A Significance Test for the Lasso

Size: px
Start display at page:

Download "A Significance Test for the Lasso"

Transcription

1 A Significance Test for the Lasso Lockhart R, Taylor J, Tibshirani R, and Tibshirani R Ashley Petersen May 14,

2 Last time Problem: Many clinical covariates which are important to a certain medical outcome? Want to choose the important variables and say how important these variables are Bad solution: Forward stepwise regression very anti-conservative p-values Better solution: Lasso with p-values from newly proposed covariance test statistic 2

3 Framework Consider regression setup with outcome vector y R n with covariate matrix X R n p and y = βx + ɛ with ɛ N(0, σ 2 I ). The lasso estimator is obtained by finding β that minimizes where λ is the lasso penalty. 1 2 y X β 2 + λ p β i, i=1 3

4 Lasso solution path (λ 1 > λ 2 > λ 3 > λ 4 >...) Coefficients λ 1 λ 2 λ 3 λ 4 constraint ˆβ lasso = arg min β 1 2 y X β 2 + λ p β i i=1 4

5 Obtain p-value for covariate entering the model Coefficients λ 1 λ 2 λ 3 λ 4 constraint 5

6 Form of test statistic 1 Forward stepwise regression: Lasso: RSS null RSS σ 2 = y ŷ null 2 y ŷ 2 σ [ 2 y T ŷ y T ] ŷ = 2 null + ŷ null 2 ŷ 2 σ 2 T k = y T ŷ y T ŷ null σ 2 σ 2 1 Taking σ 2 as known (for now) 6

7 What is ŷ? testing that variable that enters at λ 3 has β = 0 ŷ = X ˆβ(λ 4 ) Coefficients λ 1 λ 2 λ 3 λ 4 constraint 7

8 What about ŷ null? testing that variable that enters at λ 3 has β = 0 ŷ = X ˆβ(λ 4 ) ŷ null = X null ˆβ null (λ 4 ) Coefficients λ 1 λ 2 λ 3 λ 4 constraint 8

9 What about ŷ null? testing that variable that enters at λ 3 has β = 0 ŷ = X ˆβ(λ 4 ) ŷ null = X null ˆβ null (λ 4 ) Coefficients λ 1 λ 2 λ 3 λ 4 constraint 8

10 Putting this together The covariance test statistic for testing the predictor that enters at the kth step is T k = y T ŷ y T ŷ null σ 2 = y T X ˆβ(λ k+1 ) y T X null ˆβ null (λ k+1 ) σ 2. 9

11 10 What exactly is the null? Under the global null (β = 0), then T 1 d Exp(1) T 2 d Exp(1/2) T 3 d Exp(1/3). for orthogonal predictor matrix X. Asymptotic distributions are stochastically smaller for general X.

12 Does it work for finite samples? Simulation of distribution of test statistics for first covariate to enter model under global null (β = 0) n = 100, p = 10 Forward Stepwise Lasso Test statistic Test statistic Chi squared on 1 df Exp(1) 11

13 Does it work for finite samples? Simulation of distribution of test statistics for first covariate to enter model under global null (β = 0) n = 100, p = 10 Forward Stepwise Lasso Test statistic Test statistic Chi squared on 1 df Exp(1) 11

14 12 What exactly is the null? Under the weaker null where there are k 0 truly active covariates (and they have entered the model), then T k0 +1 d Exp(1) T k0 +2 d Exp(1/2) T k0 +3 d Exp(1/3) for orthogonal predictor matrix X. Asymptotic distributions are stochastically smaller for general X..

15 13 See, it works... Simulation of distribution of test statistics when true β has three non-zero components n = 100, p = 10 F 1 (p) = θ log(1 p) for Exp(θ) 4th predictor 5th predictor 6th predictor Test statistic Test statistic Test statistic Exp(1) Exp(1) Exp(1)

16 14 Simulation setup Distribution of T 1 under global null (β = 0) n = 100 and p (10, 50, 200) Varying correlation structure of predictors with ρ (0, 0.2, 0.4, 0.6, 0.8) Exchangeable AR(1) Block diagonal Mean, variance, and tail probability of distribution

17 The authors results 15

18 Some commentary... I don t have any applied or technical comments on the paper at hand (except for feeling strongly that Tables 2 and 3 should really really really be made into a graph... do we really care that a certain number is ?) Andrew Gelman 2 2 via his blog 16

19 The authors results 17

20 18 Sampling distribution of simulation results 100 replications of the simulation for given parameters Note large variance of each distribution Larger number of replications needed for accurate estimate n=100, p=10, rho=0 n=100, p=10, rho=0 n=100, p=10, rho=0 Frequency Frequency Frequency Mean Variance Tail probability

21 Lots of sampling distributions 19

22 20 My results mean Exchangeable correlation AR(1) correlation Block diagonal correlation mean p=10 p=50 p=200 mean p=10 p=50 p=200 mean p=10 p=50 p= ρ ρ ρ

23 21 My results variance Exchangeable correlation AR(1) correlation Block diagonal correlation variance p=10 p=50 p=200 variance p=10 p=50 p=200 variance p=10 p=50 p= ρ ρ ρ

24 22 My results tail probability Exchangeable correlation AR(1) correlation Block diagonal correlation tail probability p=10 p=50 p=200 tail probability p=10 p=50 p=200 tail probability p=10 p=50 p= ρ ρ ρ

25 23 What to do when σ 2 is unknown? (n > p) Estimate in the usual way: ˆσ 2 = RSS n p = y X ˆβ LS 2 n p Asymptotic distribution is now F 2,n p Numerator is Exp(1) = χ 2 2 /2 Denominator is χ 2 n p /(n p) Numerator and denominator independent

26 24 What to do when σ 2 is unknown? (n p) Estimate from least squares fit from model selected by cross-validation No rigorous theory here (fingers crossed!)

27 25 What s the big idea? Use covariance test statistic to obtain p-value for covariates as they enter the lasso model Compare to asymptotic distribution Exp(1) to obtain p-values Reasonable performance in finite samples Possibly extend this to obtaining inference for all coefficients from a model for a specific lasso penalty

28 26 What s next! To do: Obtain data for p > n case (HIV data) Finish simulations Next time: Real data examples More on assumptions and theory

A Significance Test for the Lasso

A Significance Test for the Lasso A Significance Test for the Lasso Lockhart R, Taylor J, Tibshirani R, and Tibshirani R Ashley Petersen June 6, 2013 1 Motivation Problem: Many clinical covariates which are important to a certain medical

More information

A significance test for the lasso

A significance test for the lasso 1 Gold medal address, SSC 2013 Joint work with Richard Lockhart (SFU), Jonathan Taylor (Stanford), and Ryan Tibshirani (Carnegie-Mellon Univ.) Reaping the benefits of LARS: A special thanks to Brad Efron,

More information

A significance test for the lasso

A significance test for the lasso 1 First part: Joint work with Richard Lockhart (SFU), Jonathan Taylor (Stanford), and Ryan Tibshirani (Carnegie-Mellon Univ.) Second part: Joint work with Max Grazier G Sell, Stefan Wager and Alexandra

More information

Post-selection Inference for Forward Stepwise and Least Angle Regression

Post-selection Inference for Forward Stepwise and Least Angle Regression Post-selection Inference for Forward Stepwise and Least Angle Regression Ryan & Rob Tibshirani Carnegie Mellon University & Stanford University Joint work with Jonathon Taylor, Richard Lockhart September

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

Post-selection inference with an application to internal inference

Post-selection inference with an application to internal inference Post-selection inference with an application to internal inference Robert Tibshirani, Stanford University November 23, 2015 Seattle Symposium in Biostatistics, 2015 Joint work with Sam Gross, Will Fithian,

More information

Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities

Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities Inference Conditional on Model Selection with a Focus on Procedures Characterized by Quadratic Inequalities Joshua R. Loftus Outline 1 Intro and background 2 Framework: quadratic model selection events

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club 36-825 1 Introduction Jisu Kim and Veeranjaneyulu Sadhanala In this report

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich Submitted to the Annals of Statistics DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich We congratulate Richard Lockhart, Jonathan Taylor, Ryan

More information

Post-Selection Inference

Post-Selection Inference Classical Inference start end start Post-Selection Inference selected end model data inference data selection model data inference Post-Selection Inference Todd Kuffner Washington University in St. Louis

More information

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Selection Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

1 Least Squares Estimation - multiple regression.

1 Least Squares Estimation - multiple regression. Introduction to multiple regression. Fall 2010 1 Least Squares Estimation - multiple regression. Let y = {y 1,, y n } be a n 1 vector of dependent variable observations. Let β = {β 0, β 1 } be the 2 1

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Shrinkage Methods: Ridge and Lasso

Shrinkage Methods: Ridge and Lasso Shrinkage Methods: Ridge and Lasso Jonathan Hersh 1 Chapman University, Argyros School of Business hersh@chapman.edu February 27, 2019 J.Hersh (Chapman) Ridge & Lasso February 27, 2019 1 / 43 1 Intro and

More information

Dimension Reduction Methods

Dimension Reduction Methods Dimension Reduction Methods And Bayesian Machine Learning Marek Petrik 2/28 Previously in Machine Learning How to choose the right features if we have (too) many options Methods: 1. Subset selection 2.

More information

A significance test for the lasso

A significance test for the lasso A significance test for the lasso Richard Lockhart 1 Jonathan Taylor 2 Ryan J. Tibshirani 3 Robert Tibshirani 2 arxiv:1301.7161v1 [math.st] 30 Jan 2013 1 Simon Fraser University, 2 Stanford University,

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression 22s:52 Applied Linear Regression Ch. 4 (sec. and Ch. 5 (sec. & 4: Logistic Regression Logistic Regression When the response variable is a binary variable, such as 0 or live or die fail or succeed then

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

BIOS 2083 Linear Models c Abdus S. Wahed

BIOS 2083 Linear Models c Abdus S. Wahed Chapter 5 206 Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

General Linear Model: Statistical Inference

General Linear Model: Statistical Inference Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter 4), least

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

Covariance test Selective inference. Selective inference. Patrick Breheny. April 18. Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/20

Covariance test Selective inference. Selective inference. Patrick Breheny. April 18. Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/20 Patrick Breheny April 18 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/20 Introduction In our final lecture on inferential approaches for penalized regression, we will discuss two rather

More information

Model Checking and Improvement

Model Checking and Improvement Model Checking and Improvement Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Model Checking All models are wrong but some models are useful George E. P. Box So far we have looked at a number

More information

ECONOMETRICS II, FALL Testing for Unit Roots.

ECONOMETRICS II, FALL Testing for Unit Roots. ECONOMETRICS II, FALL 216 Testing for Unit Roots. In the statistical literature it has long been known that unit root processes behave differently from stable processes. For example in the scalar AR(1)

More information

Linear Regression (9/11/13)

Linear Regression (9/11/13) STA561: Probabilistic machine learning Linear Regression (9/11/13) Lecturer: Barbara Engelhardt Scribes: Zachary Abzug, Mike Gloudemans, Zhuosheng Gu, Zhao Song 1 Why use linear regression? Figure 1: Scatter

More information

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow)

STAT420 Midterm Exam. University of Illinois Urbana-Champaign October 19 (Friday), :00 4:15p. SOLUTIONS (Yellow) STAT40 Midterm Exam University of Illinois Urbana-Champaign October 19 (Friday), 018 3:00 4:15p SOLUTIONS (Yellow) Question 1 (15 points) (10 points) 3 (50 points) extra ( points) Total (77 points) Points

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 7/8 - High-dimensional modeling part 1 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Classification

More information

Lecture 14: Shrinkage

Lecture 14: Shrinkage Lecture 14: Shrinkage Reading: Section 6.2 STATS 202: Data mining and analysis October 27, 2017 1 / 19 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the

More information

Different types of regression: Linear, Lasso, Ridge, Elastic net, Ro

Different types of regression: Linear, Lasso, Ridge, Elastic net, Ro Different types of regression: Linear, Lasso, Ridge, Elastic net, Robust and K-neighbors Faculty of Mathematics, Informatics and Mechanics, University of Warsaw 04.10.2009 Introduction We are given a linear

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 9-10 - High-dimensional regression Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Recap from

More information

Bias Variance Trade-off

Bias Variance Trade-off Bias Variance Trade-off The mean squared error of an estimator MSE(ˆθ) = E([ˆθ θ] 2 ) Can be re-expressed MSE(ˆθ) = Var(ˆθ) + (B(ˆθ) 2 ) MSE = VAR + BIAS 2 Proof MSE(ˆθ) = E((ˆθ θ) 2 ) = E(([ˆθ E(ˆθ)]

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Statistics 262: Intermediate Biostatistics Model selection

Statistics 262: Intermediate Biostatistics Model selection Statistics 262: Intermediate Biostatistics Model selection Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Today s class Model selection. Strategies for model selection.

More information

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 Time allowed: 3 HOURS. STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 This is an open book exam: all course notes and the text are allowed, and you are expected to use your own calculator.

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA Presented by Dongjun Chung March 12, 2010 Introduction Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions:

More information

Summary and discussion of: Controlling the False Discovery Rate via Knockoffs

Summary and discussion of: Controlling the False Discovery Rate via Knockoffs Summary and discussion of: Controlling the False Discovery Rate via Knockoffs Statistics Journal Club, 36-825 Sangwon Justin Hyun and William Willie Neiswanger 1 Paper Summary 1.1 Quick intuitive summary

More information

Binary Logistic Regression

Binary Logistic Regression The coefficients of the multiple regression model are estimated using sample data with k independent variables Estimated (or predicted) value of Y Estimated intercept Estimated slope coefficients Ŷ = b

More information

A Significance Test for the Lasso

A Significance Test for the Lasso A Significance Test for the Lasso Richard Lockhart 1 Jonathan Taylor 2 Ryan J. Tibshirani 3 Robert Tibshirani 2 1 Simon Fraser University, 2 Stanford University, 3 Carnegie Mellon University Abstract In

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Median Cross-Validation

Median Cross-Validation Median Cross-Validation Chi-Wai Yu 1, and Bertrand Clarke 2 1 Department of Mathematics Hong Kong University of Science and Technology 2 Department of Medicine University of Miami IISA 2011 Outline Motivational

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

STT 843 Key to Homework 1 Spring 2018

STT 843 Key to Homework 1 Spring 2018 STT 843 Key to Homework Spring 208 Due date: Feb 4, 208 42 (a Because σ = 2, σ 22 = and ρ 2 = 05, we have σ 2 = ρ 2 σ σ22 = 2/2 Then, the mean and covariance of the bivariate normal is µ = ( 0 2 and Σ

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Classification 1: Linear regression of indicators, linear discriminant analysis

Classification 1: Linear regression of indicators, linear discriminant analysis Classification 1: Linear regression of indicators, linear discriminant analysis Ryan Tibshirani Data Mining: 36-462/36-662 April 2 2013 Optional reading: ISL 4.1, 4.2, 4.4, ESL 4.1 4.3 1 Classification

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

REVIEW 8/2/2017 陈芳华东师大英语系

REVIEW 8/2/2017 陈芳华东师大英语系 REVIEW Hypothesis testing starts with a null hypothesis and a null distribution. We compare what we have to the null distribution, if the result is too extreme to belong to the null distribution (p

More information

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables Regression Analysis Regression: Methodology for studying the relationship among two or more variables Two major aims: Determine an appropriate model for the relationship between the variables Predict the

More information

36-707: Regression Analysis Homework Solutions. Homework 3

36-707: Regression Analysis Homework Solutions. Homework 3 36-707: Regression Analysis Homework Solutions Homework 3 Fall 2012 Problem 1 Y i = βx i + ɛ i, i {1, 2,..., n}. (a) Find the LS estimator of β: RSS = Σ n i=1(y i βx i ) 2 RSS β = Σ n i=1( 2X i )(Y i βx

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

De-mystifying random effects models

De-mystifying random effects models De-mystifying random effects models Peter J Diggle Lecture 4, Leahurst, October 2012 Linear regression input variable x factor, covariate, explanatory variable,... output variable y response, end-point,

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 17, 2012 Outline Heteroskedasticity

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Diagnostics can identify two possible areas of failure of assumptions when fitting linear models.

Diagnostics can identify two possible areas of failure of assumptions when fitting linear models. 1 Transformations 1.1 Introduction Diagnostics can identify two possible areas of failure of assumptions when fitting linear models. (i) lack of Normality (ii) heterogeneity of variances It is important

More information

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K.

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K. Basis Penalty Smoothers Simon Wood Mathematical Sciences, University of Bath, U.K. Estimating functions It is sometimes useful to estimate smooth functions from data, without being too precise about the

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

Semi-Penalized Inference with Direct FDR Control

Semi-Penalized Inference with Direct FDR Control Jian Huang University of Iowa April 4, 2016 The problem Consider the linear regression model y = p x jβ j + ε, (1) j=1 where y IR n, x j IR n, ε IR n, and β j is the jth regression coefficient, Here p

More information

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010

Stat/F&W Ecol/Hort 572 Review Points Ané, Spring 2010 1 Linear models Y = Xβ + ɛ with ɛ N (0, σ 2 e) or Y N (Xβ, σ 2 e) where the model matrix X contains the information on predictors and β includes all coefficients (intercept, slope(s) etc.). 1. Number of

More information

Binary choice 3.3 Maximum likelihood estimation

Binary choice 3.3 Maximum likelihood estimation Binary choice 3.3 Maximum likelihood estimation Michel Bierlaire Output of the estimation We explain here the various outputs from the maximum likelihood estimation procedure. Solution of the maximum likelihood

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Multiple Regression Analysis: The Problem of Inference

Multiple Regression Analysis: The Problem of Inference Multiple Regression Analysis: The Problem of Inference Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Multiple Regression Analysis: Inference POLS 7014 1 / 10

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Marginal Screening and Post-Selection Inference

Marginal Screening and Post-Selection Inference Marginal Screening and Post-Selection Inference Ian McKeague August 13, 2017 Ian McKeague (Columbia University) Marginal Screening August 13, 2017 1 / 29 Outline 1 Background on Marginal Screening 2 2

More information

Adaptive Lasso for correlated predictors

Adaptive Lasso for correlated predictors Adaptive Lasso for correlated predictors Keith Knight Department of Statistics University of Toronto e-mail: keith@utstat.toronto.edu This research was supported by NSERC of Canada. OUTLINE 1. Introduction

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Multiple linear regression S6

Multiple linear regression S6 Basic medical statistics for clinical and experimental research Multiple linear regression S6 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/42 Introduction Two main motivations for doing multiple

More information

Correlation 1. December 4, HMS, 2017, v1.1

Correlation 1. December 4, HMS, 2017, v1.1 Correlation 1 December 4, 2017 1 HMS, 2017, v1.1 Chapter References Diez: Chapter 7 Navidi, Chapter 7 I don t expect you to learn the proofs what will follow. Chapter References 2 Correlation The sample

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Chapter Eight: Assessment of Relationships 1/42

Chapter Eight: Assessment of Relationships 1/42 Chapter Eight: Assessment of Relationships 1/42 8.1 Introduction 2/42 Background This chapter deals, primarily, with two topics. The Pearson product-moment correlation coefficient. The chi-square test

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

R 2 and F -Tests and ANOVA

R 2 and F -Tests and ANOVA R 2 and F -Tests and ANOVA December 6, 2018 1 Partition of Sums of Squares The distance from any point y i in a collection of data, to the mean of the data ȳ, is the deviation, written as y i ȳ. Definition.

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model. Statistical Methods in Business Lecture 5. Linear Regression We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information