PreClass Notes: Chapter 7, Sections

Size: px
Start display at page:

Download "PreClass Notes: Chapter 7, Sections"

Transcription

1 PreClass Notes: Chapter 7, Sections From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason Harlow, University of Toronto This video is meant for University of Toronto students taking PHY131. Outline A conservative force is a force that gives back energy that was transferred by doing work. R.Wolfson 7.1 Conservative and Nonconservative Forces 7.2 Potential Energy 7.3 Conservation of Mechanical Energy 1

2 Conservative and Nonconservative Forces A conservative force stores any work done against it, and can give back the stored work as kinetic energy. For a conservative force, the work done in moving between two points is independent of the path. B A Conservative and Nonconservative Forces Because the work done by a conservative force is path independent, the work done in going around any closed path is zero: F d r = 0 2

3 Conservative and Nonconservative Forces A nonconservative force does not store work done against it, the work done may depend on path, and the work done going around a closed path need not be zero. Conservative and Nonconservative Forces Examples of conservative forces include Gravity The electric force The force of an ideal spring Nonconservative forces include Friction Pushing force of a human or animal Automobile engine 3

4 Potential Energy Stored energy held in readiness with a potential for doing work Examples: A stretched bow has stored energy that can do work on an arrow. A stretched rubber band of a slingshot has stored energy and is capable of doing work. Gravitational Potential Energy Potential energy due to elevated position Examples: coffee mug on the top shelf water at the top of Niagara Falls 4

5 Potential Energy Demo video Potential Energy Consider two particles A and B that interact with each other and nothing else. There are two ways to define a system. System 1 consists only of the two particles, the forces are external, and the work done by the two forces change the system s kinetic energy. 5

6 Potential Energy System 2 includes the interaction within the system. Since W ext = 0, we must define an energy associated with the interaction, called the potential energy, U. When internal forces in the system do work, this changes the potential energy. Potential Energy The change in potential energy is defined as the negative of the work done by a conservative force acting over any path between two points: B U F dr AB A Potential energy change is independent of path. Only changes in potential energy matter. We re free to set the zero of potential energy at any convenient point. 6

7 Elastic Potential Energy Elastic potential energy stores the work done in stretching or compressing springs or spring-like systems: U 1 2 kx2 Elastic potential energy increases quadratically with stretch or compression x. Here the zero of potential energy is taken in the spring s equilibrium configuration. Elastic Potential Energy 7

8 Got it? A spring has a spring constant of 100 N/m. How much potential energy does it store when stretched by 10 cm? A. 50 J B. 10 J C. 5 J D. 0.5 J E. 0.1 J Potential Energy 8

9 Gravitational Potential Energy Gravitational potential energy stores the work done against gravity: U mg y Gravitational potential energy increases linearly with height y. This reflects the constant gravitational force near Earth s surface. Mechanical Energy Mechanical Energy is defined as the sum of the kinetic plus potential energy: E mech = K + U 9

10 Conservation of Mechanical Energy K 1 + U 1 = K 2 + U 2 K 1 = 0 U 1 = 10,000 J K 2 = 2,500 J U 2 = 7,500 J K 3 = 7,500 J U 3 = 2,500 J K 4 = 10,000 J U 4 = 0 Energy Bar Charts Slide

11 Conservation of Mechanical Energy Got it? Can a system have negative potential energy? A. No, because a negative potential energy is unphysical. B. No, because the kinetic energy of a system must be equal to its potential energy. C. Yes, as long as the total energy remains positive. D. Yes, as long as the total energy remains negative. E. Yes, because the choice of the zero of potential energy is arbitrary. 11

12 The Zero of Potential Energy Problem Solving with Conservation of Energy Interpret the problem to make sure all forces are conservative, so conservation of mechanical energy applies. Identify the quantity you re being asked to find, which may be an energy or some related quantity. Draw the object in a situation where you can determine both its kinetic and potential energy, then again in the situation where one quantity is unknown. Set up the equation: E 1 = E 2 Evaluate to solve for the unknown quantity, which might be an energy, a spring stretch, a velocity, etc. Assess your solution to see that your answer makes sense, has the right physical units, and is consistent with your intuition. 12

13 Example Problem Note that I have worked out Exercise 21 from Chapter 7. The 5-minute video is available at 13

PreClass Notes: Chapter 4, Sections 4.5,4.6

PreClass Notes: Chapter 4, Sections 4.5,4.6 PreClass Notes: Chapter 4, Sections 4.5,4.6 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

PreClass Notes: Chapter 13, Sections

PreClass Notes: Chapter 13, Sections PreClass Notes: Chapter 13, Sections 13.3-13.7 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by

More information

PreClass Notes: Chapter 9, Sections

PreClass Notes: Chapter 9, Sections PreClass Notes: Chapter 9, Sections 9.3-9.6 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

PreClass Notes: Chapter 5, Sections 5.4,5.5

PreClass Notes: Chapter 5, Sections 5.4,5.5 PreClass Notes: Chapter 5, Sections 5.4,5.5 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

PreClass Notes: Chapter 5, Sections

PreClass Notes: Chapter 5, Sections PreClass Notes: Chapter 5, Sections 5.1-5.3 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc.

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. PreClass Notes: Chapter 6 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason Harlow, University

More information

PreClass Notes: Chapter 4, Sections

PreClass Notes: Chapter 4, Sections PreClass Notes: Chapter 4, Sections 4.1-4.4 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc.

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. PreClass Notes: Chapter 1 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason Harlow, University

More information

In-Class Problems 20-21: Work and Kinetic Energy Solutions

In-Class Problems 20-21: Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 In-Class Problems 20-21: Work and Kinetic Energy Solutions In-Class-Problem 20 Calculating Work Integrals a) Work

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

PHYSICS. Chapter 10 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 10 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 10 Lecture RANDALL D. KNIGHT Chapter 10 Interactions and Potential Energy IN THIS CHAPTER, you will develop a better understanding

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. 11 THIS PRESENTATION HAS EEN PREPARED Y: DR. NASSR S. ALZAYED

More information

Chapter 8. Conservation of Energy

Chapter 8. Conservation of Energy Chapter 8 Conservation of Energy Energy Review Kinetic Energy Associated with movement of members of a system Potential Energy Determined by the configuration of the system Gravitational and Elastic Potential

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

GLOBAL EDITION. College Physics. A Strategic Approach THIRD EDITION. Randall D. Knight Brian Jones Stuart Field

GLOBAL EDITION. College Physics. A Strategic Approach THIRD EDITION. Randall D. Knight Brian Jones Stuart Field GLOBAL EDITION College Physics A Strategic Approach THIRD EDITION Randall D. Knight Brian Jones Stuart Field F OCUS STUDENTS... BEFORE: PRELECTURE VIDEOS DURING: Presented by co-author Brian Jones, these

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Units of Chapter 6 Work Done by a Constant Force Work Done by a Varying Force Kinetic Energy, and the Work-Energy Principle Potential Energy Conservative and Nonconservative Forces

More information

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work: Transfer of energy through motion Energy: Ability to cause Change Kinetic Energy: Energy

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th Chapter Physics in Action Sample Problem 1 A weightlifter uses a force of 35 N to lift a set of weights.00 m off the ground. How much work did the weightlifter do? Strategy: You can use the following equation

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8.

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8. Potential Energy, Conservation of Energy, and Energy Diagrams 8.01 W06D Today s Reading ssignment: Chapter 14 Potential Energy and Conservation of Energy, Sections 14.1-14.7 nnouncements Problem Set 5

More information

University Physics 226N/231N Old Dominion University. Work, Energy, Power, and Energy Conservation

University Physics 226N/231N Old Dominion University. Work, Energy, Power, and Energy Conservation University Physics 226N/231N Old Dominion University Work, Energy, Power, and Energy Conservation Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Wednesday,

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Work and Energy Definition of work Examples. Definition of Mechanical Energy. Conservation of Mechanical Energy, Pg 1

Work and Energy Definition of work Examples. Definition of Mechanical Energy. Conservation of Mechanical Energy, Pg 1 Work and Energy Definition of work Examples Work and Energy Today s Agenda Definition of Mechanical Energy Conservation of Mechanical Energy Conservative forces Conservation of Mechanical Energy, Pg 1

More information

Lecture Notes (Work & Energy)

Lecture Notes (Work & Energy) Lecture Notes (Work & Energy) Intro: - one of the most central concepts in science is energy; the combination energy and matter makes up our universe - matter is the substance of the universe, while energy

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN -3: WORK, ENERGY AND POWER Questions From Reading Activity? Essential Idea: The fundamental concept of energy lays the basis upon which much of

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Kinetic Mechanical Physics A - PHY 2048C and 11/01/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions Kinetic Mechanical 1 How do you determine the direction of kinetic energy

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force PHY 101 DR M. A. ELERUJA KINETIC ENERGY AND WORK POTENTIAL ENERGY AND CONSERVATION OF ENERGY CENTRE OF MASS AND LINEAR MOMENTUM Work is done by a force acting on an object when the point of application

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 7:Energy and Energy Transfer Presented by Nouf Saad Alkathran Imagine a system consisting of a book

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physics I 03.0.04 Conservation of Energy Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov03/physicsspring.html

More information

PHYS 154 Practice Test 3 Spring 2018

PHYS 154 Practice Test 3 Spring 2018 The actual test contains 1 multiple choice questions and 2 problems. However, for extra exercise, this practice test includes 4 problems. Questions: N.B. Make sure that you justify your answers explicitly

More information

Purpose of the experiment

Purpose of the experiment Work and Energy PES 1160 General Physics Lab I Purpose of the experiment What is Work and how is related to Force? To understand the work done by a constant force and a variable force. To see how gravitational

More information

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 7 Energy of a System

Chapter 7 Energy of a System Chapter 7 Energy of a System Course Outline : Work Done by a Constant Force Work Done by avarying Force Kinetic Energy and thework-kinetic EnergyTheorem Power Potential Energy of a System (Will be discussed

More information

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7. Old Exams Questions Ch. 8 T072 Q2.: A ball slides without friction around a loop-the-loop (see Fig 2). A ball is released, from rest, at a height h from the left side of the loop of radius R. What is the

More information

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow Section 7.1 Based on Knight 3 rd edition Ch. 7, pgs. 167-184 When a hammer hits a nail, it exerts a forward force on the nail At

More information

First Midterm Exam. Physics General Physics Lecture 10 Work and Energy 9/25/2016. Fall 2016 Semester Prof. Matthew Jones

First Midterm Exam. Physics General Physics Lecture 10 Work and Energy 9/25/2016. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 10 Work and Energy Fall 2016 Semester Prof. Matthew Jones 1 First Midterm Exam Tuesday, October 4 th, 8:00-9:30 pm Location: PHYS 112 and WTHR 200. Covering material

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

LECTURE 30: Conservation of energy

LECTURE 30: Conservation of energy Lectures Page 1 LECTURE 30: Conservation of energy Select LEARNING OBJECTIVES: i. ii. iii. iv. Differentiate between the vector nature of momentum conservation and the scalar nature of energy conservation.

More information

First Midterm Exam. Physics General Physics Lecture 11 Work and Energy 9/28/2016. Fall 2016 Semester Prof. Matthew Jones

First Midterm Exam. Physics General Physics Lecture 11 Work and Energy 9/28/2016. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 11 Work and Energy Fall 2016 Semester Prof. Matthew Jones 1 First Midterm Exam Tuesday, October 4 th, 8:00-9:30 pm Location: PHYS 112 and WTHR 200. Covering material

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Spring-Loop-the-Loop Problem Set 8 A small block of mass m is pushed against a spring with spring constant k and held in place

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Elastic Potential Energy and Conservation of Mechanical Energy

Elastic Potential Energy and Conservation of Mechanical Energy Elastic Potential Energy and Conservation of Mechanical Energy Level : Physics I Instructor : Kim Hook s Law Springs are familiar objects that have many applications, ranging from push-button switches

More information

Elastic Potential Energy

Elastic Potential Energy Elastic Potential Energy If you pull on a spring and stretch it, then you do work. That is because you are applying a force over a displacement. Your pull is the force and the amount that you stretch the

More information

Lecture 12 Friction &Circular. Dynamics

Lecture 12 Friction &Circular. Dynamics Lecture 12 Friction &Circular Exam Remarks Units, units, units Dynamics Drawing graphs with arrows and labels FBDs: ma is not a force! r(r) given, derive v(t), a(t) Circular motion: the velocity vector

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

Lesson 6: How to Calculate Kinetic Energy

Lesson 6: How to Calculate Kinetic Energy KREUTTER:WORK AND ENERGY 1 Lesson 6: How to Calculate Kinetic Energy 6.1 Hypothesize (Derive a Mathematical Model) In a car crash testing facility, engineers evaluate the reaction of a car to a front impact.

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

The dimensions of an object tend to change when forces are

The dimensions of an object tend to change when forces are L A B 8 STRETCHING A SPRING Hooke s Law The dimensions of an object tend to change when forces are applied to the object. For example, when opposite forces are applied to both ends of a spring, the spring

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Chapter 8. Potential Energy and Energy Conservation

Chapter 8. Potential Energy and Energy Conservation Chapter 8 Potential Energy and Energy Conservation P. Lam 7_18_2018 Learning Goals for Chapter 8 Learn the following concepts: conservative forces, potential energy, and conservation of mechanical energy.

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

HW 3. Due: Tuesday, December 4, 2018, 6:00 p.m.

HW 3. Due: Tuesday, December 4, 2018, 6:00 p.m. Oregon State University PH 211 Fall Term 2018 HW 3 Due: Tuesday, December 4, 2018, 6:00 p.m. Print your full LAST name: Print your full first name: Print your full OSU student ID#: Turn this assignment

More information

Exercises. 9.1 Work (pages ) 9.2 Power (pages ) 9.3 Mechanical Energy (page 147)

Exercises. 9.1 Work (pages ) 9.2 Power (pages ) 9.3 Mechanical Energy (page 147) Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work falls into two categories: Work falls into two categories: work done against

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Work and Energy. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Conservation of Energy: Spring and Kinetic

Work and Energy. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Conservation of Energy: Spring and Kinetic Work and Energy Introduction In this lab you will investigate conservation of energy and the concept of work using the airtrack. You will look at the exchange between kinetic and potential energy, and

More information

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). Lecture 1 Notes: 06 / 27 The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). These systems are very common in nature - a system displaced from equilibrium

More information

Ch 5 Work and Energy

Ch 5 Work and Energy Ch 5 Work and Energy Energy Provide a different (scalar) approach to solving some physics problems. Work Links the energy approach to the force (Newton s Laws) approach. Mechanical energy Kinetic energy

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. When a spring is compressed 10 cm, compared to its

More information

Name: Section: Date: / / IP 614 Intro to Forces Lab

Name: Section: Date: / / IP 614 Intro to Forces Lab Name: Section: Date: / / IP 614 Intro to Forces Lab Adapted from The Book of Phyz Dean Baird PhyzGuide: Meet the Forces & PhyzLab Springboard: Feel the Forces Introduction: There are five mechanical forces

More information

Physics Test 9: Work and Energy page 1

Physics Test 9: Work and Energy page 1 Name Physics Test 9: Work and Energy page 1 Multiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. Which of the following is a unit

More information

PHYSICS 149: Lecture 17

PHYSICS 149: Lecture 17 PHYSICS 149: Lecture 17 Chapter 6: Conservation of Energy 6.7 Elastic Potential Energy 6.8 Power Chapter 7: Linear Momentum 7.1 A Vector Conservation Law 7. Momentum Lecture 17 Purdue University, Physics

More information

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY.

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. SI (Supplemental Instructor): Thomas Leyden (thomasleyden@tamu.edu) 7:00-8:00pm, Sunday/Tuesday/Thursday, MPHY 333 Chapter

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of

To study applications of Newton s Laws as they. To study conditions that establish equilibrium. To consider contact forces and the effects of Chap. 5: More Examples with Newton s Law Chap.5: Applying Newton s Laws To study conditions that establish equilibrium. To study applications of Newton s Laws as they apply when the net force is not zero.

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Module 14: Application of the Principle of Conservation of Energy

Module 14: Application of the Principle of Conservation of Energy Module 14: Application of the Principle of Conservation of Energy In the preceding chapter we consider closed systems!e system = 0 in which the only interactions on the constituents of a system were due

More information

Concept of Force and Newton s Laws of Motion

Concept of Force and Newton s Laws of Motion Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.1-7.4 Chapter 8 Applications of Newton s Second Law, Sections 8.1-8.4.1 Announcements W02D3 Reading

More information

Forms of Energy. What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule.

Forms of Energy. What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule. Forms of Energy What is energy? Energy is the amount of work that can be done by a force. What is a measure of energy? Joule. Major Classes of Energy 1. Kinetic energy (E k ) is the work needed to accelerate

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

Common Exam 3, Friday, April 13, :30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8. HW #8 and HW #9: Due tomorrow, April 6 th (Fri)

Common Exam 3, Friday, April 13, :30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8. HW #8 and HW #9: Due tomorrow, April 6 th (Fri) Common Exam 3, Friday, April 13, 2007 8:30 9:45 A.M. at KUPF 205 Chaps. 6, 7, 8 Bring calculators (Arrive by 8:15) HW #8 and HW #9: Due tomorrow, April 6 th (Fri) Today. Chapter 8 Hints for HW #9 Quiz

More information

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009 Introduction This is the second of two labs on simple harmonic motion (SHM). In the first lab you studied elastic forces and elastic energy, and you measured the net force on a pendulum bob held at an

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

SLIDING FRICTION & CONSERVATION OF ENERGY

SLIDING FRICTION & CONSERVATION OF ENERGY SLIDING FRICTION & CONSERVATION OF ENERGY Saddleback College Physics Department (adapted from PASCO Scientific) Purpose: Part I- To experimentally determine the coefficient of kinetic (sliding) friction,

More information

Do Now: What does it mean when you say That person has a lot of energy?

Do Now: What does it mean when you say That person has a lot of energy? Do Now: What does it mean when you say That person has a lot of energy? ENERGY What have we learned so far? 1. Work is done on an object when a force acts in the direction the object is moving. 2. When

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information