Statistical Process Control

Size: px
Start display at page:

Download "Statistical Process Control"

Transcription

1 Statistical Process Control

2 Outline Statistical Process Control (SPC) Process Capability Acceptance Sampling 2

3 Learning Objectives When you complete this supplement you should be able to : S6.1 Explain the purpose of a control chart S6.2 Explain the role of the central limit theorem in SPC S6.3 Build x-charts and R-charts S6.4 List the five steps involved in building control charts 3

4 Learning Objectives When you complete this supplement you should be able to : S6.5 Build p-charts and c-charts S6.6 Explain process capability and compute C p and C pk S6.7 Explain acceptance sampling 4

5 Statistical Process Control The objective of a process control system is to provide a statistical signal when assignable causes of variation are present 5

6 Statistical Process Control (SPC) Variability is inherent in every process Natural or common causes Special or assignable causes Provides a statistical signal when assignable causes are present Quickens appropriate actions to eliminate assignable causes 6

7 Natural Variations Also called common causes Affect virtually all production processes Expected amount of variation Output measures follow a probability distribution For any distribution there is a measure of central tendency and dispersion If the distribution of outputs falls within acceptable limits, the process is said to be "in control" 7

8 Assignable Variations Also called special causes of variation Generally this is some change in the process Variations that can be traced to a specific reason The objective is to discover when assignable causes are present Eliminate the bad causes Incorporate the good causes 8

9 Samples To measure the process, we take samples and analyze the sample statistics following these steps (a) Samples of the product, say five boxes of cereal taken off the filling machine line, vary from each other in weight Frequency # # # # # # # # # # # # # # # # Each of these represents one sample of five boxes of cereal # # # # # # # # # # Figure S6.1 Weight 9

10 Samples To measure the process, we take samples and analyze the sample statistics following these steps (b) After enough samples are taken from a stable process, they form a pattern called a distribution Frequency The solid line represents the distribution Figure S6.1 Weight 10

11 Samples To measure the process, we take samples and analyze the sample statistics following these steps (c) There are many types of distributions, including the normal (bellshaped) distribution, but distributions do differ in terms of central tendency (mean), standard deviation or variance, and shape Frequency Central tendency Variation Shape Figure S6.1 Weight Weight Weight 11

12 Samples To measure the process, we take samples and analyze the sample statistics following these steps (d) If only natural causes of variation are present, the output of a process forms a distribution that is stable over time and is predictable Frequency Prediction Weight Figure S6.1 12

13 Samples (e) To measure the process, we take samples and analyze the sample statistics following these steps If assignable causes are present, the process output is not stable over time and is not predicable Frequency Weight?????????????????? Prediction Figure S6.1 13

14 Control Charts Constructed from historical data, the purpose of control charts is to help distinguish between natural variations and variations due to assignable causes 14

15 Process Control Lower control limit Frequency (a) In statistical control and capable of producing within control limits Upper control limit (b) In statistical control but not capable of producing within control limits (c) Out of control Size (weight, length, speed, etc.) Figure S6.2 15

16 Control Charts for Variables Characteristics that can take any real value May be in whole or in fractional numbers Continuous random variables x-chart tracks changes in the central tendency R-chart indicates a gain or loss of dispersion 16

17 Control Charts for Variables Characteristics that can take any real value May be in whole or in fractional numbers Continuous random variables x-chart tracks changes in the central tendency R-chart indicates a gain or loss of dispersion 17

18 Central Limit Theorem Regardless of the distribution of the population, the distribution of sample means drawn from the population will tend to follow a normal curve 1) The mean of the sampling distribution will be the same as the population mean 2) The standard deviation of the sampling distribution ( ) will x equal the population standard deviation ( ) divided by the square root of the sample size, n = x x n 18

19 Population and Sampling Distributions Population distributions Distribution of sample means Beta Normal = Mean of sample means = x Standard deviation of the sample means x n Uniform 3 x 2 x 1 x = x 1 x 2 x 3 x 95.45% fall within ±2 x 99.73% of all x fall within ± 3 x Figure S6.3 19

20 Sampling Distribution Figure S6.4 Sampling distribution of means Process distribution of means = x = (mean) 20

21 Sampling Distribution Figure S6.4 As the sample size increases, the sampling distribution narrows n = 100 n = 50 n = 25 Mean of process 21

22 Setting Chart Limits For x-charts when we know Upper control limit (UCL) x z x Lower control limit (LCL) x z x = Where x = mean of the sample means or a target value set for the process z = number of normal standard deviations x = standard deviation of the sample means / n = population (process) standard deviation n = sample size 22

23 Setting Control Limits Randomly select and weigh nine (n = 9) boxes each hour Average weight in the first sample ounces WEIGHT OF SAMPLE WEIGHT OF SAMPLE WEIGHT OF SAMPLE HOUR (AVG. OF 9 BOXES) HOUR (AVG. OF 9 BOXES) HOUR (AVG. OF 9 BOXES)

24 Setting Control Limits Average mean of 12 samples = x 12 i 1 Avg of 9 boxes 12 x 16 ounces n 9 z 3 1 ounce Number of samples = 12 24

25 Setting Control Limits Average mean of 12 samples = x 12 i 1 Avg of 9 boxes 12 = UCL x z x x 17 ounces 9 3 = LCL x z x x 15 ounces 9 3 x 16 ounces n 9 z 3 1 ounce Number of samples = 12 25

26 Setting Control Limits 17 = UCL Control Chart for samples of 9 boxes Out of control Variation due to assignable causes 16 = Mean Variation due to natural causes 15 = LCL Sample number Variation due to assignable causes Out of control 26

27 Setting Chart Limits For x-charts when we don't know = UCL x x A 2 R = LCL x x A 2 R where k R i i 1 R average range of the samples k A 2 = control chart factor found in Table S6.1 = x = mean of the sample means R i = range for sample i k = total number of samples 27

28 Control Chart Factors TABLE S6.1 SAMPLE SIZE, n Factors for Computing Control Chart Limits (3 sigma) MEAN FACTOR, UPPER RANGE, A 2 D LOWER RANGE, D

29 Setting Control Limits Super Cola example labeled as "net weight 12 ounces" Process average = 12 ounces Average range =.25 ounces Sample size = 5 = x UCL x A 2 R 12 (.577)(.25) ounces = x LCL x A 2 R ounces From Table S6.1 UCL = Mean = 12 LCL =

30 R Chart Type of variables control chart Shows sample ranges over time Difference between smallest and largest values in sample Monitors process variability Independent from process mean 30

31 Setting Chart Limits For R-Charts Upper control limit (UCL R ) = D 4 R Lower control limit (LCL R ) = D 3 R where UCL R upper control chart limit for the range LCL R lower control chart limit for the range D 4 and D 3 values from Table S6.1 31

32 Restaurant Control Limits For salmon fillets at Darden Restaurants Sample Mean Sample Range x Bar Chart Range Chart UCL = = = x LCL = UCL = R = LCL = 0 32

33 Setting Control Limits Average range = 8 minutes Sample size = 4 From Table S6.1 D 4 = 2.282, D 3 = 0 UCL R D 4 R (2.282)(8) minutes LCL R D 3 R (0)(8) 0 minutes UCL = Mean = 8 LCL = 0 33

34 Mean and Range Charts (a) These sampling distributions result in the charts below Figure S6.5 x-chart R-chart UCL LCL UCL LCL (Sampling mean is shifting upward, but range is consistent) (x-chart detects shift in central tendency) (R-chart does not detect change in mean) 34

35 Mean and Range Charts (b) These sampling distributions result in the charts below Figure S6.5 x-chart R-chart UCL LCL UCL LCL (Sampling mean is constant, but dispersion is increasing) (x-chart indicates no change in central tendency) (R-chart detects increase in dispersion) 35

36 Steps In Building Control Charts 1. Collect 20 to 25 samples, often of n = 4 or n = 5 observations each, from a stable process, and compute the mean and range of each 2. Compute the overall means ( and R), set appropriate control limits, usually at the 99.73% level, and calculate the preliminary upper and lower control limits If the process is not currently stable and in control, use = the desired mean,, instead of to calculate limits. = x x 36

37 Steps In Creating Control Charts 3. Graph the sample means and ranges on their respective control charts and determine whether they fall outside the acceptable limits 4. Investigate points or patterns that indicate the process is out of control try to assign causes for the variation, address the causes, and then resume the process 5. Collect additional samples and, if necessary, revalidate the control limits using the new data 37

38 Setting Other Control Limits TABLE S6.2 DESIRED CONTROL LIMIT (%) Common z Values Z VALUE (STANDARD DEVIATION REQUIRED FOR DESIRED LEVEL OF CONFIDENCE)

39 Control Charts for Attributes For variables that are categorical Defective/nondefective, good/bad, yes/no, acceptable/unacceptable Measurement is typically counting defectives Charts may measure 1. Percent defective (p-chart) 2. Number of defects (c-chart) 39

40 Control Limits for p-charts Population will be a binomial distribution, but applying the central limit theorem allows us to assume a normal distribution for the sample statistics p is estimated by UCL p p z p LCL p p z p ˆ p p 1 p n where p mean fraction (percent) defective inthe samples z number of standard deviations p standard deviation of the sampling distribution n number of observations in each sample 40

41 p-chart for Data Entry SAMPLE NUMBER NUMBER OF ERRORS FRACTION DEFECTIVE SAMPLE NUMBER NUMBER OF ERRORS FRACTION DEFECTIVE

42 p-chart for Data Entry SAMPLE NUMBER p NUMBER OF ERRORS FRACTION DEFECTIVE SAMPLE NUMBER NUMBER OF ERRORS FRACTION DEFECTIVE ˆ p Total number of errors Total number of records examined 80 (100)(20).04 (.04)(1.04).02 (rounded up from.0196) UCL p p z ˆ p.04 3(.02) LCL p p z ˆ p.04 3(.02)

43 p-chart for Data Entry Fraction defective Sample number UCL p = 0.10 p = 0.04 LCL p =

44 p-chart for Data Entry Possible assignable causes present Fraction defective Sample number UCL p = 0.10 p = 0.04 LCL p =

45 Control Limits for c-charts Population will be a Poisson distribution, but applying the central limit theorem allows us to assume a normal distribution for the sample statistics c mean number of defects per unit c standard deviation of defects per unit Control limits (99.73%) c 3 c 45

46 c-chart for Cab Company c 54 complaints/9 days 6 complaints/day UCL c c 3 c LCL c c 3 c Number defective Day 6 7 UCL c = c = 6 LCL c =

47 Managerial Issues and Control Charts Three major management decisions: Select points in the processes that need SPC Determine the appropriate charting technique Set clear and specific SPC policies and procedures 47

48 Which Control Chart to Use TABLE S6.3 Helping You Decide Which Control Chart to Use VARIABLE DATA USING AN x-chart AND R-CHART 1. Observations are variables 2. Collect samples of n = 4, or n = 5, or more, each from a stable process and compute the mean for the x-chart and range for the R-chart 3. Track samples of n observations 48

49 Which Control Chart to Use TABLE S6.3 ATTRIBUTE DATA USING A P-CHART Helping You Decide Which Control Chart to Use 1. Observations are attributes that can be categorized as good or bad (or pass fail, or functional broken), that is, in two states 2. We deal with fraction, proportion, or percent defectives 3. There are several samples, with many observations in each ATTRIBUTE DATA USING A C-CHART 1. Observations are attributes whose defects per unit of output can be counted 2. We deal with the number counted, which is a small part of the possible occurrences 3. Defects may be: number of blemishes on a desk; flaws in a bolt of cloth; crimes in a year; broken seats in a stadium; typos in a chapter of this text; or complaints in a day 49

50 Patterns in Control Charts Upper control limit Target Lower control limit Normal behavior. Process is "in control." Figure S6.7 50

51 Patterns in Control Charts Upper control limit Target Figure S6.7 Lower control limit One plot out above (or below). Investigate for cause. Process is "out of control." 51

52 Patterns in Control Charts Upper control limit Target Figure S6.7 Lower control limit Trends in either direction, 5 plots. Investigate for cause of progressive change. 52

53 Patterns in Control Charts Upper control limit Target Figure S6.7 Lower control limit Two plots very near lower (or upper) control. Investigate for cause. 53

54 Patterns in Control Charts Upper control limit Target Lower control limit Run of 5 above (or below) central line. Investigate for cause. Figure S6.7 54

55 Patterns in Control Charts Upper control limit Target Lower control limit Erratic behavior. Investigate. Figure S6.7 55

56 Patterns in Control Charts Run test Identify abnormalities in a process Runs of 5 or 6 points above or below the target or centerline suggest assignable causes may be present Process may not be in statistical control There are a variety of run tests 56

57 Process Capability The natural variation of a process should be small enough to produce products that meet the standards required A process in statistical control does not necessarily meet the design specifications Process capability is a measure of the relationship between the natural variation of the process and the design specifications 57

58 Process Capability Ratio C p = Upper Specification Lower Specification 6 A capable process must have a C p of at least 1.0 Does not look at how well the process is centered in the specification range Often a target value of C p = 1.33 is used to allow for off-center processes Six Sigma quality requires a C p =

59 Process Capability Ratio Insurance claims process Process mean x = minutes Process standard deviation =.516 minutes Design specification = 210 ± 3 minutes C p = Upper Specification - Lower Specification 6 59

60 Process Capability Ratio Insurance claims process Process mean x = minutes Process standard deviation =.516 minutes Design specification = 210 ± 3 minutes C p = Upper Specification - Lower Specification 6 = = (.516) 60

61 Process Capability Ratio Insurance claims process Process mean x = minutes Process standard deviation =.516 minutes Design specification = 210 ± 3 minutes C p = Upper Specification - Lower Specification = = (.516) Process is capable 61

62 Process Capability Index Upper C pk = minimum of Specification x,, Limit Lower x Specification Limit A capable process must have a C pk of at least 1.0 A capable process is not necessarily in the center of the specification, but it falls within the specification limit at both extremes 62

63 Process Capability Index New Cutting Machine New process mean x =.250 inches Process standard deviation =.0005 inches Upper Specification Limit =.251 inches Lower Specification Limit =.249 inches 63

64 Process Capability Index New Cutting Machine New process mean x =.250 inches Process standard deviation =.0005 inches Upper Specification Limit =.251 inches Lower Specification Limit =.249 inches C pk = minimum of, (.251) (3)

65 Process Capability Index New Cutting Machine New process mean x =.250 inches Process standard deviation =.0005 inches Upper Specification Limit =.251 inches Lower Specification Limit =.249 inches (.251) C pk = minimum of, (3) (.249) (3)

66 Process Capability Index New Cutting Machine New process mean x =.250 inches Process standard deviation =.0005 inches Upper Specification Limit =.251 inches Lower Specification Limit =.249 inches (.251) C pk = minimum of, (3) (.249) (3).0005 Both calculations result in.001 C pk = = New machine is NOT capable 66

67 Interpreting C pk Figure S6.8 C pk = negative number C pk = zero C pk = between 0 and 1 C pk = 1 C pk > 1 Lower specification limit Upper specification limit 67

68 Acceptance Sampling Form of quality testing used for incoming materials or finished goods Take samples at random from a lot (shipment) of items Inspect each of the items in the sample Decide whether to reject the whole lot based on the inspection results Only screens lots; does not drive quality improvement efforts 68

69 Acceptance Sampling Form of quality testing used for incoming materials or finished goods Rejected lots can be: Take samples at random from a lot (shipment) of items 1. Returned to the supplier Inspect each of the items in the sample 2. Culled for defectives Decide whether to reject (100% the inspection) whole lot based on the inspection results 3. May be re-graded to a lower specification Only screens lots; does not drive quality improvement efforts 69

70 Operating Characteristic Curve Shows how well a sampling plan discriminates between good and bad lots (shipments) Shows the relationship between the probability of accepting a lot and its quality level 70

71 The "Perfect" OC Curve Keep whole shipment P(Accept Whole Shipment) Return whole shipment Cut-Off % Defective in Lot 71

72 An OC Curve = 0.05 producer's risk for AQL Figure S6.9 Probability of Acceptance = 0.10 Consumer's risk for LTPD AQL LTPD Good Indifference lots zone Bad lots Percent defective 72

73 AQL and LTPD Acceptable Quality Level (AQL) Poorest level of quality we are willing to accept Lot Tolerance Percent Defective (LTPD) Quality level we consider bad Consumer (buyer) does not want to accept lots with more defects than LTPD 73

74 Producer's and Consumer's Risks Producer's risk ( ) Probability of rejecting a good lot Probability of rejecting a lot when the fraction defective is at or above the AQL Consumer's risk ( ) Probability of accepting a bad lot Probability of accepting a lot when fraction defective is below the LTPD 74

75 OC Curves for Different Sampling Plans n = 50, c = 1 n = 100, c = 2 75

76 Average Outgoing Quality AOQ = (P d)(p a )(N n) N where P d P a = true percent defective of the lot = probability of accepting the lot N = number of items in the lot n = number of items in the sample 76

77 Average Outgoing Quality 1. If a sampling plan replaces all defectives 2. If we know the true incoming percent defective for the lot We can compute the average outgoing quality (AOQ) in percent defective The maximum AOQ is the highest percent defective or the lowest average quality and is called the average outgoing quality limit (AOQL) 77

78 Automated Inspection Modern technologies allow virtually 100% inspection at minimal costs Not suitable for all situations 78

79 SPC and Process Variability Lower specification limit Upper specification limit (a) Acceptance sampling (Some bad units accepted; the "lot" is good or bad) (b) Statistical process control (Keep the process "in control") Process mean, (c) C pk > 1 (Design a process that is in within specification) Figure S

Statistical Process Control

Statistical Process Control S6 Statistical Process Control PowerPoint presentation to accompany Heizer and Render Operations Management, 10e Principles of Operations Management, 8e PowerPoint slides by Jeff Heyl S6-1 Statistical

More information

STATISTICAL PROCESS CONTROL

STATISTICAL PROCESS CONTROL STATISTICAL PROCESS CONTROL STATISTICAL PROCESS CONTROL Application of statistical techniques to The control of processes Ensure that process meet standards SPC is a process used to monitor standards by

More information

Statistical Process Control SCM Pearson Education, Inc. publishing as Prentice Hall

Statistical Process Control SCM Pearson Education, Inc. publishing as Prentice Hall S6 Statistical Process Control SCM 352 Outline Statistical Quality Control Common causes vs. assignable causes Different types of data attributes and variables Central limit theorem SPC charts Control

More information

Statistical quality control (SQC)

Statistical quality control (SQC) Statistical quality control (SQC) The application of statistical techniques to measure and evaluate the quality of a product, service, or process. Two basic categories: I. Statistical process control (SPC):

More information

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size?

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size? ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Basic Statistics Sample size? Sample size determination: text section 2-4-2 Page 41 section 3-7 Page 107 Website::http://www.stat.uiowa.edu/~rlenth/Power/

More information

Learning Objectives 15.1 The Acceptance-Sampling Problem

Learning Objectives 15.1 The Acceptance-Sampling Problem Learning Objectives 5. The Acceptance-Sampling Problem Acceptance sampling plan (ASP): ASP is a specific plan that clearly states the rules for sampling and the associated criteria for acceptance or otherwise.

More information

Statistical Quality Control - Stat 3081

Statistical Quality Control - Stat 3081 Statistical Quality Control - Stat 3081 Awol S. Department of Statistics College of Computing & Informatics Haramaya University Dire Dawa, Ethiopia March 2015 Introduction Lot Disposition One aspect of

More information

ME 418 Quality in Manufacturing ISE Quality Control and Industrial Statistics CHAPTER 07 ACCEPTANCE SAMPLING PLANS.

ME 418 Quality in Manufacturing ISE Quality Control and Industrial Statistics CHAPTER 07 ACCEPTANCE SAMPLING PLANS. University of Hail College of Engineering ME 418 Quality in Manufacturing ISE 320 - Quality Control and Industrial Statistics CHAPTER 07 ACCEPTANCE SAMPLING PLANS Professor Mohamed Aichouni http://cutt.us/maichouni

More information

spc Statistical process control Key Quality characteristic :Forecast Error for demand

spc Statistical process control Key Quality characteristic :Forecast Error for demand spc Statistical process control Key Quality characteristic :Forecast Error for demand BENEFITS of SPC Monitors and provides feedback for keeping processes in control. Triggers when a problem occurs Differentiates

More information

Statistical Process Control

Statistical Process Control Statistical Process Control What is a process? Inputs PROCESS Outputs A process can be described as a transformation of set of inputs into desired outputs. Types of Measures Measures where the metric is

More information

Selection of Variable Selecting the right variable for a control chart means understanding the difference between discrete and continuous data.

Selection of Variable Selecting the right variable for a control chart means understanding the difference between discrete and continuous data. Statistical Process Control, or SPC, is a collection of tools that allow a Quality Engineer to ensure that their process is in control, using statistics. Benefit of SPC The primary benefit of a control

More information

Determination of cumulative Poisson probabilities for double sampling plan

Determination of cumulative Poisson probabilities for double sampling plan 2017; 3(3): 241-246 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Impact Factor: 5.2 IJAR 2017; 3(3): 241-246 www.allresearchjournal.com Received: 25-01-2017 Accepted: 27-02-2017 G Uma Assistant Professor,

More information

Sampling Inspection. Young W. Lim Wed. Young W. Lim Sampling Inspection Wed 1 / 26

Sampling Inspection. Young W. Lim Wed. Young W. Lim Sampling Inspection Wed 1 / 26 Sampling Inspection Young W. Lim 2018-07-18 Wed Young W. Lim Sampling Inspection 2018-07-18 Wed 1 / 26 Outline 1 Sampling Inspection Based on Background Single Sampling Inspection Scheme Simulating Sampling

More information

IE 316 Exam 1 Fall 2011

IE 316 Exam 1 Fall 2011 IE 316 Exam 1 Fall 2011 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Suppose the actual diameters x in a batch of steel cylinders are normally

More information

Assignment 7 (Solution) Control Charts, Process capability and QFD

Assignment 7 (Solution) Control Charts, Process capability and QFD Assignment 7 (Solution) Control Charts, Process capability and QFD Dr. Jitesh J. Thakkar Department of Industrial and Systems Engineering Indian Institute of Technology Kharagpur Instruction Total No.

More information

Better AOQL Formulas -- copyright 2016 by John Zorich; all rights reserved. Better AOQ Formulas

Better AOQL Formulas -- copyright 2016 by John Zorich; all rights reserved. Better AOQ Formulas Better AOQ Formulas John N. Zorich, Jr. Independent Consultant in Applied Statistics Houston, Texas, USA July 22, 2016 JOHNZORICH@YAHOO.COM WWW.JOHNZORICH.COM ABSTRACT: The classic formula for AOQ calculates

More information

IE 316 Exam 1 Fall 2011

IE 316 Exam 1 Fall 2011 IE 316 Exam 1 Fall 2011 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Suppose the actual diameters x in a batch of steel cylinders are normally

More information

274 C hap te rei g h t

274 C hap te rei g h t 274 C hap te rei g h t Sampling Distributions n most Six Sigma projects involving enumerative statistics, we deal with samples, not populations. We now consider the estimation of certain characteristics

More information

6. Process or Product Monitoring and Control

6. Process or Product Monitoring and Control 6. Process or Product Monitoring and Control 6. Process or Product Monitoring and Control This chapter presents techniques for monitoring and controlling processes and signaling when corrective actions

More information

STATISTICS ( CODE NO. 08 ) PAPER I PART - I

STATISTICS ( CODE NO. 08 ) PAPER I PART - I STATISTICS ( CODE NO. 08 ) PAPER I PART - I 1. Descriptive Statistics Types of data - Concepts of a Statistical population and sample from a population ; qualitative and quantitative data ; nominal and

More information

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11.

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11. Chapter 4 Statistics 45 CHAPTER 4 BASIC QUALITY CONCEPTS 1.0 Continuous Distributions.0 Measures of Central Tendency 3.0 Measures of Spread or Dispersion 4.0 Histograms and Frequency Distributions 5.0

More information

Sample Problems for the Final Exam

Sample Problems for the Final Exam Sample Problems for the Final Exam 1. Hydraulic landing assemblies coming from an aircraft rework facility are each inspected for defects. Historical records indicate that 8% have defects in shafts only,

More information

SMTX1014- PROBABILITY AND STATISTICS UNIT V ANALYSIS OF VARIANCE

SMTX1014- PROBABILITY AND STATISTICS UNIT V ANALYSIS OF VARIANCE SMTX1014- PROBABILITY AND STATISTICS UNIT V ANALYSIS OF VARIANCE STATISTICAL QUALITY CONTROL Introduction and Process Control Control Charts for X and R Control Charts for X and S p Chart np Chart c Chart

More information

Designing of Special Type of Double Sampling Plan for Compliance Testing through Generalized Poisson Distribution

Designing of Special Type of Double Sampling Plan for Compliance Testing through Generalized Poisson Distribution Volume 117 No. 12 2017, 7-17 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Designing of Special Type of Double Sampling Plan for Compliance Testing

More information

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test 1 Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test Learning Objectives After this section, you should be able to DESCRIBE the relationship between the significance level of a test, P(Type

More information

Process Performance and Quality

Process Performance and Quality Chapter 5 Process Performance and Quality Evaluating Process Performance Identify opportunity 1 Define scope 2 Document process 3 Figure 5.1 Implement changes 6 Redesign process 5 Evaluate performance

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

CERTAIN RESULTS ON MULTI DIMENSIONAL SAMPLING PLANS. The mixed sampling plans are two stage sampling plans in which variable

CERTAIN RESULTS ON MULTI DIMENSIONAL SAMPLING PLANS. The mixed sampling plans are two stage sampling plans in which variable CHAPTER III CERTAIN RESULTS ON MULTI DIMENSIONAL SAMPLING PLANS Focus The mixed sampling plans are two stage sampling plans in which variable and attribute quality characteristics are used in deciding

More information

Chapter 12: Inference about One Population

Chapter 12: Inference about One Population Chapter 1: Inference about One Population 1.1 Introduction In this chapter, we presented the statistical inference methods used when the problem objective is to describe a single population. Sections 1.

More information

Quality. Statistical Process Control: Control Charts Process Capability DEG/FHC 1

Quality. Statistical Process Control: Control Charts Process Capability DEG/FHC 1 Quality Statistical Process Control: Control Charts Process Capability DEG/FHC 1 SPC Traditional view: Statistical Process Control (SPC) is a statistical method of separating variation resulting from special

More information

Complete Solutions to Examination Questions Complete Solutions to Examination Questions 16

Complete Solutions to Examination Questions Complete Solutions to Examination Questions 16 Complete Solutions to Examination Questions 16 1 Complete Solutions to Examination Questions 16 1. The simplest way to evaluate the standard deviation and mean is to use these functions on your calculator.

More information

INTRODUCTION. In this chapter the basic concepts of Quality Control, Uses of Probability

INTRODUCTION. In this chapter the basic concepts of Quality Control, Uses of Probability CHAPTER I INTRODUCTION Focus In this chapter the basic concepts of Quality Control, Uses of Probability models in Quality Control, Objectives of the study, Methodology and Reviews on Acceptance Sampling

More information

Techniques for Improving Process and Product Quality in the Wood Products Industry: An Overview of Statistical Process Control

Techniques for Improving Process and Product Quality in the Wood Products Industry: An Overview of Statistical Process Control 1 Techniques for Improving Process and Product Quality in the Wood Products Industry: An Overview of Statistical Process Control Scott Leavengood Oregon State University Extension Service The goal: $ 2

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Final Year STATISTICS. Time : 03 Hours Maximum Marks : 100

M.Sc. (Final) DEGREE EXAMINATION, MAY Final Year STATISTICS. Time : 03 Hours Maximum Marks : 100 (DMSTT21) M.Sc. (Final) DEGREE EXAMINATION, MAY - 2013 Final Year STATISTICS Paper - I : Statistical Quality Control Time : 03 Hours Maximum Marks : 100 Answer any Five questions All questions carry equal

More information

a b *c d Correct Answer Reply: ASQ CQE A-90 Incorrect Answer Reply: = C *(0.40) *(0.60) =

a b *c d Correct Answer Reply: ASQ CQE A-90 Incorrect Answer Reply: = C *(0.40) *(0.60) = ConteSolutions 2017 OceanSpray June 7, 2017 Quality Tools Session 1 1-009 Question A process is producing material which is 40 percent defective. Four pieces are selected at random for inspection. What

More information

Aflatoxin Analysis: Uncertainty Statistical Process Control Sources of Variability. COMESA Session Five: Technical Courses November 18

Aflatoxin Analysis: Uncertainty Statistical Process Control Sources of Variability. COMESA Session Five: Technical Courses November 18 Aflatoxin Analysis: Uncertainty Statistical Process Control Sources of Variability COMESA Session Five: Technical Courses November 18 Uncertainty SOURCES OF VARIABILITY Uncertainty Budget The systematic

More information

Session XIV. Control Charts For Attributes P-Chart

Session XIV. Control Charts For Attributes P-Chart Session XIV Control Charts For Attributes P-Chart The P Chart The P Chart is used for data that consist of the proportion of the number of occurrences of an event to the total number of occurrences. It

More information

Percent

Percent Data Entry Spreadsheet to Create a C Chart Date Observations Mean UCL +3s LCL -3s +2s -2s +1s -1s CHART --> 01/01/00 2.00 3.00 8.20 0.00 6.46 0.00 4.73 0.00 01/02/00-3.00 8.20 0.00 6.46 0.00 4.73 0.00

More information

AP Final Review II Exploring Data (20% 30%)

AP Final Review II Exploring Data (20% 30%) AP Final Review II Exploring Data (20% 30%) Quantitative vs Categorical Variables Quantitative variables are numerical values for which arithmetic operations such as means make sense. It is usually a measure

More information

Standard Terminology Relating to Quality and Statistics 1

Standard Terminology Relating to Quality and Statistics 1 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards,

More information

Zero-Inflated Models in Statistical Process Control

Zero-Inflated Models in Statistical Process Control Chapter 6 Zero-Inflated Models in Statistical Process Control 6.0 Introduction In statistical process control Poisson distribution and binomial distribution play important role. There are situations wherein

More information

Using Minitab to construct Attribute charts Control Chart

Using Minitab to construct Attribute charts Control Chart Using Minitab to construct Attribute charts Control Chart Attribute Control Chart Attribute control charts are the charts that plot nonconformities (defects) or nonconforming units (defectives). A nonconformity

More information

Normalizing the I Control Chart

Normalizing the I Control Chart Percent of Count Trade Deficit Normalizing the I Control Chart Dr. Wayne Taylor 80 Chart of Count 30 70 60 50 40 18 30 T E 20 10 0 D A C B E Defect Type Percent within all data. Version: September 30,

More information

Statistical Quality Control - Stat 3081

Statistical Quality Control - Stat 3081 Statistical Quality Control - Stat 3081 Awol S. Department of Statistics College of Computing & Informatics Haramaya University Dire Dawa, Ethiopia March 2015 Introduction Industrial Statistics and Quality

More information

MAT 2377C FINAL EXAM PRACTICE

MAT 2377C FINAL EXAM PRACTICE Department of Mathematics and Statistics University of Ottawa MAT 2377C FINAL EXAM PRACTICE 10 December 2015 Professor: Rafal Kulik Time: 180 minutes Student Number: Family Name: First Name: This is a

More information

Chapter 10: Statistical Quality Control

Chapter 10: Statistical Quality Control Chapter 10: Statistical Quality Control 1 Introduction As the marketplace for industrial goods has become more global, manufacturers have realized that quality and reliability of their products must be

More information

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING LECTURE 1 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING INTERVAL ESTIMATION Point estimation of : The inference is a guess of a single value as the value of. No accuracy associated with it. Interval estimation

More information

Statistical Quality Design & Control Fall 2003 Odette School of Business University of Windsor

Statistical Quality Design & Control Fall 2003 Odette School of Business University of Windsor Name (print, please) ID Statistical Quality Design & Control 7-5 Fall Odette School of Business University of Windsor Midterm Exam Solution Wednesday, October 15, 5: 6:5 pm Instructor: Mohammed Fazle Baki

More information

SMAM Exam 1 Name

SMAM Exam 1 Name SMAM 314-04 Exam 1 Name 1. A chemical reaction was run several times using a catalyst to control the yield of an undesireable side product. Results in units of percentage yield are given for 24 runs. 4.4

More information

STATISTICAL HANDLING OF RADIOACTIVITY MEASUREMENTS

STATISTICAL HANDLING OF RADIOACTIVITY MEASUREMENTS STATISTICAL HANDLING OF RADIOACTIVITY MEASUREMENTS OBJECTIVES: 1. To learn how to obtain accurate and reliable measurements of radioactivity in samples, notwithstanding the randomness of radioactive decay.

More information

Introduction to Statistics

Introduction to Statistics Why Statistics? Introduction to Statistics To develop an appreciation for variability and how it effects products and processes. Study methods that can be used to help solve problems, build knowledge and

More information

Determining a Statistically Valid Sample Size: What Does FDA Expect to See?

Determining a Statistically Valid Sample Size: What Does FDA Expect to See? FOI Services Teleconference TC161130 Determining a Statistically Valid Sample Size: What Does FDA Expect to See? Presented by: Steven Walfish When: November 30, 2016 Eastern Standard Time: 1:00pm 2:30pm

More information

ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison

ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison ISyE 512 Chapter 7 Control Charts for Attributes Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering

More information

RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS

RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS International Journal of Mathematics and Computer Applications Research (IJMCAR) Vol.1, Issue 2 (2011) 28-40 TJPRC Pvt. Ltd., RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS

More information

Lecture Notes for BUSINESS STATISTICS - BMGT 571. Chapters 1 through 6. Professor Ahmadi, Ph.D. Department of Management

Lecture Notes for BUSINESS STATISTICS - BMGT 571. Chapters 1 through 6. Professor Ahmadi, Ph.D. Department of Management Lecture Notes for BUSINESS STATISTICS - BMGT 571 Chapters 1 through 6 Professor Ahmadi, Ph.D. Department of Management Revised May 005 Glossary of Terms: Statistics Chapter 1 Data Data Set Elements Variable

More information

6.4 THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION

6.4 THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION Section 6.4 The Hypergeometric Probability Distribution 6 1 6.4 THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION Preparing for This Section Before getting started, review the following: Classical Method (Section

More information

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000 Lecture 14 Analysis of Variance * Correlation and Regression Outline Analysis of Variance (ANOVA) 11-1 Introduction 11-2 Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA)

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) Outline Lecture 14 Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) 11-1 Introduction 11- Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Basic Statistics. Resources. Statistical Tables Murdoch & Barnes. Scientific Calculator. Minitab 17.

Basic Statistics. Resources. Statistical Tables Murdoch & Barnes. Scientific Calculator. Minitab 17. Basic Statistics Resources 1160 Statistical Tables Murdoch & Barnes Scientific Calculator Minitab 17 http://www.mathsisfun.com/data/ 1 Statistics 1161 The science of collection, analysis, interpretation

More information

EXAM 3 Math 1342 Elementary Statistics 6-7

EXAM 3 Math 1342 Elementary Statistics 6-7 EXAM 3 Math 1342 Elementary Statistics 6-7 Name Date ********************************************************************************************************************************************** MULTIPLE

More information

Chapter 1: Revie of Calculus and Probability

Chapter 1: Revie of Calculus and Probability Chapter 1: Revie of Calculus and Probability Refer to Text Book: Operations Research: Applications and Algorithms By Wayne L. Winston,Ch. 12 Operations Research: An Introduction By Hamdi Taha, Ch. 12 OR441-Dr.Khalid

More information

Modified Procedure for Construction and Selection of Sampling Plans for Variable Inspection Scheme

Modified Procedure for Construction and Selection of Sampling Plans for Variable Inspection Scheme International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Modified Procedure for Construction and Selection of Sampling Plans for Variable Inspection Scheme V. Satish Kumar, M. V. Ramanaiah,

More information

PASS Sample Size Software. Poisson Regression

PASS Sample Size Software. Poisson Regression Chapter 870 Introduction Poisson regression is used when the dependent variable is a count. Following the results of Signorini (99), this procedure calculates power and sample size for testing the hypothesis

More information

Unit 22: Sampling Distributions

Unit 22: Sampling Distributions Unit 22: Sampling Distributions Summary of Video If we know an entire population, then we can compute population parameters such as the population mean or standard deviation. However, we generally don

More information

Discrete probability distributions

Discrete probability distributions Discrete probability s BSAD 30 Dave Novak Fall 08 Source: Anderson et al., 05 Quantitative Methods for Business th edition some slides are directly from J. Loucks 03 Cengage Learning Covered so far Chapter

More information

2. Prove that x must be always lie between the smallest and largest data values.

2. Prove that x must be always lie between the smallest and largest data values. Homework 11 12.5 1. A laterally insulated bar of length 10cm and constant cross-sectional area 1cm 2, of density 10.6gm/cm 3, thermal conductivity 1.04cal/(cm sec C), and specific heat 0.056 cal/(gm C)(this

More information

Statistical Process Control

Statistical Process Control Chapter 3 Statistical Process Control 3.1 Introduction Operations managers are responsible for developing and maintaining the production processes that deliver quality products and services. Once the production

More information

Hypothesis Testing. ) the hypothesis that suggests no change from previous experience

Hypothesis Testing. ) the hypothesis that suggests no change from previous experience Hypothesis Testing Definitions Hypothesis a claim about something Null hypothesis ( H 0 ) the hypothesis that suggests no change from previous experience Alternative hypothesis ( H 1 ) the hypothesis that

More information

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics Mathematics Curriculum A. DESCRIPTION This is a full year courses designed to introduce students to the basic elements of statistics and probability. Emphasis is placed on understanding terminology and

More information

Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit. Air Academy Associates

Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit. Air Academy Associates Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit Mark Kiemele Air Academy Associates mkiemele@airacad.com ITEA 010 Symposium Glendale, AZ 13 September 010 INTRODUCTIONS

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

STATISTICAL PROCESS CONTROL - THE IMPORTANCE OF USING CALIBRATED MEASUREMENT EQUIPMENT. CASE STUDY

STATISTICAL PROCESS CONTROL - THE IMPORTANCE OF USING CALIBRATED MEASUREMENT EQUIPMENT. CASE STUDY Proceedings of the 6th International Conference on Mechanics and Materials in Design, Editors: J.F. Silva Gomes & S.A. Meguid, P.Delgada/Azores, 26-30 July 2015 PAPER REF: 5376 STATISTICAL PROCESS CONTROL

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: ECONOMICS COURSE: CBS 221 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the undergraduate

More information

Mechanical Engineering 101

Mechanical Engineering 101 Mechanical Engineering 101 University of California, Berkeley Lecture #1 1 Today s lecture Statistical Process Control Process capability Mean shift Control charts eading: pp. 373-383 .Precision 3 Process

More information

Section II: Assessing Chart Performance. (Jim Benneyan)

Section II: Assessing Chart Performance. (Jim Benneyan) Section II: Assessing Chart Performance (Jim Benneyan) 1 Learning Objectives Understand concepts of chart performance Two types of errors o Type 1: Call an in-control process out-of-control o Type 2: Call

More information

Known probability distributions

Known probability distributions Known probability distributions Engineers frequently wor with data that can be modeled as one of several nown probability distributions. Being able to model the data allows us to: model real systems design

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

Hypothesis Testing: One Sample

Hypothesis Testing: One Sample Hypothesis Testing: One Sample ELEC 412 PROF. SIRIPONG POTISUK General Procedure Although the exact value of a parameter may be unknown, there is often some idea(s) or hypothesi(e)s about its true value

More information

CH.9 Tests of Hypotheses for a Single Sample

CH.9 Tests of Hypotheses for a Single Sample CH.9 Tests of Hypotheses for a Single Sample Hypotheses testing Tests on the mean of a normal distributionvariance known Tests on the mean of a normal distributionvariance unknown Tests on the variance

More information

II. The Binomial Distribution

II. The Binomial Distribution 88 CHAPTER 4 PROBABILITY DISTRIBUTIONS 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKDSE Mathematics M1 II. The Binomial Distribution 1. Bernoulli distribution A Bernoulli eperiment results in any one of two possible

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6684/01 Edexcel GCE Statistics S2 Gold Level G3 Time: 1 hour 30 minutes Materials required for examination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

Name: Class: Date: ID: A. Find the mean, median, and mode of the data set. Round to the nearest tenth. c. mean = 9.7, median = 8, mode =15

Name: Class: Date: ID: A. Find the mean, median, and mode of the data set. Round to the nearest tenth. c. mean = 9.7, median = 8, mode =15 Class: Date: Unit 2 Pretest Find the mean, median, and mode of the data set. Round to the nearest tenth. 1. 2, 10, 6, 9, 1, 15, 11, 10, 15, 13, 15 a. mean = 9.7, median = 10, mode = 15 b. mean = 8.9, median

More information

IJMIE Volume 2, Issue 4 ISSN:

IJMIE Volume 2, Issue 4 ISSN: SELECTION OF MIXED SAMPLING PLAN WITH SINGLE SAMPLING PLAN AS ATTRIBUTE PLAN INDEXED THROUGH (MAPD, MAAOQ) AND (MAPD, AOQL) R. Sampath Kumar* R. Kiruthika* R. Radhakrishnan* ABSTRACT: This paper presents

More information

7.4 The c-chart (fixed sample size)

7.4 The c-chart (fixed sample size) 7.4 The c-chart (fixed sample size) Often there is greater concern for the total number of nonconformities (or defects) (C) than the fraction of nonconforming (defective) units (p). An inspection unit

More information

Probability Distributions

Probability Distributions CONDENSED LESSON 13.1 Probability Distributions In this lesson, you Sketch the graph of the probability distribution for a continuous random variable Find probabilities by finding or approximating areas

More information

Selection Procedures for SKSP-2 Skip-Lot Plans through Relative Slopes

Selection Procedures for SKSP-2 Skip-Lot Plans through Relative Slopes Global Journal of Mathematical Sciences: Theory and Practical. ISSN 0974-3200 Volume 4, Number 3 (2012), pp. 263-270 International Research Publication House http://www.irphouse.com Selection Procedures

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Final Year. Statistics. Paper I STATISTICAL QUALITY CONTROL. Answer any FIVE questions.

M.Sc. (Final) DEGREE EXAMINATION, MAY Final Year. Statistics. Paper I STATISTICAL QUALITY CONTROL. Answer any FIVE questions. (DMSTT ) M.Sc. (Final) DEGREE EXAMINATION, MAY 0. Final Year Statistics Paper I STATISTICAL QUALITY CONTROL Time : Three hours Maximum : 00 marks Answer any FIVE questions. All questions carry equal marks..

More information

This gives us an upper and lower bound that capture our population mean.

This gives us an upper and lower bound that capture our population mean. Confidence Intervals Critical Values Practice Problems 1 Estimation 1.1 Confidence Intervals Definition 1.1 Margin of error. The margin of error of a distribution is the amount of error we predict when

More information

Our Experience With Westgard Rules

Our Experience With Westgard Rules Our Experience With Westgard Rules Statistical Process Control Wikipedia Is a method of quality control which uses statistical methods. SPC is applied in order to monitor and control a process. Monitoring

More information

Bag RED ORANGE GREEN YELLOW PURPLE Candies per Bag

Bag RED ORANGE GREEN YELLOW PURPLE Candies per Bag Skittles Project For this project our entire class when out and bought a standard 2.17 ounce bag of skittles. Before we ate them, we recorded all of our data, the amount of skittles in our bag and the

More information

Continuous Improvement Toolkit. Probability Distributions. Continuous Improvement Toolkit.

Continuous Improvement Toolkit. Probability Distributions. Continuous Improvement Toolkit. Continuous Improvement Toolkit Probability Distributions The Continuous Improvement Map Managing Risk FMEA Understanding Performance** Check Sheets Data Collection PDPC RAID Log* Risk Analysis* Benchmarking***

More information

Introduction to Measurement Physics 114 Eyres

Introduction to Measurement Physics 114 Eyres 1 Introduction to Measurement Physics 114 Eyres 6/5/2016 Module 1: Measurement 1 2 Significant Figures Count all non-zero digits Count zeros between non-zero digits Count zeros after the decimal if also

More information

Solution: First note that the power function of the test is given as follows,

Solution: First note that the power function of the test is given as follows, Problem 4.5.8: Assume the life of a tire given by X is distributed N(θ, 5000 ) Past experience indicates that θ = 30000. The manufacturere claims the tires made by a new process have mean θ > 30000. Is

More information

Statistical Concepts. Constructing a Trend Plot

Statistical Concepts. Constructing a Trend Plot Module 1: Review of Basic Statistical Concepts 1.2 Plotting Data, Measures of Central Tendency and Dispersion, and Correlation Constructing a Trend Plot A trend plot graphs the data against a variable

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Statistical Methods: Introduction, Applications, Histograms, Ch

Statistical Methods: Introduction, Applications, Histograms, Ch Outlines Statistical Methods: Introduction, Applications, Histograms, Characteristics November 4, 2004 Outlines Part I: Statistical Methods: Introduction and Applications Part II: Statistical Methods:

More information

Construction and Evalution of Performance Measures for One Plan Suspension System

Construction and Evalution of Performance Measures for One Plan Suspension System International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 2, Number 3 (2010), pp. 225--235 International Research Publication House http://www.irphouse.com Construction and

More information

M.Sc FINAL YEAR (CDE) ASSIGNMENT SUBJECT : STATISTICS Paper-I : STATISTICAL INFERENCE

M.Sc FINAL YEAR (CDE) ASSIGNMENT SUBJECT : STATISTICS Paper-I : STATISTICAL INFERENCE M.Sc FINAL YEAR (CDE) ASSIGNMENT SUBJECT : STATISTICS Paper-I : STATISTICAL INFERENCE I. Give the correct choice of the Answer like a or b etc in the brackets provided against the question. Each question

More information

Construction of a Tightened-Normal-Tightened Sampling Scheme by Variables Inspection. Abstract

Construction of a Tightened-Normal-Tightened Sampling Scheme by Variables Inspection. Abstract onstruction of a ightened-ormal-ightened Sampling Scheme by Variables Inspection Alexander A ugroho a,, hien-wei Wu b, and ani Kurniati a a Department of Industrial Management, ational aiwan University

More information

8.1 Frequency Distribution, Frequency Polygon, Histogram page 326

8.1 Frequency Distribution, Frequency Polygon, Histogram page 326 page 35 8 Statistics are around us both seen and in ways that affect our lives without us knowing it. We have seen data organized into charts in magazines, books and newspapers. That s descriptive statistics!

More information