# The primitive root theorem

Size: px
Start display at page:

Transcription

1 The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under the multiplication of R. The ring R is a field if its multiplication is commutative and if every nonzero element of R is a unit. The primitive root theorem is the special case of the following theorem in which the field F is Z p. Theorem 1. Let F be a finite field. Then the unit group F is cyclic. This is an immediate consequence of the following more general result. Theorem 2. Let F be any field and let H be a finite subgroup of F. Then H is cyclic. A ey ingredient of the proof is a familiar theorem from calculus. Recall that a is a root of the polynomial f = a 0 + a 1 x + + a n x n if f(a) = 0, i.e., if a 0 + a 1 a + + a n a n = 0. Theorem 3 (D Alembert s Theorem). Let n > 0 and let f = a 0 + a 1 x + + a n x n be a polynomial of degree n (i.e., a n 0) with coefficients in a field F. Then f has at most n roots in F. Proof. See Theorem 5 in Chapter 14 of [1]. Recall that if G is a group and g G, then the integer is said to be an exponent of g if g = 1, where 1 is the identity element of G. We say that g has finite order if it has a positive exponent. We then define the order g, denoted g to be the smallest positive exponent of g. If g does not have a positive exponent, we say g =. Recall that the cyclic subgroup g generated by g is g = {g Z}. It is the smallest subgroup of G containing g. A basic result about powers is the following. Lemma 4. Let g be an element of order n < in the group G. Then: (1) g = 1 if and only if n. (2) g = g l if and only if l mod n. (3) g has exactly n distinct elements: {g 0 < n}. 1

2 2 MARK STEINBERGER Proof. For (1) we use the division theorem (see [1, Theorem 1 of Chapter 3]). Write = nq + r with q, r Z and 0 r < n. Then g = g nq+r = (g n ) q g r = 1 q g r = g r. So g = 1 if and only if g r = 1. But n is the smallest positive number whose associated power of g is 1, and 0 r < n, so g r = 1 if and only if r = 0. Finally, by the uniqueness part of the division theorem, r = 0 if and only if n divides. (2) follows, as g = g l g l = 1 n ( l) l mod n. (3) now follows, as every integer is congruent mod n to exactly one of 0,..., n 1. We write (a, b) for the greatest common divisor of the intergers a and b. Lemma 5. Let d = (a, b), where a and b are not both 0. Write a = rd, b = sd. Then (r, s) = 1. Proof. Let > 0 divide both r and s. Then d divides both a and b, so d divides (a, b) by [1, Corollary 7 of Chapter 3]. Thus, d d, so = 1. Proposition 6. Let g be an element of order n < in the group G and let Z. Then g = g ( g, ). Proof. Let n = g and let d = (n, ). Write n = dr and = ds. We wish to show g = r. It is easy to see r is an exponent of g : (g ) r = g r = g sdr = g sn = (g n ) s = 1. Thus, it suffices to show that any exponent of g is divisible by r, so suppose (g ) l = 1. Then g l = 1, so n l = dsl. Since n = dr, this gives r sl. But (r, s) = 1 by Lemma 5, so r l by [1, Corollary 8 of Chapter 3]. We write X for the number of elements in a set X (we write X = when X is infinite, ignoring the varying cardinalities of infinite sets). For a group G, we call G the order of G. By Lemma 4 (3), if g G has finite order, then g = g. We ve been implicitly using the following.

3 THE PRIMITIVE ROOT THEOREM 3 Definition 7. A group H is cyclic if H = g for some g H. In this case g is said to generate H. Since g = g, this occurs if and only if the element g H has order H. Thus, Theorem 2 is equivalent to showing that any finite subgroup H of the unit group of a field contains an element of order H. For a finite field F we shall refer to a generator of F as a primitive element of F. The following is now immediate from Proposition 6. Corollary 8. Let g be an element of order n < in the group G. Then the set of generators of g is {g 0 < < n and (n, ) = 1}. In particular, the number of generators of g is { Z 0 < < n and (n, ) = 1} = φ(n), the well-nown Euler φ-function of n. In other words, there are exactly φ(n) elements of order n in a cyclic group of order n. Let us now consider the implications of D Alembert s theorem (Theorem 3) for elements of finite order in the unit group of a field. Let H be any subgroup of F and define H n = {x H x n = 1}. Then H n is the set of roots of x n 1 in H, so by D Alembert s theorem. Lemma 9. H n is a subgroup of H. H n n Proof. For x, y H n, (xy) n = x n y n = 1 and (x 1 ) n = x n = (x n ) 1 = 1. In particular, if x H n, then x H n. By Lemma 4 (1), H n = {x H x n}, and if x H has order n, then n = x = x = H n. Thus: Lemma 10. If x H has order n, then x = H n. In particular, if x and y in H both have order n, then x = y = H n, and hence y generates x. Corollary 8 now gives: Corollary 11. If H contains an element of order n, then there are exactly φ(n) elements of order n in H. Each generates H n. The following is ey.

4 4 MARK STEINBERGER Lemma 12. Let x and y have finite order in the abelian group G, with ( x, y ) = 1. Then the order of xy is x y. Proof. Let x = m and y = n. Then (xy) mn = (x m ) n (y n ) m = 1, so the order of xy divides mn. It suffices to show that if (xy) = 1, then mn. If (xy) = 1, then 1 = (xy) = x y, so x = y. By Proposition 6, the order of x divides the order of x and the order of y divides the order of y, so the order of x divides ( x, y ) = 1. But the only element of order 1 is the identity element, 1. So x = y = 1, But this says x divides and y divides and hence also divides, so the least common multiple of x and y divides. Since ( x, y ) = 1, the least common multiple of x and y is x y, and the result follows. An easy induction now shows the following. Corollary 13. Let G be an abelian group and let x 1,..., x have pairwise relatively prime finite orders, i.e., ( x i, x j ) = 1 for i j. Then x 1 x = x 1 x. We shall mae repeated use of the following, which is equivalent, by Lemma 4 (1), to Theorem 1 in Chapter 11 of [1]. Theorem 14. Let G be a finite abelian group and let g G. divides G. We can now prove our main theorem. Proof of Theorem 2. Let H be a finite subgroup of F with Then g H = p r 1 1 pr, where 1, p 1 < < p are primes, and r i > 0 for i = 1,...,. For each i, let p s i i be the highest power of p i that occurs as the order of an element of H. By Theorem 14, s i r i. Let y i H have order p s i i. Let y = y 1 y. Then by Corollary 13, y = p s 1 1 ps. We denote y by n. We claim y = H, and hence s i = r i for all i and H = n. To see this, note that by Lemma 10, y = H n is the set of all roots of x n 1 in H. Thus, if z H has order dividing n, then z y. So it suffices to show that if z H, then z divides n.

5 Let z H. By Theorem 14, with t i r i for all i. Let THE PRIMITIVE ROOT THEOREM 5 z = p t 1 1 p t m i = z. By Proposition 6, z m i = p t i i. By the maximality of ps i i, t i s i for all i. But then z divides n, so the result follows. We shall give a second proof of Theorem 2 after introducing a new concept. Definition 15. Let p be a prime and n > 0. We say the p-part of n is p r if n = p r with (p, ) = 1. Since p does not divide, p r is the highest power of p dividing n by uniqueness of prime decomposition. In particular, if n = p r pr l l with p 1 < < p l prime and r i 0 for all i, and if p n, then p = p i for some i, the p-part of n is p r i i and = p r pr i 1 i 1 pr i+1 i+1... pr l l, again by uniqueness of prime decomposition. Of course, if p n, the p-part of n is p 0 = 1. The following elementary application of uniqueness of prime decomposition may be found, for instance, as Proposition 5 in Chapter 4 of [1]. Lemma 16. Let n = p r pr and m = p s ps with p 1 < < p prime and r i, s i 0 for all i. Then m n if and only if s i r i for all i. The following is now immediate. Corollary 17. Let m, n > 0. Then m n if and only if there is a prime p such that the p-part of m is greater than the p-part of n. Second proof of Theorem 2. We have a subgroup H F of order n <. Let m be the largest order of an element in H and let g H of order m. We claim that g = H, and hence m = n. By Lemma 10, g = H m, the set of all elements of H whose order divides m. In particular, if g H, then there exists h H such that h does not divide m. By Corollary 17, there exists a prime p such that the p-part of h is greater than the p-part of m. Write m = p r with (p, ) = 1 and let h = p s l with (p, l) = 1. Then p s > p r. Let x = g pr and let y = h l. Then x = y = g ( g, p r ) = h ( h, l) = p t i i pr (p r, p r ) =, ps l (p s l, l) = ps, by Proposition 6. Since (p, ) = 1, ( x, y ) = 1 so xy = x y = p s > p r = m, as p s > p r. But this contradicts our assumption that m was the largest order of an element of H, so g = H as claimed.

6 6 MARK STEINBERGER Note that Corollaries 8 and 11 were not used in the proof of Theorem 2, but they are important in understanding the structure of cyclic groups and of the unit groups of fields. We can say more: Proposition 18. Let g be an element of order n < in the group G. Let d divide n. Then there are exactly φ(d) elements of order d in g. In consequence, n = φ(d). d n Proof. If g has order d, then (n, ) = n d by Proposition 6. Write n d = l so that n = dl, and = sl for some s, as l = (n, ). Again by Proposition 6, g l has order d, and g g l. Moreover, g generates g l, which has exactly φ(d) generators. The result now follows since the order of any element of g divides n. Since φ(2) = 1, we obtain the following. Corollary 19. A cyclic group g of even order n contains exactly one element of order 2: g n 2. In Z p, p an odd prime, the unique element of order 2 is 1. We obtain: Corollary 20. Let p be an odd prime and let ā be a generator of Z p. Then ā p 1 2 = 1. Thus a p mod p. Proof. For every element ā Z p, (ā p 1 2 ) 2 = ā p 1 = 1, so the order of ā p 1 2 divides 2. If ā p 1 2 has order 1, then ā p 1 2 = 1, and the order of ā p 1 2 divides p 1 2, so ā does not generate Z p. since we ve assumed that ā does generate Z p, ā p 1 2 must have order 2, so ā p 1 2 = 1 by Corollary 19. The converse is false. See Exercise 9, below. We can also use powers to determine which elements of Z p have nth roots. We need the following standard result, which may be found as Theorem 2.17 in [2]. Proposition 21. Let a, b, m Z with m > 0. The congruence ax b mod m has a solution x Z if and only if (a, m) divides b. If there are any solutions, there are exactly (a, m) congruence classes of solutions, mod m. Corollary 22. Let p be an odd prime and let ā Z p and let = (n, p 1). Then ā has an nth root in Z p if and only if ā p 1 = 1. If ā does have an nth root, it has exactly of them. Proof. Let b be a generator of Z p and let ā = b i. Then if c = b x we have c n = ā if and only if nx i mod p 1. By Proposition 21, this has a solution x if and only if (n, p 1) = divides i, and if it has one solution, it has

7 THE PRIMITIVE ROOT THEOREM 7 exactly solutions mod p 1. By Lemma 4 (2) this gives exactly nth roots of ā in Z p. Thus, it suffices to show that divides i if and only if ā p 1 = 1. Now, ā p 1 = b i p 1, and this is 1 if and only if p 1 divides i p 1, i.e., if and only if l(p 1) = i(p 1) for some l. Dividing through by p 1 we see this holds if and only if divides i. In fact, the exact same argument gives the following generalization. Corollary 23. Let G be a cyclic group of order m and let a G. Then a has an nth root in G if and only if a m = 1, where = (m, n). If a has any nth roots in G, then it has exactly of them. An interesting special case of Corollary 22 is where n = 2 in this case, we can determine ā (p 1) for all ā. Corollary 24 (Euler s criterion). Let p be an odd prime and let ā Z p. Then ā has a square root if and only if ā p 1 2 = 1. If it has a squre root, it has two. If ā p 1 2 1, then ā p 1 2 = 1. Proof. Since p is odd, p 1 is even, hence = (2, p 1) = 2, and we simply apply Corollary 22. Now (ā p 1 2 ) 2 = ā p 1 = 1, and the result follows, since 1 is the unique element in Z p of order 2. Exercises. 1. Let x and y be units of finite order in the field F, with x = m and y = n. Let x, y = {x y l, l Z}. (a) Show that x, y is a finite subgroup of F whose elements all have order dividing [ x, y ], the least common multiple of x and y. (b) Deduce from Theorem 2 that x, y is cyclic of order [ x, y ]. 2. Let ζ n = cos ( ) ( 2π n + i sin 2π ) n C, where C is the complex numbers. Show that ζ n has order n in C. 3. Show that if n is odd, then 1, ζ n = ζ 2n. 4. For n = 3, 5, 7, express ζ n as a power of ζ 2n. 5. Give a general formula for ζ n as a power of ζ 2n when n is odd. 6. What are the elements of finite order in R? 7. Find generators for Z p for all primes p Find generators for all the cyclic subgroups of Z 61.

8 8 MARK STEINBERGER 9. Let p be an odd prime, let ā Z p, and let b be a generator of Z p. Show that ā p 1 2 = 1 if and only if ā is an odd power of b. 10. For p = 61, find an element ā Z p with a p mod p but such that ā does not generate Z p. References [1] Childs, Lindsay N. A concrete introduction to higher algebra. Third edition. Undergraduate Texts in Mathematics. Springer, Berlin, [2] Niven, Ivan; Zucerman, Herbert; Montgomery, Hugh. The theory of numbers (Fifth edition). John Wiley & Sons, New Yor, 1991.

### Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

The first exam will be on Monday, June 8, 202. The syllabus will be sections. and.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive squaring

### MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1

MATH 4400 SOLUTIONS TO SOME EXERCISES 1.1.3. If a b and b c show that a c. 1. Chapter 1 Solution: a b means that b = na and b c that c = mb. Substituting b = na gives c = (mn)a, that is, a c. 1.2.1. Find

### Notes on Systems of Linear Congruences

MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

### Summary Slides for MATH 342 June 25, 2018

Summary Slides for MATH 342 June 25, 2018 Summary slides based on Elementary Number Theory and its applications by Kenneth Rosen and The Theory of Numbers by Ivan Niven, Herbert Zuckerman, and Hugh Montgomery.

### Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5 Modular arithmetic 5.1 The modular ring Definition 5.1. Suppose n N and x, y Z. Then we say that x, y are equivalent modulo n, and we write x y mod n if n x y. It is evident that equivalence

### 1 Structure of Finite Fields

T-79.5501 Cryptology Additional material September 27, 2005 1 Structure of Finite Fields This section contains complementary material to Section 5.2.3 of the text-book. It is not entirely self-contained

### A connection between number theory and linear algebra

A connection between number theory and linear algebra Mark Steinberger Contents 1. Some basics 1 2. Rational canonical form 2 3. Prime factorization in F[x] 4 4. Units and order 5 5. Finite fields 7 6.

### = 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

### Part II. Number Theory. Year

Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

### A Generalization of Wilson s Theorem

A Generalization of Wilson s Theorem R. Andrew Ohana June 3, 2009 Contents 1 Introduction 2 2 Background Algebra 2 2.1 Groups................................. 2 2.2 Rings.................................

### Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) 1 Euclid s Algorithm Euclid s Algorithm for computing the greatest common divisor belongs to the oldest known computing procedures

### NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

### CYCLICITY OF (Z/(p))

CYCLICITY OF (Z/(p)) KEITH CONRAD 1. Introduction For each prime p, the group (Z/(p)) is cyclic. We will give seven proofs of this fundamental result. A common feature of the proofs that (Z/(p)) is cyclic

### Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

### D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions.

D-MAH Algebra II FS18 Prof. Marc Burger Solution 26 Cyclotomic extensions. In the following, ϕ : Z 1 Z 0 is the Euler function ϕ(n = card ((Z/nZ. For each integer n 1, we consider the n-th cyclotomic polynomial

### 4 Powers of an Element; Cyclic Groups

4 Powers of an Element; Cyclic Groups Notation When considering an abstract group (G, ), we will often simplify notation as follows x y will be expressed as xy (x y) z will be expressed as xyz x (y z)

### The number of ways to choose r elements (without replacement) from an n-element set is. = r r!(n r)!.

The first exam will be on Friday, September 23, 2011. The syllabus will be sections 0.1 through 0.4 and 0.6 in Nagpaul and Jain, and the corresponding parts of the number theory handout found on the class

### Basic elements of number theory

Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

### Basic elements of number theory

Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

### FIXED-POINT FREE ENDOMORPHISMS OF GROUPS RELATED TO FINITE FIELDS

FIXED-POINT FREE ENDOMORPHISMS OF GROUPS RELATED TO FINITE FIELDS LINDSAY N. CHILDS Abstract. Let G = F q β be the semidirect product of the additive group of the field of q = p n elements and the cyclic

### SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

### Homework #2 solutions Due: June 15, 2012

All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

### Section X.55. Cyclotomic Extensions

X.55 Cyclotomic Extensions 1 Section X.55. Cyclotomic Extensions Note. In this section we return to a consideration of roots of unity and consider again the cyclic group of roots of unity as encountered

### MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS

MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS LORENZ HALBEISEN, MARTIN HAMILTON, AND PAVEL RŮŽIČKA Abstract. A subset X of a group (or a ring, or a field) is called generating, if the smallest subgroup

### Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

### Factorization in Polynomial Rings

Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

### Elementary Properties of Cyclotomic Polynomials

Elementary Properties of Cyclotomic Polynomials Yimin Ge Abstract Elementary properties of cyclotomic polynomials is a topic that has become very popular in Olympiad mathematics. The purpose of this article

### Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2006 Contents 9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups

### Kevin James. MTHSC 412 Section 3.4 Cyclic Groups

MTHSC 412 Section 3.4 Cyclic Groups Definition If G is a cyclic group and G =< a > then a is a generator of G. Definition If G is a cyclic group and G =< a > then a is a generator of G. Example 1 Z is

### Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG)

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Warm up: 1. Let n 1500. Find all sequences n 1 n 2... n s 2 satisfying n i 1 and n 1 n s n (where s can vary from sequence to

### CYCLOTOMIC POLYNOMIALS

CYCLOTOMIC POLYNOMIALS 1. The Derivative and Repeated Factors The usual definition of derivative in calculus involves the nonalgebraic notion of limit that requires a field such as R or C (or others) where

### ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION PAVEL RŮŽIČKA 9.1. Congruence modulo n. Let us have a closer look at a particular example of a congruence relation on

### Standard forms for writing numbers

Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

### CYCLOTOMIC POLYNOMIALS

CYCLOTOMIC POLYNOMIALS 1. The Derivative and Repeated Factors The usual definition of derivative in calculus involves the nonalgebraic notion of limit that requires a field such as R or C (or others) where

### MATH 361: NUMBER THEORY FOURTH LECTURE

MATH 361: NUMBER THEORY FOURTH LECTURE 1. Introduction Everybody knows that three hours after 10:00, the time is 1:00. That is, everybody is familiar with modular arithmetic, the usual arithmetic of the

### How many units can a commutative ring have?

How many units can a commutative ring have? Sunil K. Chebolu and Keir Locridge Abstract. László Fuchs posed the following problem in 960, which remains open: classify the abelian groups occurring as the

### Chapter 1 : The language of mathematics.

MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

### (1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

The Algebraic Method 0.1. Integral Domains. Emmy Noether and others quickly realized that the classical algebraic number theory of Dedekind could be abstracted completely. In particular, rings of integers

### Quadratic Congruences, the Quadratic Formula, and Euler s Criterion

Quadratic Congruences, the Quadratic Formula, and Euler s Criterion R. C. Trinity University Number Theory Introduction Let R be a (commutative) ring in which 2 = 1 R + 1 R R. Consider a quadratic equation

### ON DIRICHLET S CONJECTURE ON RELATIVE CLASS NUMBER ONE

ON DIRICHLET S CONJECTURE ON RELATIVE CLASS NUMBER ONE AMANDA FURNESS Abstract. We examine relative class numbers, associated to class numbers of quadratic fields Q( m) for m > 0 and square-free. The relative

### MATH 3330 ABSTRACT ALGEBRA SPRING Definition. A statement is a declarative sentence that is either true or false.

MATH 3330 ABSTRACT ALGEBRA SPRING 2014 TANYA CHEN Dr. Gordon Heier Tuesday January 14, 2014 The Basics of Logic (Appendix) Definition. A statement is a declarative sentence that is either true or false.

### Polynomials, Ideals, and Gröbner Bases

Polynomials, Ideals, and Gröbner Bases Notes by Bernd Sturmfels for the lecture on April 10, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra We fix a field K. Some examples of fields

### Factorization in Integral Domains II

Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

### FROM GROUPS TO GALOIS Amin Witno

WON Series in Discrete Mathematics and Modern Algebra Volume 6 FROM GROUPS TO GALOIS Amin Witno These notes 1 have been prepared for the students at Philadelphia University (Jordan) who are taking the

### Mathematics for Cryptography

Mathematics for Cryptography Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario, N2L 3G1, Canada March 15, 2016 1 Groups and Modular Arithmetic 1.1

### Chapter 5: The Integers

c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

### Course 2316 Sample Paper 1

Course 2316 Sample Paper 1 Timothy Murphy April 19, 2015 Attempt 5 questions. All carry the same mark. 1. State and prove the Fundamental Theorem of Arithmetic (for N). Prove that there are an infinity

### Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Bryan Félix Abril 12, 2017 Section 2.1 Exercise (6). Let G be an abelian group. Prove that T = {g G g < } is a subgroup of G.

### Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2000 2013 Contents 9 Introduction to Number Theory 63 9.1 Subgroups

### Homework #5 Solutions

Homework #5 Solutions p 83, #16. In order to find a chain a 1 a 2 a n of subgroups of Z 240 with n as large as possible, we start at the top with a n = 1 so that a n = Z 240. In general, given a i we will

### Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9

Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9 Section 0. Sets and Relations Subset of a set, B A, B A (Definition 0.1). Cartesian product of sets A B ( Defintion 0.4). Relation (Defintion 0.7). Function,

### 5 Group theory. 5.1 Binary operations

5 Group theory This section is an introduction to abstract algebra. This is a very useful and important subject for those of you who will continue to study pure mathematics. 5.1 Binary operations 5.1.1

### arxiv: v1 [math.ho] 12 Sep 2008

arxiv:0809.2139v1 [math.ho] 12 Sep 2008 Constructing the Primitive Roots of Prime Powers Nathan Jolly September 12, 2008 Abstract We use only addition and multiplication to construct the primitive roots

### Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin

Quadratic reciprocity and the Jacobi symbol Stephen McAdam Department of Mathematics University of Texas at Austin mcadam@math.utexas.edu Abstract: We offer a proof of quadratic reciprocity that arises

### To hand in: (a) Prove that a group G is abelian (= commutative) if and only if (xy) 2 = x 2 y 2 for all x, y G.

Homework #6. Due Thursday, October 14th Reading: For this homework assignment: Sections 3.3 and 3.4 (up to page 167) Before the class next Thursday: Sections 3.5 and 3.4 (pp. 168-171). Also review the

### 2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

### ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

### The group (Z/nZ) February 17, In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer.

The group (Z/nZ) February 17, 2016 1 Introduction In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer. If we factor n = p e 1 1 pe, where the p i s are distinct

### Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

### WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers:

WORKSHEET MATH 215, FALL 15, WHYTE We begin our course with the natural numbers: N = {1, 2, 3,...} which are a subset of the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } We will assume familiarity with their

### Chapter 5. Number Theory. 5.1 Base b representations

Chapter 5 Number Theory The material in this chapter offers a small glimpse of why a lot of facts that you ve probably nown and used for a long time are true. It also offers some exposure to generalization,

### Notes on Primitive Roots Dan Klain

Notes on Primitive Roots Dan Klain last updated March 22, 2013 Comments and corrections are welcome These supplementary notes summarize the presentation on primitive roots given in class, which differed

### NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS CARRIE E. FINCH AND LENNY JONES Abstract. Let G be a finite group and let x G. Define the order subset of G determined by x to be the set of all elements in

### The Chinese Remainder Theorem

Chapter 5 The Chinese Remainder Theorem 5.1 Coprime moduli Theorem 5.1. Suppose m, n N, and gcd(m, n) = 1. Given any remainders r mod m and s mod n we can find N such that N r mod m and N s mod n. Moreover,

### School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information

MRQ 2017 School of Mathematics and Statistics MT5836 Galois Theory Handout 0: Course Information Lecturer: Martyn Quick, Room 326. Prerequisite: MT3505 (or MT4517) Rings & Fields Lectures: Tutorials: Mon

### Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications

1 Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair Corrections and clarifications Note: Some corrections were made after the first printing of the text. page 9, line 8 For of the

### Section II.1. Free Abelian Groups

II.1. Free Abelian Groups 1 Section II.1. Free Abelian Groups Note. This section and the next, are independent of the rest of this chapter. The primary use of the results of this chapter is in the proof

### Name: Solutions Final Exam

Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. 1. [10 Points] All of

### LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS

LECTURE 4: CHINESE REMAINDER THEOREM AND MULTIPLICATIVE FUNCTIONS 1. The Chinese Remainder Theorem We now seek to analyse the solubility of congruences by reinterpreting their solutions modulo a composite

### 1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11.

000 Chapter 1 Arithmetic in 1.1 The Division Algorithm Revisited 1. (a) q = 4, r = 1. (b) q = 0, r = 0. (c) q = 5, r = 3. 2. (a) q = 9, r = 3. (b) q = 15, r = 17. (c) q = 117, r = 11. 3. (a) q = 6, r =

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Introduction to finite fields

Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

### WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

### Discrete Math, Second Problem Set (June 24)

Discrete Math, Second Problem Set (June 24) REU 2003 Instructor: Laszlo Babai Scribe: D Jeremy Copeland 1 Number Theory Remark 11 For an arithmetic progression, a 0, a 1 = a 0 +d, a 2 = a 0 +2d, to have

### WHAT IS SPECIAL ABOUT THE DIVISORS OF 24?

WHAT IS SPECIAL ABOUT THE DIVISORS OF 24? SUNIL K. CHEBOLU It is a miracle that the human mind can string a thousand arguments together without getting itself into contradictions. 1. Introduction Eugene

### Congruences and Residue Class Rings

Congruences and Residue Class Rings (Chapter 2 of J. A. Buchmann, Introduction to Cryptography, 2nd Ed., 2004) Shoichi Hirose Faculty of Engineering, University of Fukui S. Hirose (U. Fukui) Congruences

### The Number of Homomorphic Images of an Abelian Group

International Journal of Algebra, Vol. 5, 2011, no. 3, 107-115 The Number of Homomorphic Images of an Abelian Group Greg Oman Ohio University, 321 Morton Hall Athens, OH 45701, USA ggoman@gmail.com Abstract.

### 2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

### LEGENDRE S THEOREM, LEGRANGE S DESCENT

LEGENDRE S THEOREM, LEGRANGE S DESCENT SUPPLEMENT FOR MATH 370: NUMBER THEORY Abstract. Legendre gave simple necessary and sufficient conditions for the solvablility of the diophantine equation ax 2 +

### LECTURE NOTES IN CRYPTOGRAPHY

1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

### A. Algebra and Number Theory

A. Algebra and Number Theory Public-key cryptosystems are based on modular arithmetic. In this section, we summarize the concepts and results from algebra and number theory which are necessary for an understanding

### Section VI.33. Finite Fields

VI.33 Finite Fields 1 Section VI.33. Finite Fields Note. In this section, finite fields are completely classified. For every prime p and n N, there is exactly one (up to isomorphism) field of order p n,

### Zsigmondy s Theorem. Lola Thompson. August 11, Dartmouth College. Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, / 1

Zsigmondy s Theorem Lola Thompson Dartmouth College August 11, 2009 Lola Thompson (Dartmouth College) Zsigmondy s Theorem August 11, 2009 1 / 1 Introduction Definition o(a modp) := the multiplicative order

### φ(xy) = (xy) n = x n y n = φ(x)φ(y)

Groups 1. (Algebra Comp S03) Let A, B and C be normal subgroups of a group G with A B. If A C = B C and AC = BC then prove that A = B. Let b B. Since b = b1 BC = AC, there are a A and c C such that b =

### 38 Irreducibility criteria in rings of polynomials

38 Irreducibility criteria in rings of polynomials 38.1 Theorem. Let p(x), q(x) R[x] be polynomials such that p(x) = a 0 + a 1 x +... + a n x n, q(x) = b 0 + b 1 x +... + b m x m and a n, b m 0. If b m

### Section IV.23. Factorizations of Polynomials over a Field

IV.23 Factorizations of Polynomials 1 Section IV.23. Factorizations of Polynomials over a Field Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent

### 1 Overview and revision

MTH6128 Number Theory Notes 1 Spring 2018 1 Overview and revision In this section we will meet some of the concerns of Number Theory, and have a brief revision of some of the relevant material from Introduction

### Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

1 / 25 Finite Fields Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay September 25, 2014 2 / 25 Fields Definition A set F together

### 18. Cyclotomic polynomials II

18. Cyclotomic polynomials II 18.1 Cyclotomic polynomials over Z 18.2 Worked examples Now that we have Gauss lemma in hand we can look at cyclotomic polynomials again, not as polynomials with coefficients

### Rings If R is a commutative ring, a zero divisor is a nonzero element x such that xy = 0 for some nonzero element y R.

Rings 10-26-2008 A ring is an abelian group R with binary operation + ( addition ), together with a second binary operation ( multiplication ). Multiplication must be associative, and must distribute over

### Cyclic Group Supplement. g = g k : k Z.

Theorem 1. Let g be an element of a group G and write { } g = g k : k Z. Then g is a subgroup of G. Proof. Since 1 = g 0, 1 g. Suppose a, b g. Then a = g k, b = g m and ab = g k g m = g k+m. Hence ab g

### 32 Divisibility Theory in Integral Domains

3 Divisibility Theory in Integral Domains As we have already mentioned, the ring of integers is the prototype of integral domains. There is a divisibility relation on * : an integer b is said to be divisible

### Homework 4 Solutions

Homework 4 Solutions November 11, 2016 You were asked to do problems 3,4,7,9,10 in Chapter 7 of Lang. Problem 3. Let A be an integral domain, integrally closed in its field of fractions K. Let L be a finite

### Lecture 7 Cyclic groups and subgroups

Lecture 7 Cyclic groups and subgroups Review Types of groups we know Numbers: Z, Q, R, C, Q, R, C Matrices: (M n (F ), +), GL n (F ), where F = Q, R, or C. Modular groups: Z/nZ and (Z/nZ) Dihedral groups:

### On The Weights of Binary Irreducible Cyclic Codes

On The Weights of Binary Irreducible Cyclic Codes Yves Aubry and Philippe Langevin Université du Sud Toulon-Var, Laboratoire GRIM F-83270 La Garde, France, {langevin,yaubry}@univ-tln.fr, WWW home page:

### 1 Lecture 1 (1/5/2009)

1 Lecture 1 (1/5/2009) Notation 1.1 Introduce N := {0, 1, 2,... }, Z, Q, R, and C. Also let Z + := N \ {0}. Set notations. Recalled basic notions of a function being one to one, onto, and invertible. Think

### 1 Lecture 1 (1/5/2009)

1 Lecture 1 (1/5/2009) Notation 1.1 Introduce N := {0, 1, 2,... }, Z, Q, R, and C. Also let Z + := N \ {0}. Set notations. Recalled basic notions of a function being one to one, onto, and invertible. Think

### A talk given at the Institute of Mathematics (Beijing, June 29, 2008)

A talk given at the Institute of Mathematics (Beijing, June 29, 2008) STUDY COVERS OF GROUPS VIA CHARACTERS AND NUMBER THEORY Zhi-Wei Sun Department of Mathematics Nanjing University Nanjing 210093, P.