Crust-core transitions in neutron stars revisited

Size: px
Start display at page:

Download "Crust-core transitions in neutron stars revisited"

Transcription

1 Crust-core transitions in neutron stars revisited X. Viñas a, C. González-Boquera a, B.K. Sharma a,b M. Centelles a a Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain b Department of Sciences, Amarita Vishwa Vidyapeetham Ettimadai, Coimbatore, India NUSYM17, Caen (France), 4-7 September, 2017

2 The structure of a Neutron Star Core ρ > g/cm 3 Inner crust ρ > g/cm 3 Outer crust ρ > 10 4 g/cm 3

3 The inner crust. Introduction The structure of the inner crust consists of a Coulomb lattice of nuclear clusters permeated by the gases of free neutrons and free electrons. At the bottom layers of the inner crust the equilibrium nuclear shape may change from sphere, to cylinder, slab, tube (cylindrical hole) and bubble (spherical hole). These shapes are generically known as nuclear pasta. Full quantal Hatree-Fock calculations of the nuclear structures in the inner crust are complicated by the treatment of the neutron gas and the eventual need to deal with different geometries. The formation and the properties of nuclear pasta have been investigated in three dimensional Hartree-Fock calculations in cubic boxes that avoid assumptions of the geometry of the system. However, these calculations are highly time consuming and a detailed EOS fo the whole systemn is not yet available. Large scale calculations of the inner crust and nuclear pasta have been performed very often with semiclassical methods such as the Compressible Liquid Drop Model (CLDM) and the Thomas-Fermi (TF) approximation.

4 The Inner Crust, Self-consistent Thomas-Fermi approach The total energy of an esemble of neutrons, protons and electrons in a Wigner-Seitz cell of volume V c is given by: [ E = dv H (ρ n, ρ p) + E elec + E coul 3 ( ) 1/3 3 ( ) ] e 2 ρ 4/3 4/3 p + ρ e + m nρ n + m pρ p, 4 π where the nuclear energy density in the TF approach reads: H (ρ n, ρ p) = 2 3 ( 3π 2) 2/3 ρ 5/3 n (r)+ 2 3 ( 3π 2) 2/3 ρ 5/3 p (r)+v (ρ n(r), ρ p(r)) 2m n 5 2m p 5 The Coulomb energy density coming from the direct part of the proton-proton and electron-electron plus the proton-electron interaction is given by E coul = 1 2 (ρp(r) ρe) (Vp(r) Ve(r)) = 1 2 (ρp(r) ρe) e 2 ( ρp(r ) ) ρ r r e dr. assuming that the electrons are uniformly distributed in the cell

5 The Inner Crust, Variational equations We perform a fully variational calculation of the energy in the WS cell under the constraints of given average density ρ B in the WS cell of size R c and charge neutrality in the cell. Taking functional derivatives respect to the neutron, proton and electron densities one finds δh (ρ n, ρ p) δρ n + m n µ n = 0, δh (ρ n, ρ p) δρ p + V p(r) V e(r) k 2 F + m2 e V p(r) + V e(r) together with the β-equilibrium condition ( ) 1/3 3 e 2 ρp 1/3 (r) + m p µ p = 0, π µ e = m n m p + µ n µ p, imposed by the the aforementioned constraints. ( ) 1/3 3 e 2 ρ 1/3 e = µ e, π

6 The Inner Crust, Energy per particle From B.K. Sharma et al A&A 584, A103 (2015)

7 The Inner Crust, Energy per particle

8 The Inner Crust, Energy per particle

9 The Inner Crust, Size and Composition

10 The Inner Crust, Density Profiles

11 The Inner Crust, Density Profiles

12 The Inner Crust, Density Profiles

13 The Compressible Liquid Drop Model (I) CLDM was introduced by Baym, Bethe and Pethick, NPA (1971). See also Douchin and Haensel A&A (2001). Inside the WS cell we impose charge neutrality χρ p = ρ e = V /V c and fixed average density ρ B. The surface tension σ and neutron skin s n are taken form a self-consistent ETF calculation in semi-infinite nuclear matter Centelles et al NPA (1998).

14 The Compressible Liquid Drop Model (II) E cell = E = χe (n n, n p) + (1 χ) E (n d, 0) + 3χσ surf + n surf µ s V c R p + 3 ( 3π 2) 1/3 χ 4/3 np 4/3 + 4π 4 5 e2 Rp 2 npχ ( χ1/ ) χ E surf = Aσ surf + N surf µ s, where A is the area of the reference surface, σ surf the surface tension, and N surf and µ s are the number and the chemical potential of the neutrons adsorbed onto the reference surface. and N surf = 4πR 2 p 4πRp 2 σ surf = 4πRp 2 [ σs + 2 ] σ c R p [ sn + 2 bn 2 bp 2 + sn 2 ] (nn n d ) R p 2 where s nis the skin thickness and b nand b p the neutron and proton surface widths.

15 The Compressible Liquid Drop Model (III) Performing variations respect to n n, n p, n d, n surf, χ and R p with the constraints of fix average density n B = χ(n n + n p) + (1 χ)n d + n surf and charge neutrality n e = χn p one obtains the equilibrium conditions µ n µ p µ e = 8π 5 e2 R 2 p n p ( χ1/ χ ) (1) 4πR 2 p P i P o = 2 ( ) σ s + σc 4π R p R p 15 e2 Rp 2 np 2 (1 χ) (2) ( ) σ s + 4σc = 32π2 R p 15 e2 Rp 5 np ( χ1/ ) χ, (3) where µ n = E (n n, n p) / n n, µ p = E (n n, n p) / n p and µ e = E elec (n e) / n e are the neutron, proton and electron chemical potentials.

16 CLDM in other shapes The bulk nuclear and the electron contributions are shape independent. Surface and [ Coulomb energy densities can be written as ε surf = χd (ρn ρ R d )µ ns n + σ ] ε Coul = 4π 5 (ρper)2 f d (χ) where d is the [ dimensionality and f d (χ) = 5 1 (1 1 d+2 d 2 2 χ1 2/d ) + 1 χ] f 2 2 = 5 (ln χ) 8 χ The virial theorem (ε surf = 2ε Coul ) is valid for any phase. P i P 0 = (d 1) σ + 4π R 5 (ρper)2 f d (χ)) [ 2 + χ f d (χ) 1] d f d (χ) For holes (tubes and bubbles) one shall put a - sign in front of the surface term and replace χ by 1 χ.

17 CLDM versus TF

18 CLDM Predictions(I) ρ t = fm 3 L = MeV ρ t = fm 3 L = MeV

19 CLDM Predictions(II) ρ t = fm 3 L = MeV ρ t = fm 3 L = MeV

20 Conclusions (I) We have analyzed the shape phase transitions that appear in the inner crust of neutron stars using the Compressible Liquid Drop Model (CLDM) and the Thomas-Fermi (TF) approximation. These semiclassical methods allow to study in a rather simple way not only conventional spherical droplets but also another different geometries such as cylinders, plates, tubes (cylyndrical holes) and bubbles (spherical holes). The study of the different phases in the inner crust is very delicate from the numerical point of view due to the extremly small differences of the energy per baryon computed with the different geometries. Calculations performed with the CLDM are in good agreement with the predictions of the TF method. A detailed analysis of pasta phases in the inner crust allows to determine the transition density to a single liquid phase (core). Below a transition density ρ t fm 3 and slope of the symmetry energy L 45 MeV only droplets appear in the inner crust. Above these values of the transition density and the slope of the symmetry energy another pasta phases are also possible in the inner crust.

21 Reaching the crust-core interface fom the core side To find the inner edge of the neutron stars crust corresponding to the phase transition from homogeneous matter at high density to inhomogeneous matter at low density requires large scale calculations in the crust as the ones explained before. A well stablished approach is to search for the density at which the uniform liquid density becomes unstable against to small-amplitude density fluctuations, indicating the onset for the formation of nuclear clusters. There are basically two different methods, the thermodynamical method (S. Kubis PRC 70, (2004), 76, (2007)) and the dynamical method (Baym at al Ap.J 170,299 (1971) (See Jun Xu et al ApJ 697, 1549 (2009) for more details)

22 Methods for locaiting the inner edge of neutron star crust a) Thermodynamical method ( ) ( ) P µ v q c µ where v and q c are the volume and charge per baryon number µ = µ n µ p and P = P b + P e is the total pressure of the npe system. ρ 2 2 E b ρ + 2ρ E ( )( ) b 2 2 ρ E b 2 1 E b > 0 x p ρ b) Dynamical method, v x 2 p v(q) = (µ pp + D ppq 2 + 4πe2 ) q 2 4πe 2 q 2 µ ee + 4πe2 q 2 (µpn + D pnq 2 ) 2 > 0, µ nn + D nnq 2 where µ xy = µ x/ ρ y, D nn = D pp = 3 [t1(1 x1) t2(1 + x2]] and 16 D np = D pn = 1 [3t1(2 + x1) t2(2 + x2]] 16

23 Crust-core transition density and pressure Force ρ CLDM ρ TF ρ thermal ρ dynam SLy fm fm fm fm 3 MSL fm fm fm 3 SkX fm fm fm 3 UNEDF fm fm fm 3 Force P thermal P dynam SLy MeV fm MeV fm 3 MSL MeV fm MeV fm 3 SkX MeV fm MeV fm 3 UNEDF MeV fm MeV fm 3

24 Transition density and pressure versus slope of the symmetry energy

25 Global properties of the crust To determine the mass-radius relationship in a neutron star requires the knowledge of the EOS in the core but also in the crust. There are very few EOS computed in the crust and in the core with the same nuclear interaction. An approximated method, which avoids the explicit knowledge of the EOS in the crust, has been recently proposed by J.L.Zdunik, M.Fortin and P.Haensel A & A 599 A119 (2017) This method is based in neglecting the mass of the crust in front of the total mass of the star in the TOV equations in the region corresponding to the crust. Within this approximation the mass and size of the crust are given by analytical expressions that depend on the crust-core transition density and pressure as well as on the mass and radius of the core, which are obtained numerically by solving the TOV equations in this region of the neutron star.

26 Mass of the crust

27 Size of the crust

28 Mass-Radius relationship

29 Conclusions (II) We have estimated the crust-core transition density and pressure using the so-called thermodynamical and dynamical methods. The crust-core transition densities estimated with the dynamical method agree within a 10% with the CLDM predictions. The crust-core transition densities and pressures follow a decreasing trend with increasing values of the slope of the symmetry energy. This decreasing trend is roughlly linear, which is more clear for the transition densities than for the transition pressures. These two properties of the crust-core transition are the input used in an approximation, recently proposed, which allows to estimate the mass and the size of the crust of the neutron stars without an explicit knowledge of the EOS in this region. The mass and size of the crust corresponding to a neutron star of maximum mass are roughly constant with values solar masses and 300 m, respectively.

Symmetry energy and the neutron star core-crust transition with Gogny forces

Symmetry energy and the neutron star core-crust transition with Gogny forces Symmetry energy and the neutron star core-crust transition with Gogny forces Claudia Gonzalez-Boquera, 1 M. Centelles, 1 X. Viñas 1 and A. Rios 2 1 Departament de Física Quàntica i Astrofísica and Institut

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Structure and propermes of nuclear ma3er in compact stars

Structure and propermes of nuclear ma3er in compact stars Structure and propermes of nuclear ma3er in compact stars Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA) Toshitaka Tatsumi (Kyoto Univ.) Low-

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

An EOS implementation for astrophyisical simulations

An EOS implementation for astrophyisical simulations Introduction Formalism Neutron Stars CCSN An EOS implementation for astrophyisical simulations A S Schneider 1, L F Roberts 2, C D Ott 1 1 TAPIR, Caltech, Pasadena, CA 2 NSCL, MSU, East Lansing, MI East

More information

Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions

Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions F. Douchin 1, P. Haensel 1,2,3 1 Centre de Recherche Astronomique de Lyon, Ecole Normale Supérieure de Lyon, 46, allée d

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Viñas a M. Centelles a M. Warda a,b X. Roca-Maza a,c a Departament d Estructura i Constituents

More information

Inner crust composition and transition densities

Inner crust composition and transition densities Inner crust composition and transition densities W.G.Newton 1, Bao-An Li 1, J.R.Stone 2,3 M. Gearheart 1, J. Hooker 1 1 Texas A&M University - Commerce 2 University of Oxford, UK 3 Physics Division, ORNL,

More information

Constraining the nuclear EoS by combining nuclear data and GW observations

Constraining the nuclear EoS by combining nuclear data and GW observations Constraining the nuclear EoS by combining nuclear data and GW observations Michael McNeil Forbes Washington State University (Pullman) and University of Washington A Minimal Nuclear Energy Density Functional

More information

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta Phase transitions in dilute stellar matter Francesca Gulminelli & Adriana Raduta LPC Caen, France IFIN Bucharest Supernova remnant and neutron star in Puppis A (ROSAT x-ray) χ 1/2 Τ 10 12 Κ Motivation:

More information

User s Guide for Neutron Star Matter EOS

User s Guide for Neutron Star Matter EOS User s Guide for Neutron Star Matter EOS CQMC model within RHF approximation and Thomas-Fermi model Tsuyoshi Miyatsu (Tokyo Univ. of Sci.) Ken ichiro Nakazato (Kyushu University) May 1 2016 Abstract This

More information

Neutron star structure explored with a family of unified equations of state of neutron star matter

Neutron star structure explored with a family of unified equations of state of neutron star matter Neutron star structure explored with a family of unified equations of state of neutron star matter Department of Human Informatics, ichi Shukutoku University, 2-9 Katahira, Nagakute, 48-1197, Japan E-mail:

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Calculation of realistic electrostatic potentials in star crusts

Calculation of realistic electrostatic potentials in star crusts Calculation of realistic electrostatic potentials in star crusts Claudio Ebel 1 2 November 3, 212 1 Strong electric fields induced on a sharp stellar boundary I.N.Mishustin, C.Ebel, and W.Greiner, J.Phys.G

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress W.G.Newton 1, J.R.Stone 1,2 1 University of Oxford, UK 2 Physics Division, ORNL, Oak Ridge, TN Outline Aim Self-consistent EOS

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,b X. Viñas b M. Centelles b M. Warda b,c a INFN sezione di Milano. Via Celoria 16,

More information

Quantum simula+ons of nuclear pasta

Quantum simula+ons of nuclear pasta Quantum simula+ons of nuclear pasta William Newton, Sarah Cantu, Mike Gearheart, Farrukh Fa=oyev, Bao-An Li Texas A&M University-Commerce Jirina Rikovska Stone, Helena Pais, Alex Kaltenborn University

More information

Isospin asymmetry in stable and exotic nuclei

Isospin asymmetry in stable and exotic nuclei Isospin asymmetry in stable and exotic nuclei Xavier Roca Maza 6 May 2010 Advisors: Xavier Viñas i Gausí and Mario Centelles i Aixalà Motivation: Nuclear Chart Relative Neutron excess I (N Z )/(N + Z )

More information

A unified equation of state of dense matter and neutron star structure

A unified equation of state of dense matter and neutron star structure A&A 380, 151 167 (2001) DOI: 10.1051/0004-6361:20011402 c ESO 2001 Astronomy & Astrophysics A unified equation of state of dense matter and neutron star structure F. Douchin 1,2 and P. Haensel 3 1 Department

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Equation of State of Dense Matter

Equation of State of Dense Matter Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University April 25, 2017 Nuclear Astrophysics James.Lattimer@Stonybrook.edu Zero Temperature Nuclear Matter Expansions Cold, bulk, symmetric

More information

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

Thermodynamic properties of nuclear pasta in neutron star crusts

Thermodynamic properties of nuclear pasta in neutron star crusts Thermodynamic properties of nuclear pasta in neutron star crusts Gentaro Watanabe a, Kei Iida a,b, Katsuhiko Sato a,c a Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033,

More information

An extended liquid drop approach

An extended liquid drop approach An extended liquid drop approach Symmetry energy, charge radii and neutron skins Lex Dieperink 1 Piet van Isacker 2 1 Kernfysisch Versneller Instituut University of Groningen 2 GANIL, Caen, France ECT,

More information

arxiv: v1 [astro-ph] 20 Dec 2008

arxiv: v1 [astro-ph] 20 Dec 2008 Physics of Neutron Star Crusts arxiv:0812.3955v1 [astro-ph] 20 Dec 2008 Nicolas Chamel Institut d Astronomie et d Astrophysique Université Libre de Bruxelles CP226 Boulevard du Triomphe B-1050 Brussels,

More information

arxiv: v1 [astro-ph.sr] 9 Dec 2011

arxiv: v1 [astro-ph.sr] 9 Dec 2011 Symmetry energy, inner crust and global modeling 1 Chapter 1 arxiv:1112.2018v1 [astro-ph.sr] 9 Dec 2011 THE NUCLEAR SYMMETRY ENERGY, THE INNER CRUST, AND GLOBAL NEUTRON STAR MODELING W.G. Newton, M. Gearheart,

More information

Hartree-Fock-Bogoliubov atomic mass models and the description of the neutron-star crust

Hartree-Fock-Bogoliubov atomic mass models and the description of the neutron-star crust Hartree-Fock-Bogoliubov atomic mass models and the description of the neutron-star crust Nicolas Chamel in collaboration with S. Goriely and J. M. Pearson Research Associate FNRS Institute of Astronomy

More information

Neutron-star properties with unified equations of state

Neutron-star properties with unified equations of state Neutron-star properties with unified equations of state Nicolas Chamel in collaboration with J. M. Pearson, S. Goriely, A. F. Fantina Institute of Astronomy and Astrophysics Université Libre de Bruxelles,

More information

arxiv: v1 [nucl-th] 19 Feb 2013

arxiv: v1 [nucl-th] 19 Feb 2013 Pasta phases in neutron star studied with extended relativistic mean field models Neha Gupta and P.Arumugam Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand - 247 667, India To

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

Finite Range Force models for EOS

Finite Range Force models for EOS 1 / 30 Finite Range Force models for EOS INT 2012-2a Core-collapse supernova Yeunhwan Lim 1 (in collaboration with Prof. James M. Lattimer 1 ) 1 SUNY STONY BROOK, NY 11794 July 11, 2012 2 / 30 Table of

More information

Clusterized nuclear matter in PNS crust and the E sym

Clusterized nuclear matter in PNS crust and the E sym Clusterized nuclear matter in PNS crust and the E sym Ad. R. Raduta IFIN-HH Bucharest in collaboration with: Francesca Gulminelli (LPC-Caen, France) Francois Aymard (LPC-Caen, France) Clusterized nuclear

More information

Equation of state for supernovae and neutron stars

Equation of state for supernovae and neutron stars Equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹南開大学天津中国 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology,

More information

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars Francesca Gulminelli - LPC Caen, France Lecture II: nuclear physics in the neutron star crust and observational consequences

More information

Effects of U boson on the inner edge of neutron star crusts

Effects of U boson on the inner edge of neutron star crusts Effects of U boson on the inner edge of neutron star crusts Reporter : Hao Zheng ( 郑皓 ) ( INPAC & Department of Physics, Shanghai Jiao Tong University) Supervisor : Lie-Wen Chen Outline Neutron Star introduction

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Theoretical models for nuclear structure studies Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Terzo Incontro Nazionale di Fisica Nucleare LNF,

More information

Superfluidity in the inner crust of neutron stars

Superfluidity in the inner crust of neutron stars Superfluidity in the inner crust of neutron stars P. Avogadro S. Baroni P.F.Bortignon R.A.Broglia G. Colo F. Raimondi E. Vigezzi University of Milan, Italy INFN Sez. Milano F. Barranco University of Sevilla,

More information

Covariance analysis for Nuclear Energy Density Functionals

Covariance analysis for Nuclear Energy Density Functionals Covariance analysis for Nuclear Energy Density Functionals Xavier Roca-Maza Università degli Studi di Milano and INFN Information and statistics in nuclear experiment and theory ISNET-3 16 20 November

More information

Fermi sea. λ F. (non-interacting particles)

Fermi sea. λ F. (non-interacting particles) Fermi sea λ F F (non-interacting particles) a Fermi sea λf Fermi sea λf a Fermi sea λf a a Fermi sea λf Question: What is the most favorable arrangement of these two spheres? a R=? a Answer: The energy

More information

Neutron-star matter within the energy-density functional theory and neutron-star structure

Neutron-star matter within the energy-density functional theory and neutron-star structure Institut d Astronomie et d Astrophysique Université Libre de Bruxelles Neutron-star matter within the energy-density functional theory and neutron-star structure Anthea F. Fantina (afantina@ulb.ac.be)

More information

Neutron Skins with α-clusters

Neutron Skins with α-clusters Neutron Skins with α-clusters GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Compact star crust: relativistic versus Skyrme nuclear models

Compact star crust: relativistic versus Skyrme nuclear models Problem How do relativistic models, used to build EoS of compact stars, behave at subsaturation densities? EoS at subsaturation densities/crust of compact stars: how do relativistic and Skyrme nuclear

More information

Few-particle correlations in nuclear systems

Few-particle correlations in nuclear systems Trento, 9. 4. 2014 Few-particle correlations in nuclear systems Gerd Röpke, Rostock Outline Quantum statistical approach to nuclear systems at subsaturation densities, spectral function Correlations and

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Symmetry Energy. in Structure and in Central and Direct Reactions

Symmetry Energy. in Structure and in Central and Direct Reactions : in Structure and in Central and Direct Reactions Pawel Natl Superconducting Cyclotron Lab, US The 12 th International Conference on Nucleus-Nucleus Collisions June 21-26, 2015, Catania, Italy Bulk Properties

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen 申虹 In collaboration with Nankai University, Tianjin, China 南開大学 天津 中国 H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College

More information

IAS and Skin Constraints. Symmetry Energy

IAS and Skin Constraints. Symmetry Energy IS and Skin Constraints on the Pawel Natl Superconducting Cyclotron Lab, US 32 nd International Workshop on Nuclear July, 2013, East Lansing, Michigan ρ in Nuclear Mass Formula Textbook Bethe-Weizsäcker

More information

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust

Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Impact of Terrestrial Facilities on the Structure of the Neutron Star Crust Jorge Piekarewicz Florida State University The Neutron Star Crust and Surface (INT - June, 2007) My Collaborators: C.J. Horowitz,

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

Equation of state for compact stars

Equation of state for compact stars Equation of state for compact stars Lecture 1 Pawe l Haensel Copernicus Astronomical Center (CAMK) Warszawa, Poland haensel@camk.edu.pl IHP Paris, October 30th, 2006 Pawe l Haensel (CAMK) EOS for compact

More information

Equation-of-State of Nuclear Matter with Light Clusters

Equation-of-State of Nuclear Matter with Light Clusters Equation-of-State of Nuclear Matter with Light Clusters rmann Wolter Faculty of Physics, University of Munich, D-878 Garching, Germany E-mail: hermann.wolter@lmu.de The nuclear equation-of-state (EoS)

More information

Physics 9 WS E3 (rev. 1.0) Page 1

Physics 9 WS E3 (rev. 1.0) Page 1 Physics 9 WS E3 (rev. 1.0) Page 1 E-3. Gauss s Law Questions for discussion 1. Consider a pair of point charges ±Q, fixed in place near one another as shown. a) On the diagram above, sketch the field created

More information

arxiv: v1 [nucl-th] 1 Jun 2011

arxiv: v1 [nucl-th] 1 Jun 2011 Thomas-Fermi approximation to pairing in finite Fermi systems. The weak coupling regime X. Viñas, P. Schuck 2,3, and M. Farine 4 Departament d Estructura i Constituents de la Matèria and Institut de Ciències

More information

arxiv: v1 [nucl-th] 26 Jun 2011

arxiv: v1 [nucl-th] 26 Jun 2011 Study of the neutron skin thickness of 208 Pb in mean field models X. Roca-Maza 1,2, M. Centelles 1, X. Viñas 1 and M. Warda 1, 1 Departament d Estructura i Constituents de la Matèria and Institut de Ciències

More information

Clusters in Nuclear Matter

Clusters in Nuclear Matter Clusters in Nuclear Matter Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke (Universität Rostock) Thomas

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

Symmetry energy within the BHF approach

Symmetry energy within the BHF approach Symmetry energy within the BHF approach Isaac Vidaña 1, Constança Providência 1, A. Polls 3 and Arnau Rios 3 1 Centro de Física Computacional. Deparment of Physics, University of Coimbra, PT-34-516 Coimbra

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? Charge density distribution of a nucleus from electron scattering SLAC: 21 GeV e s ; λ ~ 0.1 fm (to first order assume that this is also the matter distribution

More information

arxiv:astro-ph/ v2 24 Apr 2001

arxiv:astro-ph/ v2 24 Apr 2001 Neutron Star Structure and the Neutron Radius of 208 Pb C. J. Horowitz Nuclear Theory Center and Dept. of Physics, Indiana University, Bloomington, IN 47405 J. Piekarewicz Department of Physics Florida

More information

Strange Stars: Can Their Crust Reach the Neutron Drip Density?

Strange Stars: Can Their Crust Reach the Neutron Drip Density? Chin. J. Astron. Astrophys. Vol. 3 (2003), No. 6, 535 542 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Strange Stars: Can Their Crust Reach the Neutron

More information

Current Status of Equation of State in Nuclear Matter and Neutron Stars

Current Status of Equation of State in Nuclear Matter and Neutron Stars Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone 1,2, J.C. Miller 1,3 and W.G.Newton 1 1 Oxford University,

More information

Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains

Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains NUCLEAR THEORY, Vol. 36 (17) eds. M. Gaidarov, N. Minkov, Heron Press, Sofia Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains A.N. Antonov 1, D.N. Kadrev

More information

Physics 2212 GH Quiz #2 Solutions Spring 2015

Physics 2212 GH Quiz #2 Solutions Spring 2015 Physics 2212 GH uiz #2 Solutions Spring 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0 = 8.854 10

More information

Relativistic Feynman-Metropolis-Teller Treatment at Finite Temperatures and its Application to WDs

Relativistic Feynman-Metropolis-Teller Treatment at Finite Temperatures and its Application to WDs Relativistic Feynman-Metropolis-Teller Treatment at Finite Temperatures and its Application to WDs CSQCDIII Sheyse Martins de Carvalho* In collaboration with: J. Rueda and R. Ruffini ICRANet, University

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

Nobutoshi Yasutake ( ) Chiba Institute of Technology

Nobutoshi Yasutake ( ) Chiba Institute of Technology Beijin 21th. Oct. (2014) Nobutoshi Yasutake ( ) Chiba Institute of Technology Phys.Rev.C, (2014), 89, 5803 NY, R. Łastowiecki, D. Blaschke(Wroclow univ.), S. Benic(Zagreb univ.), T. Maruyama(JAEA), T.Tatsumi(Kyoto

More information

THE NEUTRON STAR CRUST AND SURFACE WORKSHOP. Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars

THE NEUTRON STAR CRUST AND SURFACE WORKSHOP. Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars THE NEUTRON STAR CRUST AND SURFACE WORKSHOP Seattle 25-29 June 2007 Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars P. Avogadro, F.Barranco, R.A.Broglia, E.Vigezzi

More information

Colloids as nucleons

Colloids as nucleons Colloids as nucleons Willem Kegel & Jan Groenewold Van t Hoff Laboratory Utrecht University The Netherlands Finite-size equilibrium structures macroscopic phase separation Equilibrium clusters & periodic

More information

The Complete APR Equation of State

The Complete APR Equation of State The Complete Equation of State C. Constantinou IKP, FZ Jülich 4 May 6, Athens JINA-CEE International Symposium on Neutron Stars in Multi-Messenger Era: Prospects and Challenges Collaborators: B. Muccioli,

More information

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt Hyperons and Resonances in Nuclei and Neutron Stars H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt Agenda: Hyperon interactions and hypernuclei Neutron star matter The hyperonization

More information

neutron star basics λ. λ

neutron star basics λ. λ neutron star basics A solar mass consists of ~ 10 57 nucleons. If they are separated by typical inter-nucleon distances, what would the radius of the volume containing them be? neutron star basics ( )

More information

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars A new equation of state with abundances of all nuclei in core collapse simulations of massive stars 1, Kohsuke Sumiyoshi 2, Shoichi Yamada 1,3, Hideyuki Suzuki 4 1 Department of Science and Engineering,

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Impact of fission on r-process nucleosynthesis within the energy density functional theory Impact of fission on r-process nucleosynthesis within the energy density functional theory Samuel A. Giuliani, G. Martínez Pinedo, L. M. Robledo, M.-R. Wu Technische Universität Darmstadt, Darmstadt, Germany

More information

VIETNAM ATOMIC ENERGY INSTITUTE INSTITUTE FOR NUCLEAR SCIENCE AND TECHNOLOGY

VIETNAM ATOMIC ENERGY INSTITUTE INSTITUTE FOR NUCLEAR SCIENCE AND TECHNOLOGY VIETNAM ATOMIC ENEGY INSTITUTE INSTITUTE FO NUCLEA SCIENCE AND TECHNOLOGY Address: 179 - Hoang Quoc Viet, Nghia Do, Cau Giay - Hanoi - Vietnam Tel: 84-4-37564926; Fax.: 84-4-38363295 Website: http://www.inst.gov.vn;

More information

arxiv: v1 [nucl-th] 30 Mar 2015

arxiv: v1 [nucl-th] 30 Mar 2015 Compact Stars in the QCD Phase Diagram IV (CSQCD IV) September 26-30, 2014, Prerow, Germany http://www.ift.uni.wroc.pl/~csqcdiv Core-collapse supernova matter: light clusters, pasta phase and phase transitions

More information

Fermionic molecular dynamics

Fermionic molecular dynamics Fermionic molecular dynamics Can it cook nuclear pasta? K. Vantournhout H. Feldmeier GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany NuSTAR seminar April 25, 2012 Klaas Vantournhout

More information

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010 Three-body forces in nucleonic matter Kai Hebeler (TRIUMF) INT, Seattle, March 11, 21 TRIUMF A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl Weakly-Bound Systems in Atomic and Nuclear Physics

More information

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.)

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.) Chapter 21: Gauss law Tuesday September 13 th LABS START THIS WEEK Quick review of Gauss law The flux of a vector field The shell theorem Gauss law for other symmetries A uniformly charged sheet A uniformly

More information

arxiv: v1 [nucl-th] 17 Dec 2008

arxiv: v1 [nucl-th] 17 Dec 2008 The pasta phase within density dependent hadronic models S. S. Avancini, 1 L. Brito, 2 J.R.Marinelli, 1 D.P.Menezes, 1 M.M.W. de Moraes, 1 C. Providência, 2 and A.M.Santos 2 1 Depto de Física - CFM - Universidade

More information

arxiv:nucl-th/ v1 4 Oct 1993

arxiv:nucl-th/ v1 4 Oct 1993 Experimental nuclear masses and the ground state of cold dense matter arxiv:nucl-th/9310003v1 4 Oct 1993 P. Haensel * and B. Pichon D.A.R.C. - U.P.R. 176 du C.N.R.S., Observatoire de Paris, Section de

More information

Fermi-Liquid Theory for Strong Interactions

Fermi-Liquid Theory for Strong Interactions Fermi-Liquid Theory for Strong Interactions H. Lenske Institut für Theoretische Physik, U. Giessen The theorist s dream from asymptotic freedom to confinement to the nuclear shell model Nucleus ~ cold,

More information

Liquid drop model binding energy of spherical and semi-spherical atomic clusters

Liquid drop model binding energy of spherical and semi-spherical atomic clusters Liquid drop model binding energy of spherical and semi-spherical atomic clusters D.N. Poenaru, R.A. Gherghescu, A.V. Solov yov, W. Greiner Horia Hulubei National Institute of Physics and Nuclear Engineering,

More information

arxiv:nucl-th/ v1 21 Mar 2001

arxiv:nucl-th/ v1 21 Mar 2001 Relativistic Hartree-Bogoliubov Calculation of Specific Heat of the Inner Crust of Neutron Stars arxiv:nucl-th/5v Mar akuya Nakano and Masayuki Matsuzaki Department of Physics, Kyushu University, Fukuoka

More information

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Stellar and terrestrial observations from the mean field QCD model MANJARI BAGCHI PDF, TIFR, Mumbai MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Mira & Jishnu Dey, Presidency College,

More information

Symmetry energy of dilute warm nuclear matter

Symmetry energy of dilute warm nuclear matter Symmetry energy of dilute warm nuclear matter J. B. Natowitz, G. Röpke, 1 S. Typel, 2,3 D. Blaschke, 4, 5 A. Bonasera, 6 K. Hagel, T. Klähn, 4, 7 S. Kowalski, L. Qin, S. Shlomo, R. Wada, and H. H. Wolter

More information

Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains

Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains Bulg. J. Phys. 44 (2017) S27 S38 Temperature Dependence of the Symmetry Energy and Neutron Skins in Ni, Sn, and Pb Isotopic Chains A.N. Antonov 1, D.N. Kadrev 1, M.K. Gaidarov 1, P. Sarriguren 2, E. Moya

More information

Phase Transitions and the Casimir Effect in Neutron Stars

Phase Transitions and the Casimir Effect in Neutron Stars University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2017 Phase Transitions and the Casimir Effect in Neutron Stars William Patrick Moffitt

More information

3. Introductory Nuclear Physics 1; The Liquid Drop Model

3. Introductory Nuclear Physics 1; The Liquid Drop Model 3. Introductory Nuclear Physics 1; The Liquid Drop Model Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number is Z and the nucleus is written

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

PROBLEM 2 (25 pts) A spherically symmetric electric field r

PROBLEM 2 (25 pts) A spherically symmetric electric field r POBLEM 1 (8 pts) Answer the following questions, justifying your answers with one short sentence. (a) A house has two lightning rods on its roof, one with a sphere on the end, the other with a pointy tip.

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I École Joliot-Curie 27 September - 3 October 2009 Lacanau - France Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I Marcella

More information

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Landau Fermi liquid theory in nuclear & many-body theory May 22 nd 26 th 2017,

More information