interpretation } user x product x time I x J x K I x r K x s } A = user x user factors X = A G r x s x t B } B = products x products factors } C = time x time factors } G = how these groups are mixed } Common Properties: A, B, C orthonormal G is not diagonal Decomposition not unique 20

21 Useful Rearrangements : Matricize tensor Tube fiber X (3) Row fiber X X (2) X Column fiber X (1) Vectorization 21

22 Products } 3-way outer product X Rank 1 tensor = a c b } Kronecker product (generalization of outer product) wikipedia } Khatri-Raoproduct (same elements but as a thinner matrix) M x r N x r MN x r 22

23 Solving Tucker: } Tucker Decomposition in Matrix form: } Error is then Tensor L 2 norm is square root of square sum of all elements Minimize = Maximize s.t.a, B, C or thonormal 23

24 Solving Tucker: } A, B, C have to be orthonormal } Ideas? Minimize X (1) A G (1) (C B) 2 This minimization can be reduced by solving first for G as G*=A T X (1) (C T B T ), and substituting G* into the loss function to obtain X (1) - A T A X (1) (C T B T )(C B) 2 24

25 Solving Tucker (II) } A simpler way to write it 25

26 Solving Tucker (III) } If B and C were fixed we could solve for A: } A has to be orthonormal } Algorithm? Optimal A from leading r left singular vectors of Same for B and C (Alternating Least Squares) } Algorithm (at step k): (Kroonenberg & De Leeuw 1980) A k = r leading left singular vectors of B k = s leading left singular vectors of C k = t leading left singular vectors of } Final step (K): get Not unique as EE T = I can be inserted before X (.) 26

27 Solving PARAFAC: } Same idea: Alternating Least Squares } With Fixed B and C Solve } Noting that Hadamard Product wikipedia 27

28 Next Class } Probabilistic interpretation } Non-negative tensor factorization } How tensors can be used for mixture model inference, topic modeling, etc. 28

29 } Acknowledgments: Faloutsos, Kolda, Sun ICML 07 29

Faloutsos, Tong ICDE, 2009

Faloutsos, Tong ICDE, 2009 Large Graph Mining: Patterns, Tools and Case Studies Christos Faloutsos Hanghang Tong CMU Copyright: Faloutsos, Tong (29) 2-1 Outline Part 1: Patterns Part 2: Matrix and Tensor Tools Part 3: Proximity

More information

Must-read Material : Multimedia Databases and Data Mining. Indexing - Detailed outline. Outline. Faloutsos

Must-read Material : Multimedia Databases and Data Mining. Indexing - Detailed outline. Outline. Faloutsos Must-read Material 15-826: Multimedia Databases and Data Mining Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. Technical Report SAND2007-6702, Sandia National Laboratories,

More information

Introduction to Tensors. 8 May 2014

Introduction to Tensors. 8 May 2014 Introduction to Tensors 8 May 2014 Introduction to Tensors What is a tensor? Basic Operations CP Decompositions and Tensor Rank Matricization and Computing the CP Dear Tullio,! I admire the elegance of

More information

Tensor Decompositions and Applications

Tensor Decompositions and Applications Tamara G. Kolda and Brett W. Bader Part I September 22, 2015 What is tensor? A N-th order tensor is an element of the tensor product of N vector spaces, each of which has its own coordinate system. a =

More information

Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams

Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams Jimeng Sun Spiros Papadimitriou Philip S. Yu Carnegie Mellon University Pittsburgh, PA, USA IBM T.J. Watson Research Center Hawthorne,

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 6 Singular Value Decomposition In Chapter 5, we derived a number of algorithms for computing the eigenvalues and eigenvectors of matrices A R n n. Having developed this machinery, we complete our

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 6: Some Other Stuff PD Dr.

More information

Lecture 4. CP and KSVD Representations. Charles F. Van Loan

Lecture 4. CP and KSVD Representations. Charles F. Van Loan Structured Matrix Computations from Structured Tensors Lecture 4. CP and KSVD Representations Charles F. Van Loan Cornell University CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy Structured Matrix

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

CVPR A New Tensor Algebra - Tutorial. July 26, 2017

CVPR A New Tensor Algebra - Tutorial. July 26, 2017 CVPR 2017 A New Tensor Algebra - Tutorial Lior Horesh lhoresh@us.ibm.com Misha Kilmer misha.kilmer@tufts.edu July 26, 2017 Outline Motivation Background and notation New t-product and associated algebraic

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

Fundamentals of Multilinear Subspace Learning

Fundamentals of Multilinear Subspace Learning Chapter 3 Fundamentals of Multilinear Subspace Learning The previous chapter covered background materials on linear subspace learning. From this chapter on, we shall proceed to multiple dimensions with

More information

The multiple-vector tensor-vector product

The multiple-vector tensor-vector product I TD MTVP C KU Leuven August 29, 2013 In collaboration with: N Vanbaelen, K Meerbergen, and R Vandebril Overview I TD MTVP C 1 Introduction Inspiring example Notation 2 Tensor decompositions The CP decomposition

More information

Parallel Tensor Compression for Large-Scale Scientific Data

Parallel Tensor Compression for Large-Scale Scientific Data Parallel Tensor Compression for Large-Scale Scientific Data Woody Austin, Grey Ballard, Tamara G. Kolda April 14, 2016 SIAM Conference on Parallel Processing for Scientific Computing MS 44/52: Parallel

More information

Multi-Way Compressed Sensing for Big Tensor Data

Multi-Way Compressed Sensing for Big Tensor Data Multi-Way Compressed Sensing for Big Tensor Data Nikos Sidiropoulos Dept. ECE University of Minnesota MIIS, July 1, 2013 Nikos Sidiropoulos Dept. ECE University of Minnesota ()Multi-Way Compressed Sensing

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition An Important topic in NLA Radu Tiberiu Trîmbiţaş Babeş-Bolyai University February 23, 2009 Radu Tiberiu Trîmbiţaş ( Babeş-Bolyai University)The Singular Value Decomposition

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J MATRIX ANAL APPL Vol 30, No 3, pp 1219 1232 c 2008 Society for Industrial and Applied Mathematics A JACOBI-TYPE METHOD FOR COMPUTING ORTHOGONAL TENSOR DECOMPOSITIONS CARLA D MORAVITZ MARTIN AND

More information

Tutorial on MATLAB for tensors and the Tucker decomposition

Tutorial on MATLAB for tensors and the Tucker decomposition Tutorial on MATLAB for tensors and the Tucker decomposition Tamara G. Kolda and Brett W. Bader Workshop on Tensor Decomposition and Applications CIRM, Luminy, Marseille, France August 29, 2005 Sandia is

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Jun Zhang Department of Computer Science University of Kentucky

Jun Zhang Department of Computer Science University of Kentucky Jun Zhang Department of Computer Science University of Kentucky Background on Privacy Attacks General Data Perturbation Model SVD and Its Properties Data Privacy Attacks Experimental Results Summary 2

More information

Information Retrieval

Information Retrieval Introduction to Information CS276: Information and Web Search Christopher Manning and Pandu Nayak Lecture 13: Latent Semantic Indexing Ch. 18 Today s topic Latent Semantic Indexing Term-document matrices

More information

Scalable Tensor Factorizations with Incomplete Data

Scalable Tensor Factorizations with Incomplete Data Scalable Tensor Factorizations with Incomplete Data Tamara G. Kolda & Daniel M. Dunlavy Sandia National Labs Evrim Acar Information Technologies Institute, TUBITAK-UEKAE, Turkey Morten Mørup Technical

More information

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology

Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology Latent Semantic Indexing (LSI) CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2014 Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276,

More information

Lecture 4. Tensor-Related Singular Value Decompositions. Charles F. Van Loan

Lecture 4. Tensor-Related Singular Value Decompositions. Charles F. Van Loan From Matrix to Tensor: The Transition to Numerical Multilinear Algebra Lecture 4. Tensor-Related Singular Value Decompositions Charles F. Van Loan Cornell University The Gene Golub SIAM Summer School 2010

More information

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY OUTLINE Why We Need Matrix Decomposition SVD (Singular Value Decomposition) NMF (Nonnegative

More information

JOS M.F. TEN BERGE SIMPLICITY AND TYPICAL RANK RESULTS FOR THREE-WAY ARRAYS

JOS M.F. TEN BERGE SIMPLICITY AND TYPICAL RANK RESULTS FOR THREE-WAY ARRAYS PSYCHOMETRIKA VOL. 76, NO. 1, 3 12 JANUARY 2011 DOI: 10.1007/S11336-010-9193-1 SIMPLICITY AND TYPICAL RANK RESULTS FOR THREE-WAY ARRAYS JOS M.F. TEN BERGE UNIVERSITY OF GRONINGEN Matrices can be diagonalized

More information

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Lars Eldén Department of Mathematics, Linköping University 1 April 2005 ERCIM April 2005 Multi-Linear

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Numerical Linear Algebra Background Cho-Jui Hsieh UC Davis May 15, 2018 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Linear Algebra U Kang Seoul National University U Kang 1 In This Lecture Overview of linear algebra (but, not a comprehensive survey) Focused on the subset

More information

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models

Bare minimum on matrix algebra. Psychology 588: Covariance structure and factor models Bare minimum on matrix algebra Psychology 588: Covariance structure and factor models Matrix multiplication 2 Consider three notations for linear combinations y11 y1 m x11 x 1p b11 b 1m y y x x b b n1

More information

Third-Order Tensor Decompositions and Their Application in Quantum Chemistry

Third-Order Tensor Decompositions and Their Application in Quantum Chemistry Third-Order Tensor Decompositions and Their Application in Quantum Chemistry Tyler Ueltschi University of Puget SoundTacoma, Washington, USA tueltschi@pugetsound.edu April 14, 2014 1 Introduction A tensor

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Singular Value Decomposition 1 / 35 Understanding

More information

Linear Algebra, part 3 QR and SVD

Linear Algebra, part 3 QR and SVD Linear Algebra, part 3 QR and SVD Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2012 Going back to least squares (Section 1.4 from Strang, now also see section 5.2). We

More information

IV. Matrix Approximation using Least-Squares

IV. Matrix Approximation using Least-Squares IV. Matrix Approximation using Least-Squares The SVD and Matrix Approximation We begin with the following fundamental question. Let A be an M N matrix with rank R. What is the closest matrix to A that

More information

Fitting a Tensor Decomposition is a Nonlinear Optimization Problem

Fitting a Tensor Decomposition is a Nonlinear Optimization Problem Fitting a Tensor Decomposition is a Nonlinear Optimization Problem Evrim Acar, Daniel M. Dunlavy, and Tamara G. Kolda* Sandia National Laboratories Sandia is a multiprogram laboratory operated by Sandia

More information

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views A Randomized Approach for Crowdsourcing in the Presence of Multiple Views Presenter: Yao Zhou joint work with: Jingrui He - 1 - Roadmap Motivation Proposed framework: M2VW Experimental results Conclusion

More information

Matrix decompositions

Matrix decompositions Matrix decompositions Zdeněk Dvořák May 19, 2015 Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQ T. The

More information

CS60021: Scalable Data Mining. Dimensionality Reduction

CS60021: Scalable Data Mining. Dimensionality Reduction J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Dimensionality Reduction Sourangshu Bhattacharya Assumption: Data lies on or near a

More information

Information retrieval LSI, plsi and LDA. Jian-Yun Nie

Information retrieval LSI, plsi and LDA. Jian-Yun Nie Information retrieval LSI, plsi and LDA Jian-Yun Nie Basics: Eigenvector, Eigenvalue Ref: http://en.wikipedia.org/wiki/eigenvector For a square matrix A: Ax = λx where x is a vector (eigenvector), and

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 5: Numerical Linear Algebra Cho-Jui Hsieh UC Davis April 20, 2017 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2

Fall TMA4145 Linear Methods. Exercise set Given the matrix 1 2 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 07 Exercise set Please justify your answers! The most important part is how you arrive at an

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment Two Caramanis/Sanghavi Due: Tuesday, Feb. 19, 2013. Computational

More information

arxiv: v1 [cs.lg] 18 Nov 2018

arxiv: v1 [cs.lg] 18 Nov 2018 THE CORE CONSISTENCY OF A COMPRESSED TENSOR Georgios Tsitsikas, Evangelos E. Papalexakis Dept. of Computer Science and Engineering University of California, Riverside arxiv:1811.7428v1 [cs.lg] 18 Nov 18

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Principal Components Analysis. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Principal Components Analysis Le Song Lecture 22, Nov 13, 2012 Based on slides from Eric Xing, CMU Reading: Chap 12.1, CB book 1 2 Factor or Component

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Week #1

Machine Learning for Large-Scale Data Analysis and Decision Making A. Week #1 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Week #1 Today Introduction to machine learning The course (syllabus) Math review (probability + linear algebra) The future

More information

LECTURE 16: PCA AND SVD

LECTURE 16: PCA AND SVD Instructor: Sael Lee CS549 Computational Biology LECTURE 16: PCA AND SVD Resource: PCA Slide by Iyad Batal Chapter 12 of PRML Shlens, J. (2003). A tutorial on principal component analysis. CONTENT Principal

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #21: Dimensionality Reduction Seoul National University 1 In This Lecture Understand the motivation and applications of dimensionality reduction Learn the definition

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Linear Algebra Methods for Data Mining

Linear Algebra Methods for Data Mining Linear Algebra Methods for Data Mining Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Spring 2007 1. Basic Linear Algebra Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki Example

More information

Numerical Methods I Singular Value Decomposition

Numerical Methods I Singular Value Decomposition Numerical Methods I Singular Value Decomposition Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 9th, 2014 A. Donev (Courant Institute)

More information

Linear Methods in Data Mining

Linear Methods in Data Mining Why Methods? linear methods are well understood, simple and elegant; algorithms based on linear methods are widespread: data mining, computer vision, graphics, pattern recognition; excellent general software

More information

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u MATH 434/534 Theoretical Assignment 7 Solution Chapter 7 (71) Let H = I 2uuT Hu = u (ii) Hv = v if = 0 be a Householder matrix Then prove the followings H = I 2 uut Hu = (I 2 uu )u = u 2 uut u = u 2u =

More information

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016 Matrix factorization models for patterns beyond blocks 18 February 2016 What does a matrix factorization do?? A = U V T 2 For SVD that s easy! 3 Inner-product interpretation Element (AB) ij is the inner

More information

Example Linear Algebra Competency Test

Example Linear Algebra Competency Test Example Linear Algebra Competency Test The 4 questions below are a combination of True or False, multiple choice, fill in the blank, and computations involving matrices and vectors. In the latter case,

More information

/16/$ IEEE 1728

/16/$ IEEE 1728 Extension of the Semi-Algebraic Framework for Approximate CP Decompositions via Simultaneous Matrix Diagonalization to the Efficient Calculation of Coupled CP Decompositions Kristina Naskovska and Martin

More information

New algorithms for tensor decomposition based on a reduced functional

New algorithms for tensor decomposition based on a reduced functional NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 0000; 00:1 34 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla New algorithms for tensor decomposition

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Parallel Singular Value Decomposition. Jiaxing Tan

Parallel Singular Value Decomposition. Jiaxing Tan Parallel Singular Value Decomposition Jiaxing Tan Outline What is SVD? How to calculate SVD? How to parallelize SVD? Future Work What is SVD? Matrix Decomposition Eigen Decomposition A (non-zero) vector

More information

Linear Least Squares. Using SVD Decomposition.

Linear Least Squares. Using SVD Decomposition. Linear Least Squares. Using SVD Decomposition. Dmitriy Leykekhman Spring 2011 Goals SVD-decomposition. Solving LLS with SVD-decomposition. D. Leykekhman Linear Least Squares 1 SVD Decomposition. For any

More information

ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition ENGG5781 Matrix Analysis and Computations Lecture 10: Non-Negative Matrix Factorization and Tensor Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University

More information

Language Information Processing, Advanced. Topic Models

Language Information Processing, Advanced. Topic Models Language Information Processing, Advanced Topic Models mcuturi@i.kyoto-u.ac.jp Kyoto University - LIP, Adv. - 2011 1 Today s talk Continue exploring the representation of text as histogram of words. Objective:

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211

PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 PV211: Introduction to Information Retrieval https://www.fi.muni.cz/~sojka/pv211 IIR 18: Latent Semantic Indexing Handout version Petr Sojka, Hinrich Schütze et al. Faculty of Informatics, Masaryk University,

More information

Big Tensor Data Reduction

Big Tensor Data Reduction Big Tensor Data Reduction Nikos Sidiropoulos Dept. ECE University of Minnesota NSF/ECCS Big Data, 3/21/2013 Nikos Sidiropoulos Dept. ECE University of Minnesota () Big Tensor Data Reduction NSF/ECCS Big

More information

1. Structured representation of high-order tensors revisited. 2. Multi-linear algebra (MLA) with Kronecker-product data.

1. Structured representation of high-order tensors revisited. 2. Multi-linear algebra (MLA) with Kronecker-product data. Lect. 4. Toward MLA in tensor-product formats B. Khoromskij, Leipzig 2007(L4) 1 Contents of Lecture 4 1. Structured representation of high-order tensors revisited. - Tucker model. - Canonical (PARAFAC)

More information

Dimensionality Reduction

Dimensionality Reduction 394 Chapter 11 Dimensionality Reduction There are many sources of data that can be viewed as a large matrix. We saw in Chapter 5 how the Web can be represented as a transition matrix. In Chapter 9, the

More information

Introduction to Information Retrieval

Introduction to Information Retrieval Introduction to Information Retrieval http://informationretrieval.org IIR 18: Latent Semantic Indexing Hinrich Schütze Center for Information and Language Processing, University of Munich 2013-07-10 1/43

More information

Online Tensor Factorization for. Feature Selection in EEG

Online Tensor Factorization for. Feature Selection in EEG Online Tensor Factorization for Feature Selection in EEG Alric Althoff Honors Thesis, Department of Cognitive Science, University of California - San Diego Supervised by Dr. Virginia de Sa Abstract Tensor

More information

UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

More information

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg Linear Algebra, part 3 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2010 Going back to least squares (Sections 1.7 and 2.3 from Strang). We know from before: The vector

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University October 17, 005 Lecture 3 3 he Singular Value Decomposition

More information

Unsupervised learning: beyond simple clustering and PCA

Unsupervised learning: beyond simple clustering and PCA Unsupervised learning: beyond simple clustering and PCA Liza Rebrova Self organizing maps (SOM) Goal: approximate data points in R p by a low-dimensional manifold Unlike PCA, the manifold does not have

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

From Matrix to Tensor. Charles F. Van Loan

From Matrix to Tensor. Charles F. Van Loan From Matrix to Tensor Charles F. Van Loan Department of Computer Science January 28, 2016 From Matrix to Tensor From Tensor To Matrix 1 / 68 What is a Tensor? Instead of just A(i, j) it s A(i, j, k) or

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization Tim Roughgarden February 28, 2017 1 Preamble This lecture fulfills a promise made back in Lecture #1,

More information

arxiv: v2 [math.sp] 23 May 2018

arxiv: v2 [math.sp] 23 May 2018 ON THE LARGEST MULTILINEAR SINGULAR VALUES OF HIGHER-ORDER TENSORS IGNAT DOMANOV, ALWIN STEGEMAN, AND LIEVEN DE LATHAUWER Abstract. Let σ n denote the largest mode-n multilinear singular value of an I

More information

Tensor Decompositions for Machine Learning. G. Roeder 1. UBC Machine Learning Reading Group, June University of British Columbia

Tensor Decompositions for Machine Learning. G. Roeder 1. UBC Machine Learning Reading Group, June University of British Columbia Network Feature s Decompositions for Machine Learning 1 1 Department of Computer Science University of British Columbia UBC Machine Learning Group, June 15 2016 1/30 Contact information Network Feature

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Principal

More information

A GENERALIZATION OF TAKANE'S ALGORITHM FOR DEDICOM. Yosmo TAKANE

A GENERALIZATION OF TAKANE'S ALGORITHM FOR DEDICOM. Yosmo TAKANE PSYCHOMETR1KA--VOL. 55, NO. 1, 151--158 MARCH 1990 A GENERALIZATION OF TAKANE'S ALGORITHM FOR DEDICOM HENK A. L. KIERS AND JOS M. F. TEN BERGE UNIVERSITY OF GRONINGEN Yosmo TAKANE MCGILL UNIVERSITY JAN

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 05 Semi-Discrete Decomposition Rainer Gemulla, Pauli Miettinen May 16, 2013 Outline 1 Hunting the Bump 2 Semi-Discrete Decomposition 3 The Algorithm 4 Applications SDD alone SVD

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 5 Singular Value Decomposition We now reach an important Chapter in this course concerned with the Singular Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one of the

More information

Orthogonal tensor decomposition

Orthogonal tensor decomposition Orthogonal tensor decomposition Daniel Hsu Columbia University Largely based on 2012 arxiv report Tensor decompositions for learning latent variable models, with Anandkumar, Ge, Kakade, and Telgarsky.

More information

CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION

CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION International Conference on Computer Science and Intelligent Communication (CSIC ) CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION Xuefeng LIU, Yuping FENG,

More information

Deep Learning Book Notes Chapter 2: Linear Algebra

Deep Learning Book Notes Chapter 2: Linear Algebra Deep Learning Book Notes Chapter 2: Linear Algebra Compiled By: Abhinaba Bala, Dakshit Agrawal, Mohit Jain Section 2.1: Scalars, Vectors, Matrices and Tensors Scalar Single Number Lowercase names in italic

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

A BLIND SPARSE APPROACH FOR ESTIMATING CONSTRAINT MATRICES IN PARALIND DATA MODELS

A BLIND SPARSE APPROACH FOR ESTIMATING CONSTRAINT MATRICES IN PARALIND DATA MODELS 2th European Signal Processing Conference (EUSIPCO 22) Bucharest, Romania, August 27-3, 22 A BLIND SPARSE APPROACH FOR ESTIMATING CONSTRAINT MATRICES IN PARALIND DATA MODELS F. Caland,2, S. Miron 2 LIMOS,

More information