Course overview. Forces 5 lessons

Size: px
Start display at page:

Download "Course overview. Forces 5 lessons"

Transcription

1 Forces Mechanics

2 Course overview Forces 5 lessons Newton s laws of mo9on (2 lessons) Mass and weight (0.5 lessons) Equilibrium (1 lesson) Unbalanced forces (1.5 lessons) Trolley Lab (DEF)

3 Newton s first law Newton I: Every object con9nues in a state of rest or uniform mo9on in a straight line unless acted upon by an external force.

4 Examples Any sta9onary object! Difficult to find examples of moving objects here on the earth due to fric9on. A possible example could be a puck on ice where the surface is near fric9onless.

5 Transla9onal equilibrium Transla9onal means of or rela9ng to uniform movement without rota9on. If a body is acted upon by a number of forces in the same plane and is in equilibrium (i.e. at rest (sta,c equilibrium) or unaccelerated mo9on (dynamic equilibrium)) then the following condi9on must apply: The components of the forces in both of any two direc4ons must balance. Is the object accelera9ng or not is the key ques9on for all problems you solve based on this. If it is accelera9ng, then Newton s 2nd law applies.

6 Balanced and unbalanced forces Consider a camel standing on a road. What forces are acting on it? Normal reaction force 12/09/13 Weight

7 Balanced and unbalanced forces Reaction What would happen if we took the road away? The camel s weight is no longer balanced by anything, so the camel falls downwards 12/09/13 Weight

8 Balanced and unbalanced forces What would happen if we took the road away? The camel s weight is no longer balanced by anything, so the camel falls downwards 12/09/13

9 Newton s second law (1st vers.) The rate of change of momentum of a body is proportional to the resultant force and occurs in the direction of the force. F = Δp t F = mv mu t

10 Newton s Second Law (2nd vers.) The acceleration of a body is proportional to the resultant force and occurs in the direction of the force. F = ma

11 Mass and Weight Mass and weight are the same thing in day- to- day life. In Physics the understanding of weight W is different: In Physics weight is the gravita9onal pull on an object, it s a force. The amount of ma\er (mass) is measured in kg. W = m g (Remember: F = ma) W: weight, m: mass, g: accelera9on due to gravity or grav. Field strength (on Earth g=10 m/s 2, on the Moon g =1.67 m/s 2 ) 12/09/13

12 Linear Momentum Define linear momentum and impulse. Momentum p of a body is defined as the mass m of the body mul9plied by its velocity v p = mv It is a vector quan9ty Its units are kg m s - 1 or Ns Example: car of 1500kg moving at 20ms - 1. p = mv =1500 x 20 = Ns

13 From Newtons second law Impulse mv mu F = t Ft = mv mu Ft = Δp This quan9ty Ft is called the impulse of the force on the body and it is equal to the change in momentum of a body. Vector quan9ty Units: kg m s - 1 or Ns IB defin9on: Impulse is the product of force and the 9me for which the force acts and is equal to the change in momentum.

14 Impulse: example A bicycle and its rider have a total mass of 100kg. The bike is accelerated over a period of 10s from 0 to 8ms - 1. Find the impulse exerted. Ft = mv mu = 100 x x 0 = 1000 Ns. Note: the 9me taken does not ma\er for the calcula9on of impulse!

15 Impulse and force- 9me graphs Determine the impulse due to a 4me- varying force by interpre4ng a force- 4me graph. The impulse can be determined from the area under the force- 9me graph. Here: Ft = 0.5 x x 2.0 x 2 + ( ) x = Ns

16 Law of Conserva9on of Linear Momentum State the law of conserva4on of linear momentum Solve problems involving momentum and impulse. The law can be stated as When bodies in a system interact the total momentum remains constant provided no external force acts on the system. IB version: the total momentum of a system is constant priveded no external force acts on the system.

17 Newton s third law When two bodies A and B interact, the force that A exerts on B is equal and opposite to the force that B exerts on A. Note: this is about forces between different bodies, not different forces on the same body!

18 Example of Newton s 3 rd Q. According to Newton s third Law what is the opposite force to your weight? A. As your weight is the pull of the Earth on you, then the opposite is the pull of you on the Earth!

19 Newton s 3 rd Law The law is sta9ng that forces never occur singularly but always in pairs as a result of the interac9on between two bodies. For example, when you step forward from rest, your foot pushes backwards on the Earth and the Earth exerts an equal and opposite force forward on you. Two bodies and two forces are involved.

Last Time: Ch 3 Today: Relative Motion and Ch 4

Last Time: Ch 3 Today: Relative Motion and Ch 4 Last Time: Ch 3 Today: Relative Motion and Ch 4 Chapter 3 Finish Rela+ve Mo+on Chapter 4 Forces Newton s 1 st Law Newton s 2 nd Law Free body diagrams Examples (if we get that far) Prelecture: Ques2on

More information

Mechanics. Course Overview

Mechanics. Course Overview Mechanics Course Overview Course Overview Mechanics Kinema3cs 8 lessons Introduc3on to Physics (2 lessons) Administra3ve Procedure Introduc3on to Physics SI Units Metric prefixes Vectors (1 lesson) Vector

More information

Chapter 5/6: Newton s Laws Review

Chapter 5/6: Newton s Laws Review Chapter 5/6: Newton s Laws Review ConcepTest 5.1a Newton s First Law I A book is lying at rest on a table. The book will remain there at rest because: 1) there is a net force but the book has too much

More information

Chapter 6 Part 1 Momentum and Impulse. St. Augus:ne Preparatory School October 24, 2016

Chapter 6 Part 1 Momentum and Impulse. St. Augus:ne Preparatory School October 24, 2016 Chapter 6 Part 1 Momentum and Impulse St. Augus:ne Preparatory School October 24, 2016 Momentum Momentum is a vector quan:ty and can be defined as the quan)ty of mo)on of a moving body, measured as a product

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Notices Midterm Exam Friday Feb 8 will cover stuff we do un6l today. 10 mul6ple choice + 2 problems, 2

More information

Chapter 5/6: Newton s Laws Review

Chapter 5/6: Newton s Laws Review Chapter 5/6: Newton s Laws Review ConcepTest 5.1a Newton s First Law I A book is lying at rest on a table. The book will remain there at rest because: 1) there is a net force but the book has too much

More information

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion Newton s Laws of Motion 1 st Law Law of Inertia 2 nd Law Force = Mass x Acceleration

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24 Forces and Movement Book pg 23 25, 39-40 Syllabus 1.15-1.18, 1.24 Reflect What is the relationship between mass, force and acceleration? Learning Outcomes 1. Demonstrate an understanding of the effects

More information

7.2. Assessment in Diploma Program Physics 281

7.2. Assessment in Diploma Program Physics 281 7.2. Assessment in Diploma Program Physics 281 figures in 100 kmh 1, we round the answer to two significant figures. Note that we have to use at least one significant figure more than the final result

More information

Let's See What we can Remember?

Let's See What we can Remember? Let's See What we can Remember? * What is Acceleration? A change in velocity * How do you determine an objects velocity? Speed & Direction * What is speed? How fast an objects position is changing *What

More information

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P Equilibrium when: F net = F i τ net = τ i a = 0 = α dp = 0 = d L = ma = d P = 0 = I α = d L = 0 P = constant L = constant F x = 0 τ i = 0 F y = 0 F z = 0 Static Equilibrium when: P = 0 L = 0 v com = 0

More information

The Laws of Motion. Newton s Second Law

The Laws of Motion. Newton s Second Law The Laws of Motion Newton s Second Law Key Concepts What is Newton s second law of motion? How does centripetal force affect circular motion? What do you think? Read the two statements below and decide

More information

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph Unit 4 Review Vocabulary Review Each term may be used once. acceleration constant acceleration constant velocity displacement force force of gravity friction force inertia interaction pair net force Newton

More information

Momentum and Impulse

Momentum and Impulse analyse impulse, and momentum transfer, in collisions between objects moving along a straight line; Momentum The momentum (p) of a body is the product of its mass and velocity. P = mv. The unit is kilogram

More information

Newton s Laws of Motion and Gravitation

Newton s Laws of Motion and Gravitation Newton s Laws of Motion and Gravitation Introduction: In Newton s first law we have discussed the equilibrium condition for a particle and seen that when the resultant force acting on the particle is zero,

More information

Forces. Brought to you by:

Forces. Brought to you by: Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

More information

Chapter 4 Conservation Laws

Chapter 4 Conservation Laws Conceptual Physics/ PEP Name: Date: Chapter 4 Conservation Laws Section Review 4.1 1. List three action and reaction pairs in the picture at right, on page 82 in text. a. Force of paddle on water, and

More information

Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force.

Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force. NEWTON S LAWS OF MOTION Newton s First Law Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force. Inertia (Newton s 1

More information

Forces and Motion. Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12

Forces and Motion. Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12 Forces and Motion Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12 What is Force? A push or pull that acts on an object Can cause a resting object to move Can accelerate a moving

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Force Force: push or pull Force is a vector it has magnitude and direction The SI unit of force is the newton. The SI symbol for the newton is N. What is Newton s first law of motion?

More information

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton Properties of Motion It took about 2500 years to different generations of philosophers, mathematicians and astronomers to understand Aristotle's theory of Natural Motion and Violent Motion: Falling bodies

More information

Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N)

Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N) Forces Force - a push or a pull A force described by its strength and by the direction in which it acts The SI unit for force is the newton (N) The direction and strength of forces can be represented by

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Newton s third law Examples Isaac Newton s work represents one of the greatest contributions to science ever made by an individual.

More information

Chapter 2. Force and Newton s Laws

Chapter 2. Force and Newton s Laws Chapter 2 Force and Newton s Laws 2 1 Newton s First Law Force Force A push or pull that one body exerts on another body. Examples : 2 Categories of Forces Forces Balanced Forces Unbalanced Forces Balanced

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Chapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces

Chapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces Chapter 4 NEWTONS LAWS Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces Force: a push or a pull Measured in Newton Vector Quantity Contact Force: applied by direct contact Field Force:

More information

SECTION 1 (PP ):

SECTION 1 (PP ): FORCES CHANGE MOTION. Georgia Standards: S8P3b Demonstrate the effect of balanced and unbalanced forces on an object in terms of gravity, inertia, and friction; S8CS6a Write clear, step-by-step instructions

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 Today s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 Karate Will not do Session 3 of Unit 8. It is a Karate thing. We will only mark Session 2 of unit 8. You

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Recap: Energy Accounting

Recap: Energy Accounting Recap: Energy Accounting Energy accounting enables complex systems to be studied. Total Energy = KE + PE = conserved Even the simple pendulum is not easy to study using Newton s laws of motion, as the

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Last Time: Chapter 6 Today: Chapter 7

Last Time: Chapter 6 Today: Chapter 7 Last Time: Chapter 6 Today: Chapter 7 Last Time Work done by non- constant forces Work and springs Power Examples Today Poten&al Energy of gravity and springs Forces and poten&al energy func&ons Energy

More information

Objectives 326 CHAPTER 7 MOMENTUM

Objectives 326 CHAPTER 7 MOMENTUM Objectives Define linear momentum. Explain the relationship between force and rate of change of momentum. Define impulse. Explain the relationship between impulse and change in momentum. Explain Newton

More information

CHAPTER 9 FORCE AND LAWS OF MOTION

CHAPTER 9 FORCE AND LAWS OF MOTION CHAPTER 9 FORCE AND LAWS OF MOTION Q 1. What is a force? Ans: Force is a push or pull which tries to bring the change in the state of rest or of uniform motion in a straight line. Unit of force: force

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 2.1 & 2.2 & 2.3 & 2.4 - Matters and Forces Mass and Weight You need to know what mass and weight are. Mass is the measure of amount of matter in

More information

Unit 8B: Forces Newton s Laws of Motion

Unit 8B: Forces Newton s Laws of Motion Unit 8B: Forces Newton s Laws of Motion Indicator PS-5.7: Explain the motion of objects on the basis of Newton s three laws of motion. Objectives 1. State the meaning of Newton s laws of motion in your

More information

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Monday Ch 9 examples Rota:on of a rigid body Torque and angular accelera:on Today Solving problems with torque Work and power with torque Angular momentum

More information

Classical Mechanics Lecture 7

Classical Mechanics Lecture 7 Classical Mechanics Lecture 7 UNIT 10: WORK AND ENERGY Approximate Classroom Time: Three 100 minute sessions Today s Concepts: Work & Kine6c Energy ES "Knowing is not enough; we must apply. Willing is

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Forces and Newton s Laws of Motion

Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion Forces A force is a vector quantity (has magnitude and direction) that is typically described as a push or pull. Forces cause objects to accelerate (change velocities)

More information

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a. Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance

More information

Directed Reading B. Section: Newton s Laws of Motion NEWTON S FIRST LAW OF MOTION

Directed Reading B. Section: Newton s Laws of Motion NEWTON S FIRST LAW OF MOTION Skills Worksheet Directed Reading B Section: Newton s Laws of Motion NEWTON S FIRST LAW OF MOTION Part 1: Objects at Rest 1. Which is NOT an example of an object at rest? a. a golf ball on a tee b. a jet

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3 FORCES Chapter 2: Section 3, Chapter 3: Sections 1-3 Vocab: 2.3-3.3 DEFINE THESE Force Net force Balanced force Inertia Newton s second law of motion Friction Law of gravitation Weight Newton s third law

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. The greatest increase in the inertia of an object would be produced by increasing the A) mass of the object from 1.0 kg to 2.0 kg B) net force applied to the object from 1.0 N to 2.0 N C) time that

More information

Newton s Laws of Motion

Newton s Laws of Motion DUY TAN UNIVERSITY DEPARTMENT OF NATURAL SCIENCE Newton s Laws of Motion Lecturer: HO VAN TUYEN Da Nang, 2017 Motions Newton s Contributions Sir Isaac Newton (1643-1727) an English scientist and mathematician.

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Objectives: Students will describe inertia and how it is related to Newton s first law of motion. Students will calculate an object s acceleration, mass, or the force applied to

More information

Which iceboat crosses the finish line with more kinetic energy (KE)?

Which iceboat crosses the finish line with more kinetic energy (KE)? Two iceboats (one of mass m, one of mass 2m) hold a race on a frictionless, horizontal, frozen lake. Both iceboats start at rest, and the wind exerts the same constant force on both iceboats. Which iceboat

More information

Classical Mechanics Lecture 3

Classical Mechanics Lecture 3 Classical Mechanics Lecture 3 Today's Concepts: Newton s Laws a) Accelera=on is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 3, Slide

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Newton s Laws Forces Mass and Weight Serway and Jewett 5.1 to 5.6 Practice: Chapter 5, Objective Questions 2, 11 Conceptual Questions 7, 9, 19, 21 Problems 2, 3, 7, 13 Newton s

More information

Forces Review! By Cole Shute, Anisa Patel, Will Bley, and Camille Lorenz

Forces Review! By Cole Shute, Anisa Patel, Will Bley, and Camille Lorenz Forces Review! By Cole Shute, Anisa Patel, Will Bley, and Camille Lorenz Review of Concepts -force is a vector (It has magnitude and direction). -Mass: the measure of inertia of a body -weight: force due

More information

The Questions. 1. What does Net Force mean? 2. What is Newton s 1 st Law?

The Questions. 1. What does Net Force mean? 2. What is Newton s 1 st Law? The Questions 1. What does Net Force mean? 2. What is Newton s 1 st Law? Force changes motion A force is a push or pull BUT IT IS THE NET FORCE THAT WE CARE ABOUT!! Net Force Net Force is the sum of the

More information

Momentum and Impulse Ch. 8 in your text book

Momentum and Impulse Ch. 8 in your text book Momentum and Ch. 8 in your text book Objectives Students will be able to: 1) Calculate the impulse of an object given a change in mass or velocity 2) Calculate the force felt by and object given an impulse

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion 1 of 28 Boardworks Ltd 2016 Newton s Laws of Motion 2 of 28 Boardworks Ltd 2016 Introducing balanced forces 3 of 28 Boardworks Ltd 2016 What is Newton s first law? 4 of 28 Boardworks

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes

Q Scheme Marks AOs. 1a States or uses I = F t M1 1.2 TBC. Notes Q Scheme Marks AOs Pearson 1a States or uses I = F t M1 1.2 TBC I = 5 0.4 = 2 N s Answer must include units. 1b 1c Starts with F = m a and v = u + at Substitutes to get Ft = m(v u) Cue ball begins at rest

More information

FORCE. Definition: Combining Forces (Resultant Force)

FORCE. Definition: Combining Forces (Resultant Force) 1 FORCE Definition: A force is either push or pull. A Force is a vector quantity that means it has magnitude and direction. Force is measured in a unit called Newtons (N). Some examples of forces are:

More information

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 05 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The SI unit of force preferred by scientists is the: a. kilogram. b. newton.

More information

Physical Science Forces and Motion Study Guide ** YOU MUST ALSO USE THE NOTES PROVIDED IN CLASS TO PREPARE FOR THE TEST **

Physical Science Forces and Motion Study Guide ** YOU MUST ALSO USE THE NOTES PROVIDED IN CLASS TO PREPARE FOR THE TEST ** Physical Science Forces and Motion Study Guide ** YOU MUST ALSO USE THE NOTES PROVIDED IN CLASS TO PREPARE FOR THE TEST ** 1. What is a force? A push or a pull on an object. Forces have size and direction.

More information

A force is could described by its magnitude and by the direction in which it acts.

A force is could described by its magnitude and by the direction in which it acts. 8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

Chapter 4. Forces and Newton s Laws of Motion

Chapter 4. Forces and Newton s Laws of Motion Chapter 4 Forces and Newton s Laws of Motion Chapter 4: Forces and Newton s Laws Force, mass and Newton s three laws of motion Newton s law of gravity Normal, friction and tension forces Apparent weight,

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

More information

Chapter 4 Conservation Laws

Chapter 4 Conservation Laws Conceptual Physics/ PEP Name: Date: Chapter 4 Conservation Laws Section Review 4.1 1. List three action and reaction pairs in the picture at right, on page 82 in text. c. 2. Why don t action and reaction

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

AQA Physics P2 Topic 1. Motion

AQA Physics P2 Topic 1. Motion AQA Physics P2 Topic 1 Motion Distance / Time graphs Horizontal lines mean the object is stationary. Straight sloping lines mean the object is travelling at a constant speed. The steeper the slope, the

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 Lesson Description In this lesson we: Learn that an object s momentum is the amount of motion it has due to its mass and velocity. Show that

More information

Impulse. Two factors influence the amount by which an object s momentum changes.

Impulse. Two factors influence the amount by which an object s momentum changes. Impulse In order to change the momentum of an object, either its mass, its velocity, or both must change. If the mass remains unchanged, which is most often the case, then the velocity changes and acceleration

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 WORK, POWER AND ENERGY TRANSFER IN DYNAMIC ENGINEERING SYSTEMS TUTORIAL 1 - LINEAR MOTION Be able to determine

More information