Food consumption of rats. Two-way vs one-way vs nested ANOVA

Size: px
Start display at page:

Download "Food consumption of rats. Two-way vs one-way vs nested ANOVA"

Transcription

1 Food consumption of rats Lard Gender Fresh Rancid Male Female Two-way vs one-way vs nested NOV T 1 2 * * M * * * * * * F * * * * T M1 M2 F1 F2 * * * * * * * * * * * * T 1 2 M F M F * * * * * * * * * * * *

2 Two-way versus one-way NOV In the lard example, we could consider the lard by gender groups as four different treatments, and carry out a standard one-way NOV. Let r c n be the number of rows in the two-way NOV, be the number of columns in the two-way NOV, be the number of observations within each of those r c groups. One-way NOV table source sum of squares df between groups within groups SS between = n i j (Ȳij Ȳ ) 2 rc 1 SS within = i j k (Y ijk Ȳij ) 2 rc(n 1) total SS total = i j k (Y ijk Ȳ ) 2 rcn 1

3 Example source SS df MS F p-value between within ut this doesn t tell us anything about the separate effects of freshness and sex. ll sorts of means Fat Gender Fresh Rancid Male Female This table shows the cell, row, and column means, plus the overall mean. (The discussion today is like the analysis of two-dimensional tables, as opposed to one-dimensional tables.)

4 picture Consumption Female Male Female Male Fresh Fresh Rancid Rancid Two-way NOV table source sum of squares df between rows SS rows = c n i (Ȳi Ȳ ) 2 r 1 between columns SS columns = r n j (Ȳ j Ȳ ) 2 c 1 interaction SS interaction (r 1)(c 1) error SS within = i j k (Y ijk Ȳij ) 2 rc(n 1) total SS total = i j k (Y ijk Ȳ ) 2 rcn 1

5 Example source sum of squares df mean squares sex freshness interaction error The NOV model Let Y ijk be the k th item in the subgroup representing the i th group of treatment (r levels) and the j th group of treatment (c levels). We write Y ijk = µ + α i + β j + γ ij + ǫ ijk The corresponding analysis of the data is y ijk = ȳ + (ȳ i ȳ ) + (ȳ j ȳ ) + (ȳ ij ȳ i ȳ j + ȳ ) + (y ijk ȳ ij )

6 Towards hypothesis testing source mean squares expected mean squares between rows c n i (Ȳi Ȳ ) 2 r 1 σ 2 + c n r 1 i α 2 i between columns r n j (Ȳ j Ȳ ) 2 c 1 σ 2 + r n c 1 j β 2 j interaction error n i j (Ȳij Ȳi Ȳ j + Ȳ ) 2 (r 1) (c 1) i j k (Y ijk Ȳij ) 2 r c (n 1) σ 2 + σ 2 n (r 1) (c 1) i j γ 2 ij This is for fixed effects, and equal number of observations per cell! Example (continued) source SS df MS F p-value Sex Freshness interaction error

7 Interaction in a 2-way NOV model Let Y ijk be the k th item in the subgroup representing the i th group of treatment (r levels) and the j th group of treatment (c levels). We write Y ijk = µ + α i + β j + γ ij + ǫ ijk no interaction positive interaction negative interaction N + N + N + Interaction plots The R function interaction.plot() lets you compare the cell means by treatments. no interaction positive interaction negative interaction N Y N Y N Y treatment treatment treatment

8 Interaction plots (2) ssume treatment has four levels and treatment has three levels. The interaction plots could look like one of these: no interaction interaction mean response Example Strain differences and daily differences in blood ph for five (r = 5) inbred strains of mice. Five (n = 5) mice from each strain were tested six times (c = 6) at one-week intervals. Source SS df MS F P-value mouse strains < test days interaction error

9 Two-way versus nested NOV revisited Strains Days * * * * * 2 * * * * * 3 * * * * * 4 * * * * * 5 * * * * * 6 * * * * * Strains Days Mice * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NOV tables source SS df MS F Correct: two-way anova mouse strains test days interaction error total Incorrect: nested anova mouse strains days within strains error total

10 Unequal number of observations The following data were obtained in a study on energy utilization (in kcal/g) of the pocket mouse during hibernation at different temperatures. Restricted food Unrestricted food 8 o C 18 o C 8 o C 18 o C R is for rescue... The computations for the NOV table get rather complicated if the numbers of observations per cell are not equal. However, you can simply use aov() to get the results. > mouse.aov <- aov(log(rsp) food * temp, data=mouse) > anova(mouse.aov) Df Sum Sq Mean Sq F value Pr(>F) food temp food:temp Residuals

11 Interaction plot temp food UnR R mean of log2(rsp) mean of log2(rsp) R UnR 18 8 food temp Two-way NOV without replicates elow are the development periods (in days) for three strains of houseflies at seven densities. Strain Density OL ELL bwb

12 NOV table source df SS MS fly strains condition interaction total 20 We have 21 observations. estimate an error! That means we have no degrees of freedom left to Interactions strain 12 ELL bwb OL measurement density

13 Result If we assume that there are no interactions, i.e., we assume Y ijk = µ + α i + β j + ǫ ijk we get the following results using aov() in R: > fly.aov <- aov(rsp strain + density, data=fly) > anova(fly.aov) Df Sum Sq Mean Sq F value Pr(>F) strain density Residuals Random within blocks D C C D C C D C C D D D

14 Example Mean weight of 3 genotypes of beetles, reared at a density of 20 beetles per gram of flour. Four series of experiments represent blocks. genotype block ++ +b bb We must assume the effects of the genotypes is the same within each block. Interaction plot 1.05 block mean of rsp b bb genotype

15 NOV table Df Sum Sq Mean Sq F value Pr(>F) genotype block Residuals

Analysis of Variance

Analysis of Variance Analysis of Variance Blood coagulation time T avg A 62 60 63 59 61 B 63 67 71 64 65 66 66 C 68 66 71 67 68 68 68 D 56 62 60 61 63 64 63 59 61 64 Blood coagulation time A B C D Combined 56 57 58 59 60 61

More information

FACTORIAL DESIGNS and NESTED DESIGNS

FACTORIAL DESIGNS and NESTED DESIGNS Experimental Design and Statistical Methods Workshop FACTORIAL DESIGNS and NESTED DESIGNS Jesús Piedrafita Arilla jesus.piedrafita@uab.cat Departament de Ciència Animal i dels Aliments Items Factorial

More information

Two-Way Factorial Designs

Two-Way Factorial Designs 81-86 Two-Way Factorial Designs Yibi Huang 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley, so brewers like

More information

Multi-Factor Experiments

Multi-Factor Experiments ETH p. 1/31 Multi-Factor Experiments Twoway anova Interactions More than two factors ETH p. 2/31 Hypertension: Effect of biofeedback Biofeedback Biofeedback Medication Control + Medication 158 188 186

More information

QUEEN MARY, UNIVERSITY OF LONDON

QUEEN MARY, UNIVERSITY OF LONDON QUEEN MARY, UNIVERSITY OF LONDON MTH634 Statistical Modelling II Solutions to Exercise Sheet 4 Octobe07. We can write (y i. y.. ) (yi. y i.y.. +y.. ) yi. y.. S T. ( Ti T i G n Ti G n y i. +y.. ) G n T

More information

STAT22200 Spring 2014 Chapter 8A

STAT22200 Spring 2014 Chapter 8A STAT22200 Spring 2014 Chapter 8A Yibi Huang May 13, 2014 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley,

More information

Multiple comparisons - subsequent inferences for two-way ANOVA

Multiple comparisons - subsequent inferences for two-way ANOVA 1 Multiple comparisons - subsequent inferences for two-way ANOVA the kinds of inferences to be made after the F tests of a two-way ANOVA depend on the results if none of the F tests lead to rejection of

More information

Theorem A: Expectations of Sums of Squares Under the two-way ANOVA model, E(X i X) 2 = (µ i µ) 2 + n 1 n σ2

Theorem A: Expectations of Sums of Squares Under the two-way ANOVA model, E(X i X) 2 = (µ i µ) 2 + n 1 n σ2 identity Y ijk Ȳ = (Y ijk Ȳij ) + (Ȳi Ȳ ) + (Ȳ j Ȳ ) + (Ȳij Ȳi Ȳ j + Ȳ ) Theorem A: Expectations of Sums of Squares Under the two-way ANOVA model, (1) E(MSE) = E(SSE/[IJ(K 1)]) = (2) E(MSA) = E(SSA/(I

More information

Lecture 10. Factorial experiments (2-way ANOVA etc)

Lecture 10. Factorial experiments (2-way ANOVA etc) Lecture 10. Factorial experiments (2-way ANOVA etc) Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Regression and Analysis of Variance autumn 2014 A factorial experiment

More information

Oct Analysis of variance models. One-way anova. Three sheep breeds. Finger ridges. Random and. Fixed effects model. The random effects model

Oct Analysis of variance models. One-way anova. Three sheep breeds. Finger ridges. Random and. Fixed effects model. The random effects model s s Oct 2017 1 / 34 s Consider N = n 0 + n 1 + + n k 1 observations, which form k groups, of sizes n 0, n 1,..., n k 1. The r-th group has sample mean Ȳ r The overall mean (for all groups combined) is

More information

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction,

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, is Y ijk = µ ij + ɛ ijk = µ + α i + β j + γ ij + ɛ ijk with i = 1,..., I, j = 1,..., J, k = 1,..., K. In carrying

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Human vs mouse Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] www.daviddeen.com

More information

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA

Example: Poisondata. 22s:152 Applied Linear Regression. Chapter 8: ANOVA s:5 Applied Linear Regression Chapter 8: ANOVA Two-way ANOVA Used to compare populations means when the populations are classified by two factors (or categorical variables) For example sex and occupation

More information

Lec 5: Factorial Experiment

Lec 5: Factorial Experiment November 21, 2011 Example Study of the battery life vs the factors temperatures and types of material. A: Types of material, 3 levels. B: Temperatures, 3 levels. Example Study of the battery life vs the

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Design & Analysis of Experiments 7E 2009 Montgomery

Design & Analysis of Experiments 7E 2009 Montgomery Chapter 5 1 Introduction to Factorial Design Study the effects of 2 or more factors All possible combinations of factor levels are investigated For example, if there are a levels of factor A and b levels

More information

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN BLOCKING FACTORS Semester Genap Jurusan Teknik Industri Universitas Brawijaya Outline The Randomized Complete Block Design The Latin Square Design The Graeco-Latin Square Design Balanced

More information

I i=1 1 I(J 1) j=1 (Y ij Ȳi ) 2. j=1 (Y j Ȳ )2 ] = 2n( is the two-sample t-test statistic.

I i=1 1 I(J 1) j=1 (Y ij Ȳi ) 2. j=1 (Y j Ȳ )2 ] = 2n( is the two-sample t-test statistic. Serik Sagitov, Chalmers and GU, February, 08 Solutions chapter Matlab commands: x = data matrix boxplot(x) anova(x) anova(x) Problem.3 Consider one-way ANOVA test statistic For I = and = n, put F = MS

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

STAT Chapter 10: Analysis of Variance

STAT Chapter 10: Analysis of Variance STAT 515 -- Chapter 10: Analysis of Variance Designed Experiment A study in which the researcher controls the levels of one or more variables to determine their effect on the variable of interest (called

More information

1 Use of indicator random variables. (Chapter 8)

1 Use of indicator random variables. (Chapter 8) 1 Use of indicator random variables. (Chapter 8) let I(A) = 1 if the event A occurs, and I(A) = 0 otherwise. I(A) is referred to as the indicator of the event A. The notation I A is often used. 1 2 Fitting

More information

Chapter 12. Analysis of variance

Chapter 12. Analysis of variance Serik Sagitov, Chalmers and GU, January 9, 016 Chapter 1. Analysis of variance Chapter 11: I = samples independent samples paired samples Chapter 1: I 3 samples of equal size J one-way layout two-way layout

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

MODELS WITHOUT AN INTERCEPT

MODELS WITHOUT AN INTERCEPT Consider the balanced two factor design MODELS WITHOUT AN INTERCEPT Factor A 3 levels, indexed j 0, 1, 2; Factor B 5 levels, indexed l 0, 1, 2, 3, 4; n jl 4 replicate observations for each factor level

More information

STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA

STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA STAT 705 Chapters 23 and 24: Two factors, unequal sample sizes; multi-factor ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Balanced vs. unbalanced

More information

Statistics for Managers Using Microsoft Excel

Statistics for Managers Using Microsoft Excel Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 1 Chi-Square Tests and Nonparametric Tests Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap

More information

Unbalanced Data in Factorials Types I, II, III SS Part 1

Unbalanced Data in Factorials Types I, II, III SS Part 1 Unbalanced Data in Factorials Types I, II, III SS Part 1 Chapter 10 in Oehlert STAT:5201 Week 9 - Lecture 2 1 / 14 When we perform an ANOVA, we try to quantify the amount of variability in the data accounted

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

ANOVA (Analysis of Variance) output RLS 11/20/2016

ANOVA (Analysis of Variance) output RLS 11/20/2016 ANOVA (Analysis of Variance) output RLS 11/20/2016 1. Analysis of Variance (ANOVA) The goal of ANOVA is to see if the variation in the data can explain enough to see if there are differences in the means.

More information

Factorial designs. Experiments

Factorial designs. Experiments Chapter 5: Factorial designs Petter Mostad mostad@chalmers.se Experiments Actively making changes and observing the result, to find causal relationships. Many types of experimental plans Measuring response

More information

Lecture 3: Analysis of Variance II

Lecture 3: Analysis of Variance II Lecture 3: Analysis of Variance II http://www.stats.ox.ac.uk/ winkel/phs.html Dr Matthias Winkel 1 Outline I. A second introduction to two-way ANOVA II. Repeated measures design III. Independent versus

More information

22s:152 Applied Linear Regression. 1-way ANOVA visual:

22s:152 Applied Linear Regression. 1-way ANOVA visual: 22s:152 Applied Linear Regression 1-way ANOVA visual: Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Y We now consider an analysis

More information

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication

CHAPTER 4 Analysis of Variance. One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication CHAPTER 4 Analysis of Variance One-way ANOVA Two-way ANOVA i) Two way ANOVA without replication ii) Two way ANOVA with replication 1 Introduction In this chapter, expand the idea of hypothesis tests. We

More information

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA)

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Rationale and MANOVA test statistics underlying principles MANOVA assumptions Univariate ANOVA Planned and unplanned Multivariate ANOVA

More information

One-way ANOVA (Single-Factor CRD)

One-way ANOVA (Single-Factor CRD) One-way ANOVA (Single-Factor CRD) STAT:5201 Week 3: Lecture 3 1 / 23 One-way ANOVA We have already described a completed randomized design (CRD) where treatments are randomly assigned to EUs. There is

More information

Stat 217 Final Exam. Name: May 1, 2002

Stat 217 Final Exam. Name: May 1, 2002 Stat 217 Final Exam Name: May 1, 2002 Problem 1. Three brands of batteries are under study. It is suspected that the lives (in weeks) of the three brands are different. Five batteries of each brand are

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Randomized Blocks, Latin Squares, and Related Designs. Dr. Mohammad Abuhaiba 1

Randomized Blocks, Latin Squares, and Related Designs. Dr. Mohammad Abuhaiba 1 Randomized Blocks, Latin Squares, and Related Designs Dr. Mohammad Abuhaiba 1 HomeWork Assignment Due Sunday 2/5/2010 Solve the following problems at the end of chapter 4: 4-1 4-7 4-12 4-14 4-16 Dr. Mohammad

More information

Assignment 6 Answer Keys

Assignment 6 Answer Keys ssignment 6 nswer Keys Problem 1 (a) The treatment sum of squares can be calculated by SS Treatment = b a ȳi 2 Nȳ 2 i=1 = 5 (5.40 2 + 5.80 2 + 10 2 + 9.80 2 ) 20 7.75 2 = 92.95 Then the F statistic for

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 1 1-1 Basic Business Statistics 11 th Edition Chapter 1 Chi-Square Tests and Nonparametric Tests Basic Business Statistics, 11e 009 Prentice-Hall, Inc. Chap 1-1 Learning Objectives In this chapter,

More information

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data

Stats fest Analysis of variance. Single factor ANOVA. Aims. Single factor ANOVA. Data 1 Stats fest 2007 Analysis of variance murray.logan@sci.monash.edu.au Single factor ANOVA 2 Aims Description Investigate differences between population means Explanation How much of the variation in response

More information

Two-Way Analysis of Variance - no interaction

Two-Way Analysis of Variance - no interaction 1 Two-Way Analysis of Variance - no interaction Example: Tests were conducted to assess the effects of two factors, engine type, and propellant type, on propellant burn rate in fired missiles. Three engine

More information

Cuckoo Birds. Analysis of Variance. Display of Cuckoo Bird Egg Lengths

Cuckoo Birds. Analysis of Variance. Display of Cuckoo Bird Egg Lengths Cuckoo Birds Analysis of Variance Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison Statistics 371 29th November 2005 Cuckoo birds have a behavior in which they lay their

More information

Chapter 4: Randomized Blocks and Latin Squares

Chapter 4: Randomized Blocks and Latin Squares Chapter 4: Randomized Blocks and Latin Squares 1 Design of Engineering Experiments The Blocking Principle Blocking and nuisance factors The randomized complete block design or the RCBD Extension of the

More information

Ch. 5 Two-way ANOVA: Fixed effect model Equal sample sizes

Ch. 5 Two-way ANOVA: Fixed effect model Equal sample sizes Ch. 5 Two-way ANOVA: Fixed effect model Equal sample sizes 1 Assumptions and models There are two factors, factors A and B, that are of interest. Factor A is studied at a levels, and factor B at b levels;

More information

STAT 705 Chapter 16: One-way ANOVA

STAT 705 Chapter 16: One-way ANOVA STAT 705 Chapter 16: One-way ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 21 What is ANOVA? Analysis of variance (ANOVA) models are regression

More information

2-way analysis of variance

2-way analysis of variance 2-way analysis of variance We may be considering the effect of two factors (A and B) on our response variable, for instance fertilizer and variety on maize yield; or therapy and sex on cholesterol level.

More information

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests

Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Chapter 8: Hypothesis Testing Lecture 9: Likelihood ratio tests Throughout this chapter we consider a sample X taken from a population indexed by θ Θ R k. Instead of estimating the unknown parameter, we

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik Nesting and Mixed Effects: Part I Lukas Meier, Seminar für Statistik Where do we stand? So far: Fixed effects Random effects Both in the factorial context Now: Nested factor structure Mixed models: a combination

More information

Statistics Lab #6 Factorial ANOVA

Statistics Lab #6 Factorial ANOVA Statistics Lab #6 Factorial ANOVA PSYCH 710 Initialize R Initialize R by entering the following commands at the prompt. You must type the commands exactly as shown. options(contrasts=c("contr.sum","contr.poly")

More information

Factorial ANOVA. Testing more than one manipulation

Factorial ANOVA. Testing more than one manipulation Factorial ANOVA Testing more than one manipulation Factorial ANOVA Today s goal: Teach you about factorial ANOVA, the test used to evaluate more than two manipulations at the same time Outline: - Why Factorial

More information

Stat 6640 Solution to Midterm #2

Stat 6640 Solution to Midterm #2 Stat 6640 Solution to Midterm #2 1. A study was conducted to examine how three statistical software packages used in a statistical course affect the statistical competence a student achieves. At the end

More information

Lecture notes 13: ANOVA (a.k.a. Analysis of Variance)

Lecture notes 13: ANOVA (a.k.a. Analysis of Variance) Lecture notes 13: ANOVA (a.k.a. Analysis of Variance) Outline: Testing for a difference in means Notation Sums of squares Mean squares The F distribution The ANOVA table Part II: multiple comparisons Worked

More information

Comparing Nested Models

Comparing Nested Models Comparing Nested Models ST 370 Two regression models are called nested if one contains all the predictors of the other, and some additional predictors. For example, the first-order model in two independent

More information

iron retention (log) high Fe2+ medium Fe2+ high Fe3+ medium Fe3+ low Fe2+ low Fe3+ 2 Two-way ANOVA

iron retention (log) high Fe2+ medium Fe2+ high Fe3+ medium Fe3+ low Fe2+ low Fe3+ 2 Two-way ANOVA iron retention (log) 0 1 2 3 high Fe2+ high Fe3+ low Fe2+ low Fe3+ medium Fe2+ medium Fe3+ 2 Two-way ANOVA In the one-way design there is only one factor. What if there are several factors? Often, we are

More information

STAT 135 Lab 10 Two-Way ANOVA, Randomized Block Design and Friedman s Test

STAT 135 Lab 10 Two-Way ANOVA, Randomized Block Design and Friedman s Test STAT 135 Lab 10 Two-Way ANOVA, Randomized Block Design and Friedman s Test Rebecca Barter April 13, 2015 Let s now imagine a dataset for which our response variable, Y, may be influenced by two factors,

More information

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Jurusan Teknik Industri Universitas Brawijaya Outline Introduction The Analysis of Variance Models for the Data Post-ANOVA Comparison of Means Sample

More information

Tests of Linear Restrictions

Tests of Linear Restrictions Tests of Linear Restrictions 1. Linear Restricted in Regression Models In this tutorial, we consider tests on general linear restrictions on regression coefficients. In other tutorials, we examine some

More information

Lecture 15 - ANOVA cont.

Lecture 15 - ANOVA cont. Lecture 15 - ANOVA cont. Statistics 102 Colin Rundel March 18, 2013 One-way ANOVA Example - Alfalfa Example - Alfalfa (11.6.1) Researchers were interested in the effect that acid has on the growth rate

More information

Analysis of variance. Gilles Guillot. September 30, Gilles Guillot September 30, / 29

Analysis of variance. Gilles Guillot. September 30, Gilles Guillot September 30, / 29 Analysis of variance Gilles Guillot gigu@dtu.dk September 30, 2013 Gilles Guillot (gigu@dtu.dk) September 30, 2013 1 / 29 1 Introductory example 2 One-way ANOVA 3 Two-way ANOVA 4 Two-way ANOVA with interactions

More information

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011

Lecture 2: Linear Models. Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 Lecture 2: Linear Models Bruce Walsh lecture notes Seattle SISG -Mixed Model Course version 23 June 2011 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

STAT 213 Interactions in Two-Way ANOVA

STAT 213 Interactions in Two-Way ANOVA STAT 213 Interactions in Two-Way ANOVA Colin Reimer Dawson Oberlin College 14 April 2016 Outline Last Time: Two-Way ANOVA Interaction Terms Reading Quiz (Multiple Choice) If there is no interaction present,

More information

assumes a linear relationship between mean of Y and the X s with additive normal errors the errors are assumed to be a sample from N(0, σ 2 )

assumes a linear relationship between mean of Y and the X s with additive normal errors the errors are assumed to be a sample from N(0, σ 2 ) Multiple Linear Regression is used to relate a continuous response (or dependent) variable Y to several explanatory (or independent) (or predictor) variables X 1, X 2,, X k assumes a linear relationship

More information

Contents. TAMS38 - Lecture 6 Factorial design, Latin Square Design. Lecturer: Zhenxia Liu. Factorial design 3. Complete three factor design 4

Contents. TAMS38 - Lecture 6 Factorial design, Latin Square Design. Lecturer: Zhenxia Liu. Factorial design 3. Complete three factor design 4 Contents Factorial design TAMS38 - Lecture 6 Factorial design, Latin Square Design Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics 28 November, 2017 Complete three factor design

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College

1-Way ANOVA MATH 143. Spring Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Spring 2010 The basic ANOVA situation Two variables: 1 Categorical, 1 Quantitative Main Question: Do the (means of) the quantitative

More information

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks.

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. 58 2. 2 factorials in 2 blocks Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. Some more algebra: If two effects are confounded with

More information

Department of Mathematics & Statistics STAT 2593 Final Examination 17 April, 2000

Department of Mathematics & Statistics STAT 2593 Final Examination 17 April, 2000 Department of Mathematics & Statistics STAT 2593 Final Examination 17 April, 2000 TIME: 3 hours. Total marks: 80. (Marks are indicated in margin.) Remember that estimate means to give an interval estimate.

More information

Chapter 8: Multiple and logistic regression

Chapter 8: Multiple and logistic regression Chapter 8: Multiple and logistic regression OpenIntro Statistics, 3rd Edition Slides developed by Mine C etinkaya-rundel of OpenIntro. The slides may be copied, edited, and/or shared via the CC BY-SA license.

More information

STAT 705 Chapter 19: Two-way ANOVA

STAT 705 Chapter 19: Two-way ANOVA STAT 705 Chapter 19: Two-way ANOVA Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 41 Two-way ANOVA This material is covered in Sections

More information

Stat 502 Design and Analysis of Experiments General Linear Model

Stat 502 Design and Analysis of Experiments General Linear Model 1 Stat 502 Design and Analysis of Experiments General Linear Model Fritz Scholz Department of Statistics, University of Washington December 6, 2013 2 General Linear Hypothesis We assume the data vector

More information

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017

Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 Statistical Analysis for QBIC Genetics Adapted by Ellen G. Dow 2017 I. χ 2 or chi-square test Objectives: Compare how close an experimentally derived value agrees with an expected value. One method to

More information

STAT2912: Statistical Tests. Solution week 12

STAT2912: Statistical Tests. Solution week 12 STAT2912: Statistical Tests Solution week 12 1. A behavioural biologist believes that performance of a laboratory rat on an intelligence test depends, to a large extent, on the amount of protein in the

More information

1 Multiple Regression

1 Multiple Regression 1 Multiple Regression In this section, we extend the linear model to the case of several quantitative explanatory variables. There are many issues involved in this problem and this section serves only

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38 BIO5312 Biostatistics Lecture 11: Multisample Hypothesis Testing II Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 11/8/2016 1/38 Outline In this lecture, we will continue to

More information

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels.

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. Contingency Tables Definition & Examples. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. (Using more than two factors gets complicated,

More information

Lecture 22 Mixed Effects Models III Nested designs

Lecture 22 Mixed Effects Models III Nested designs Lecture 22 Mixed Effects Models III Nested designs 94 Introduction: Crossed Designs The two-factor designs considered so far involve every level of the first factor occurring with every level of the second

More information

R 2 and F -Tests and ANOVA

R 2 and F -Tests and ANOVA R 2 and F -Tests and ANOVA December 6, 2018 1 Partition of Sums of Squares The distance from any point y i in a collection of data, to the mean of the data ȳ, is the deviation, written as y i ȳ. Definition.

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878 Contingency Tables I. Definition & Examples. A) Contingency tables are tables where we are looking at two (or more - but we won t cover three or more way tables, it s way too complicated) factors, each

More information

Analysis of variance

Analysis of variance Analysis of variance 1 Method If the null hypothesis is true, then the populations are the same: they are normal, and they have the same mean and the same variance. We will estimate the numerical value

More information

STAT 401A - Statistical Methods for Research Workers

STAT 401A - Statistical Methods for Research Workers STAT 401A - Statistical Methods for Research Workers One-way ANOVA Jarad Niemi (Dr. J) Iowa State University last updated: October 10, 2014 Jarad Niemi (Iowa State) One-way ANOVA October 10, 2014 1 / 39

More information

Unit 12: Analysis of Single Factor Experiments

Unit 12: Analysis of Single Factor Experiments Unit 12: Analysis of Single Factor Experiments Statistics 571: Statistical Methods Ramón V. León 7/16/2004 Unit 12 - Stat 571 - Ramón V. León 1 Introduction Chapter 8: How to compare two treatments. Chapter

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

Written Exam (2 hours)

Written Exam (2 hours) M. Müller Applied Analysis of Variance and Experimental Design Summer 2015 Written Exam (2 hours) General remarks: Open book exam. Switch off your mobile phone! Do not stay too long on a part where you

More information

Example - Alfalfa (11.6.1) Lecture 16 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect

Example - Alfalfa (11.6.1) Lecture 16 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect (11.6.1) Lecture 16 - ANOVA cont. Sta102 / BME102 Colin Rundel October 28, 2015 Researchers were interested in the effect that acid has on the growth rate of alfalfa plants. They created three treatment

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

ANOVA Randomized Block Design

ANOVA Randomized Block Design Biostatistics 301 ANOVA Randomized Block Design 1 ORIGIN 1 Data Structure: Let index i,j indicate the ith column (treatment class) and jth row (block). For each i,j combination, there are n replicates.

More information

Example - Alfalfa (11.6.1) Lecture 14 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect

Example - Alfalfa (11.6.1) Lecture 14 - ANOVA cont. Alfalfa Hypotheses. Treatment Effect (11.6.1) Lecture 14 - ANOVA cont. Sta102 / BME102 Colin Rundel March 19, 2014 Researchers were interested in the effect that acid has on the growth rate of alfalfa plants. They created three treatment

More information

One-Way ANOVA Model. group 1 y 11, y 12 y 13 y 1n1. group 2 y 21, y 22 y 2n2. group g y g1, y g2, y gng. g is # of groups,

One-Way ANOVA Model. group 1 y 11, y 12 y 13 y 1n1. group 2 y 21, y 22 y 2n2. group g y g1, y g2, y gng. g is # of groups, One-Way ANOVA Model group 1 y 11, y 12 y 13 y 1n1 group 2 y 21, y 22 y 2n2 group g y g1, y g2, y gng g is # of groups, n i denotes # of obs in the i-th group, and the total sample size n = g i=1 n i. 1

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

W&M CSCI 688: Design of Experiments Homework 2. Megan Rose Bryant

W&M CSCI 688: Design of Experiments Homework 2. Megan Rose Bryant W&M CSCI 688: Design of Experiments Homework 2 Megan Rose Bryant September 25, 201 3.5 The tensile strength of Portland cement is being studied. Four different mixing techniques can be used economically.

More information

Experimental design (DOE) - Design

Experimental design (DOE) - Design Experimental design (DOE) - Design Menu: QCExpert Experimental Design Design Full Factorial Fract Factorial This module designs a two-level multifactorial orthogonal plan 2 n k and perform its analysis.

More information

Models with qualitative explanatory variables p216

Models with qualitative explanatory variables p216 Models with qualitative explanatory variables p216 Example gen = 1 for female Row gpa hsm gen 1 3.32 10 0 2 2.26 6 0 3 2.35 8 0 4 2.08 9 0 5 3.38 8 0 6 3.29 10 0 7 3.21 8 0 8 2.00 3 0 9 3.18 9 0 10 2.34

More information

3. Factorial Experiments (Ch.5. Factorial Experiments)

3. Factorial Experiments (Ch.5. Factorial Experiments) 3. Factorial Experiments (Ch.5. Factorial Experiments) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University DOE and Optimization 1 Introduction to Factorials Most experiments for process

More information

Lecture 27 Two-Way ANOVA: Interaction

Lecture 27 Two-Way ANOVA: Interaction Lecture 27 Two-Way ANOVA: Interaction STAT 512 Spring 2011 Background Reading KNNL: Chapter 19 27-1 Topic Overview Review: Two-way ANOVA Models Basic Strategy for Analysis Studying Interactions 27-2 Two-way

More information

PLS205 Lab 2 January 15, Laboratory Topic 3

PLS205 Lab 2 January 15, Laboratory Topic 3 PLS205 Lab 2 January 15, 2015 Laboratory Topic 3 General format of ANOVA in SAS Testing the assumption of homogeneity of variances by "/hovtest" by ANOVA of squared residuals Proc Power for ANOVA One-way

More information