Chapter 22: Comparing two proportions. Religious identification Current at 16 Same Different Total Catholic Jewish

Size: px
Start display at page:

Download "Chapter 22: Comparing two proportions. Religious identification Current at 16 Same Different Total Catholic Jewish"

Transcription

1 Chapter 22: Comparing two proportions Example: The table below shows the cross-classification of a sample of individuals according to their religious identification at age 16 and their current religious identification 1 Religious identification Current at 16 Same Different Total Catholic Jewish Is there statistical evidence supporting the contention that Jews and Catholics differ with respect to their fidelity to their parents religion (assuming that a person s religious identification at age 16 is the same as that of their parents)? To answer the question, two populations are identified: C: individuals that identify themselves as Catholics at age 16, and J: individuals that identify themselves as Jewish at age 16 Let p 1 the proportion of C that identify themselves at the time of the survey as Catholic, and p 2 the proportion of J that identify themselves at the time of the survey as Jewish The objective is to compare p 1 to p 2 using point estimates and a confidence interval The difference between population proportions, p 2 p 1 is the parameter of interest The estimator of p 2 p 1 is the difference in sample proportions p 2 p 1 Since sample sizes are n and n 2 31, the estimate is p 2 p The sampling distribution of p 2 p 1 Confidence intervals and hypothesis tests involving p 2 p 1 are derived from the large-sample distribution of p 2 p 1 Suppose that the randomization, 10% and success/failure conditions are met for p 1 and p 2 Then, p 1 N(p 1, p 1 q 1 /n 1 ) and p 2 N(p 2, p 2 q 2 /n 2 ) 1 The General Social Survey (GSS) has been conducted by the National Opinion Research Center annually since 1972 and biennially beginning in 1994 The GSS is designed as part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies Items on religion in the 1980 GSS include religious preference, church attendance, beliefs about life after death, and attitudes toward organized religion 167

2 These results are extended to p 2 p 1 using the Chapter 16 results regarding the expected value and standard deviation of the sum and difference of two random variables Specifically, E( p 1 p 2 ) p 1 p 2 If the two samples are drawn independently from their respective populations, then the variance and standard deviation of p 2 p 1 are Var( p 1 p 2 ) Var( p 1 ) + Var( p 2 ) p 1q 1 + p 2q 2, n 1 n 2 p1 q 1 and σ( p 1 p 2 ) + p 2q 2 The Central Limit Theorem implies that sampling distribution of p 1 p 2 is approximately normal 2 In summary, p 1 p 2 N (p 1 p 2, σ( p 1 p 2 )) (1) Equivalently, ( p1 q 1 p 1 p 2 N p 1 p 2, + p ) 2q 2 The standard deviation of σ( p 1 p 2 ) is estimated by the standard error p 1 q 1 σ( p 1 p 2 ) + p 2 q 2 Several conditions must be met for the confidence interval and hypothesis test (discussed below) to be accurate: 1 Randomization condition: Both samples are random samples or at least representative of the respective populations of interest 2 Large sample conditions: (a) The success/failure condition: The number of successes and number of failures are at least 10 Specifically, n 1 p 1, n 1 q 1, n 2 p 2, and n 2 q 2 all at least 10 (b) The 10% condition specifies that n 1 and n 2 are no more than 10% of the respective population sizes 3 Independence condition: The two samples are independent of one another Random sampling of each population insures that the independence condition is met 2 Large sample conditions stated above must be met if the approximation is to be accurate 168

3 Example: Checking the conditions for the GSS data proceeds as follows: 1 The randomization condition: General Social Survey uses randomization protocols in data collection, so the sample is effectively a random sample 2 The success/failure condition: n 1 p 1 351, n 1 q 1 67, n 2 p 2 28, and n 2 q 2 3 are not all least 10 The confidence interval and hypothesis test may not be accurate 3 10% condition: The 10% condition is easily met by both population/samples since the populations are very large 4 Independence: The samples were drawn by randomly sampling a population consisting of a number of religious groups so the samples are independent The confidence interval and hypothesis test can be derived from the large sample distribution The details are omitted, however A confidence interval for p 2 p 1 : A 100(1 2α)% confidence interval for p 1 p 2 is p 1 p 2 ± zα p 1 q 1 + p 2 q 2 where z α is a critical value from the standard normal distribution for the chosen level of confidence Example Using the GSS data, p and p Hence, p 1 q 1 + p 2 q For a 95% confidence level, z α 196, and the 95% confidence interval for p 1 p 2 is p 1 p 2 ± z α σ( p 1 p 2 ) 063 ± [ 0464, 1734] Because 0 is bracketed by the interval, it appears that there is insufficient evidence to conclude that the proportions p 1 and p 2 are different Example: In the 1970 s, the majority of oncologists and surgeons believed that total mastectomies were more effective at curing breast cancer than less radical approaches (principally involving targeted excisions of cancerous tumors) Yet the survival rates of patients treated 169

4 by radical mastectomy was dismally poor The National Surgical Adjuvant Breast and Bowel Project (NSABP) conducted a clinical trial to evaluate lumpectomy for the treatment of breast cancer Between April 1976, and January 1984 volunteer patients were randomly assigned to one of three groups: total mastectomy, lumpectomy, and lumpectomy followed by irradiation The events identified in the analyses of disease-free survival were first recurrences of disease, second cancers, and death without recurrence of cancer A portion of the 12-year data are shown below Total Lumpectomy Status mastectomy and irridation Lumpectomy No recurrence Recurrence Total Let p 1 denote the proportion of patients receiving a total mastectomy that had no recurrence in the 12 years after treatment, and p 2 denote the proportion of patients receiving a lumpectomy that had no recurrence in the 12 years after treatment The sample estimates are p 1 439/ (total mastectomy) p 2 482/ (lumpectomy) The sample estimates are different and contradict prevailing medical beliefs in 1975, but do the data imply a difference among the population of all subjects undergoing total mastectomy or lumpectomy? A hypothesis test is needed to answer this question The test described below is the two-proportion z-test A hypothesis test for comparing two proportions: When comparing population proportions, the usual null hypothesis is H 0 : p 1 p 2, or equivalently, H 0 : p 1 p 2 0 The alternative hypothesis is one of the following three: H a : p 1 p 2 > 0 (or H A : p 1 > p 2 ) H a : p 1 p 2 < 0 (or H A : p 1 < p 2 ) H a : p 1 p 2 0 (or H A : p 1 p 2 ) 170

5 Result (1) states the approximate sampling distribution of p 1 p 2 is normal provided that the conditions enumerated at the bottom of page 168 are met Because the test statistic is computed assuming that H 0 : p 1 p 2 is true, the expected value and standard deviation of the estimator p 1 p 2 are slightly (but importantly) different Let p p 1 p 2 the common value of the population proportions E( p 1 p 2 H 0 ) p 1 p 2 p p 0, and σ( p 1 p 2 H 0 ) p1 q 2 + p 2q 2 pq + pq ( 1 pq + 1 ) An estimator of p is needed First, let X 1 denote the number of successes observed in the sample from population 1 and X 2 denote the number of successes in the second sample Then p 1 X 1 /n 1 and p 2 X 2 /n 2 The two samples are combined to estimate p since the samples are from the same population (according to H 0 ) The pooled estimator of p is p pooled X 1 + X 2 n 1 + n 2 The estimated standard deviation of the difference 3 p 1 p 2 is ( ) σ pooled ( p 1 p 2 ) ppooled qpooled + 1n1 1n2 Example: For the breast cancer treatment study, and ppooled qpooled ( 1n1 + 1n2 ) p pooled X 1 + X 2 n 1 + n , (1 4209) 3 Sometimes called the standard error of the difference of sample proportions ( )

6 The test computes the standardized value of p 1 p 2 (which is approximately N(0, 1) in distribution if H 0 is correct), and determines the (approximate) probability of obtaining a value as or more extreme than the observed value (assuming H 0 is correct) The test statistic is Z p 1 p 2 σ pooled ( p 1 p 2 ) p 1 p 2 ppooled qpooled ( 1n1 + 1n2 ) Example: For the breast cancer treatment study, Z ( (1 4209) ) The p-value is a numerical measure of the strength of evidence against H 0 and in favor of H a Specifically, the p-value is the probability of observing Z as or more extreme than observed if H 0 were true Extreme means contradicting H 0 and supporting H a H a determines how the p-value is computed: H a : p 1 p 2 < 0 p-value P (Z z H 0 ) H a : p 1 p 2 > 0 p-value P (Z z H 0 ) H a : p 1 p 2 0 p-value 2P (Z z H 0 ) Example: Returning to the breast cancer treatment example, the hypothesis test of interest compares total mastectomy (treatment 1) and lumpectomy (treatment 2) The parameters p 1 and p 2 represent the 12-year cancer recurrence rate As of 1975, the prevailing belief was that at best, lumpectomy is no more effective than total mastectomy (ie, p 1 p 2 ) 4 To convince the medical community that this may not be true, the hypotheses to be test are H 0 : p 1 p 2 0 H a : p 1 p 2 < 0 Consequently, 4 More accurately, the prevailing belief was that lumpectomy is is not as effective as total mastectomy 172

7 p-value P (Z < 1374) 0852 There is weak evidence (p-value 0852) supporting the hypothesis that 12-year survival rates are smaller for patients receiving total mastectomies than those receiving lumpectomies Ignoring the specifics of individual cases, the study supports the position that lumpectomies are preferable to total mastectomies 5 Before finishing the example, several conditions need to be checked: 1 Independence between samples is met because subjects were randomly assigned to treatment group 2 Randomization: In a large expensive study of this type, I expect that the subjects (volunteers meeting a set of medical conditions) are representative of very large populations of individuals that receive surgical treatment for breast cancer 3 The 10% condition (n 1 and n 2 both must be less than 10% of the respective population sizes) is met for both samples since the populations are very large 4 The success/failure condition is met, because X 1 n 1 p > 10 n 1 X 1 n 1 q > 10 X 2 n 2 p > 10 and n 2 X 2 n 2 q > 10 Remark: The medical establishment in the 1970 s might have objected to H 0, as their position was that total mastectomy leads to equal or larger 12-year survival rates than lumpectomy So their favored hypothesis is p 1 p 2 and a corresponding alternative is p 1 < p 2 (same as above), which states than lumpectomy is better than total mastectomy These hypotheses can be used without modifying the test So, the hypotheses of interest are H 0 : p 1 p 2 0 H a : p 1 p 2 < 0 No modification to the test is needed because evidence against H 0 and in favor of H a is computed under the assumption that p 1 p 2 0 This assumption is consistent with H 0 (as 5 The first sometimes-effective treatment of cancer (radical surgery) because institutionalized through the advocacy of the surgeon William Halstead, whose principal objective was to remove as much tissue around a tumor (including muscles and even bone) as possible without killing the patient While Halstead experienced early success with his approach, the effectiveness of radical surgery appeared to diminish over time as more patients were treated (p 68, S Mukherjee, The Emperor of All Maladies, 2010, Scribner) 173

8 it should be in the hypothesis-testing framework) In addition, any other difference p 1 p 2 that is greater than 0 will lead to a measure of evidence that is even more extreme 6 than the measure obtained from assuming p 1 p 2 0 So, the traditionalist that might complain about a p-value computed under the assumption that p 1 p 2 0 can be silenced by pointing out that assuming p 1 p 2 d < 0 will lead to an even smaller p-value than the observed p-value Once again, the test is formulated to give advantage to the null hypothesis position 6 Contradicting H 0 and supporting H a 174

Chi square test of independence

Chi square test of independence Chi square test of independence Eyeball differences between percentages: large enough to be important Better: Are they statistically significant? Statistical significance: are observed differences significantly

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

AP Statistics Ch 12 Inference for Proportions

AP Statistics Ch 12 Inference for Proportions Ch 12.1 Inference for a Population Proportion Conditions for Inference The statistic that estimates the parameter p (population proportion) is the sample proportion p ˆ. p ˆ = Count of successes in the

More information

Chi square test of independence

Chi square test of independence Chi square test of independence We can eyeball differences between percentages to determine whether they seem large enough to be important Better: Are differences in percentages statistically significant?

More information

Lecture 11 - Tests of Proportions

Lecture 11 - Tests of Proportions Lecture 11 - Tests of Proportions Statistics 102 Colin Rundel February 27, 2013 Research Project Research Project Proposal - Due Friday March 29th at 5 pm Introduction, Data Plan Data Project - Due Friday,

More information

Comparison of Two Population Means

Comparison of Two Population Means Comparison of Two Population Means Esra Akdeniz March 15, 2015 Independent versus Dependent (paired) Samples We have independent samples if we perform an experiment in two unrelated populations. We have

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: CHAPTER 9, 10 Hypothesis Testing Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: The person is guilty. The person is innocent. To

More information

DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence interval to compare two proportions.

DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence interval to compare two proportions. Section 0. Comparing Two Proportions Learning Objectives After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence

More information

Two-sample Categorical data: Testing

Two-sample Categorical data: Testing Two-sample Categorical data: Testing Patrick Breheny April 1 Patrick Breheny Introduction to Biostatistics (171:161) 1/28 Separate vs. paired samples Despite the fact that paired samples usually offer

More information

Difference Between Pair Differences v. 2 Samples

Difference Between Pair Differences v. 2 Samples 1 Sectio1.1 Comparing Two Proportions Learning Objectives After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence

More information

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) B.H. Robbins Scholars Series June 23, 2010 1 / 29 Outline Z-test χ 2 -test Confidence Interval Sample size and power Relative effect

More information

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10 Chapter 18 Sampling Distribution Models Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 10 Population VS Sample Example 18.1 Suppose a total of 10,000 patients in a hospital and

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

Chapter 22. Comparing Two Proportions 1 /29

Chapter 22. Comparing Two Proportions 1 /29 Chapter 22 Comparing Two Proportions 1 /29 Homework p519 2, 4, 12, 13, 15, 17, 18, 19, 24 2 /29 Objective Students test null and alternate hypothesis about two population proportions. 3 /29 Comparing Two

More information

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017 Introduction to Regression Analysis Dr. Devlina Chatterjee 11 th August, 2017 What is regression analysis? Regression analysis is a statistical technique for studying linear relationships. One dependent

More information

Lecture on Null Hypothesis Testing & Temporal Correlation

Lecture on Null Hypothesis Testing & Temporal Correlation Lecture on Null Hypothesis Testing & Temporal Correlation CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Acknowledgement Resources used in the slides

More information

Chapter 7 Fall Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample

Chapter 7 Fall Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 7 Fall 2012 Chapter 7 Hypothesis testing Hypotheses of interest: (A) 1-sample H 0 : S(t) = S 0 (t), where S 0 ( ) is known survival function,

More information

Sample Size Determination

Sample Size Determination Sample Size Determination 018 The number of subjects in a clinical study should always be large enough to provide a reliable answer to the question(s addressed. The sample size is usually determined by

More information

Person-Time Data. Incidence. Cumulative Incidence: Example. Cumulative Incidence. Person-Time Data. Person-Time Data

Person-Time Data. Incidence. Cumulative Incidence: Example. Cumulative Incidence. Person-Time Data. Person-Time Data Person-Time Data CF Jeff Lin, MD., PhD. Incidence 1. Cumulative incidence (incidence proportion) 2. Incidence density (incidence rate) December 14, 2005 c Jeff Lin, MD., PhD. c Jeff Lin, MD., PhD. Person-Time

More information

Chapter Six: Two Independent Samples Methods 1/51

Chapter Six: Two Independent Samples Methods 1/51 Chapter Six: Two Independent Samples Methods 1/51 6.3 Methods Related To Differences Between Proportions 2/51 Test For A Difference Between Proportions:Introduction Suppose a sampling distribution were

More information

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH

PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH PubH 7470: STATISTICS FOR TRANSLATIONAL & CLINICAL RESEARCH The First Step: SAMPLE SIZE DETERMINATION THE ULTIMATE GOAL The most important, ultimate step of any of clinical research is to do draw inferences;

More information

Chapter 10: Comparing Two Populations or Groups

Chapter 10: Comparing Two Populations or Groups Chapter 10: Comparing Two Populations or Groups Sectio0.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 10 Comparing Two Populations or Groups 10.1 10.2 Comparing Two Means

More information

Chapter 10: Comparing Two Populations or Groups

Chapter 10: Comparing Two Populations or Groups Chapter 10: Comparing Two Populations or Groups Sectio0.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 10 Comparing Two Populations or Groups 10.1 10. Comparing Two Means

More information

hypothesis a claim about the value of some parameter (like p)

hypothesis a claim about the value of some parameter (like p) Testing hypotheses hypothesis a claim about the value of some parameter (like p) significance test procedure to assess the strength of evidence provided by a sample of data against the claim of a hypothesized

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

POWER FOR COMPARING TWO PROPORTIONS WITH INDEPENDENT SAMPLES

POWER FOR COMPARING TWO PROPORTIONS WITH INDEPENDENT SAMPLES This handout covers material found in Section 0.5 of the text. POWER FOR COMPARING TWO PROPORTIONS WITH INDEPENDENT SAMPLES EXAMPLE: Otolaryngology (Example 0.3 of your text, page 405). Suppose a study

More information

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Permutation Tests Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods The Two-Sample Problem We observe two independent random samples: F z = z 1, z 2,, z n independently of

More information

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Chapter 22. Comparing Two Proportions 1 /30

Chapter 22. Comparing Two Proportions 1 /30 Chapter 22 Comparing Two Proportions 1 /30 Homework p519 2, 4, 12, 13, 15, 17, 18, 19, 24 2 /30 3 /30 Objective Students test null and alternate hypothesis about two population proportions. 4 /30 Comparing

More information

Sample Size Estimation for Studies of High-Dimensional Data

Sample Size Estimation for Studies of High-Dimensional Data Sample Size Estimation for Studies of High-Dimensional Data James J. Chen, Ph.D. National Center for Toxicological Research Food and Drug Administration June 3, 2009 China Medical University Taichung,

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 9.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 9.1-1 Chapter 9 Inferences

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote

More information

10.1. Comparing Two Proportions. Section 10.1

10.1. Comparing Two Proportions. Section 10.1 /6/04 0. Comparing Two Proportions Sectio0. Comparing Two Proportions After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET

More information

Chapter 18: Sampling Distributions

Chapter 18: Sampling Distributions Chapter 18: Sampling Distributions All random variables have probability distributions, and as statistics are random variables, they too have distributions. The random phenomenon that produces the statistics

More information

STAT Chapter 13: Categorical Data. Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure).

STAT Chapter 13: Categorical Data. Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure). STAT 515 -- Chapter 13: Categorical Data Recall we have studied binomial data, in which each trial falls into one of 2 categories (success/failure). Many studies allow for more than 2 categories. Example

More information

EVALUATING THE REPEATABILITY OF TWO STUDIES OF A LARGE NUMBER OF OBJECTS: MODIFIED KENDALL RANK-ORDER ASSOCIATION TEST

EVALUATING THE REPEATABILITY OF TWO STUDIES OF A LARGE NUMBER OF OBJECTS: MODIFIED KENDALL RANK-ORDER ASSOCIATION TEST EVALUATING THE REPEATABILITY OF TWO STUDIES OF A LARGE NUMBER OF OBJECTS: MODIFIED KENDALL RANK-ORDER ASSOCIATION TEST TIAN ZHENG, SHAW-HWA LO DEPARTMENT OF STATISTICS, COLUMBIA UNIVERSITY Abstract. In

More information

Chapter 9. Hypothesis testing. 9.1 Introduction

Chapter 9. Hypothesis testing. 9.1 Introduction Chapter 9 Hypothesis testing 9.1 Introduction Confidence intervals are one of the two most common types of statistical inference. Use them when our goal is to estimate a population parameter. The second

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Chapter 10: Comparing Two Populations or Groups

Chapter 10: Comparing Two Populations or Groups Chapter 10: Comparing Two Populations or Groups Sectio0.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 10 Comparing Two Populations or Groups 10.1 10.2 Comparing Two Means

More information

Tests for Population Proportion(s)

Tests for Population Proportion(s) Tests for Population Proportion(s) Esra Akdeniz April 6th, 2016 Motivation We are interested in estimating the prevalence rate of breast cancer among 50- to 54-year-old women whose mothers have had breast

More information

The Design of a Survival Study

The Design of a Survival Study The Design of a Survival Study The design of survival studies are usually based on the logrank test, and sometimes assumes the exponential distribution. As in standard designs, the power depends on The

More information

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY?

HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? HOW TO DETERMINE THE NUMBER OF SUBJECTS NEEDED FOR MY STUDY? TUTORIAL ON SAMPLE SIZE AND POWER CALCULATIONS FOR INEQUALITY TESTS. John Zavrakidis j.zavrakidis@nki.nl May 28, 2018 J.Zavrakidis Sample and

More information

Superiority by a Margin Tests for One Proportion

Superiority by a Margin Tests for One Proportion Chapter 103 Superiority by a Margin Tests for One Proportion Introduction This module provides power analysis and sample size calculation for one-sample proportion tests in which the researcher is testing

More information

Test statistic P value Reject/fail to reject. Conclusion:

Test statistic P value Reject/fail to reject. Conclusion: Mixed Hypothesis Review AP STATISTICS Name Date Per Choose the correct hypothesis test for the following situations 1. A random sample of 49 medical doctors in LA showed that they worked an average of

More information

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Spring 2017

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Spring 2017 Null Hypothesis Significance Testing p-values, significance level, power, t-tests 18.05 Spring 2017 Understand this figure f(x H 0 ) x reject H 0 don t reject H 0 reject H 0 x = test statistic f (x H 0

More information

First we look at some terms to be used in this section.

First we look at some terms to be used in this section. 8 Hypothesis Testing 8.1 Introduction MATH1015 Biostatistics Week 8 In Chapter 7, we ve studied the estimation of parameters, point or interval estimates. The construction of CI relies on the sampling

More information

The Religious, the Paranormal, and Church Attendance: A Response to

The Religious, the Paranormal, and Church Attendance: A Response to The Religious, the Paranormal, and Church Attendance: A Response to Orenstein Andrew McKinnon --This is a draft version only the final version appears as Andrew M. McKinnon The Religious, the Paranormal,

More information

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc.

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc. Chapter 24 Comparing Means Copyright 2010 Pearson Education, Inc. Plot the Data The natural display for comparing two groups is boxplots of the data for the two groups, placed side-by-side. For example:

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A researcher claims that, at a river bend, the water gradually gets deeper as the distance from the inner bank increases. He measures the distance from the inner bank, b cm, and the depth of a river,

More information

STAT Chapter 8: Hypothesis Tests

STAT Chapter 8: Hypothesis Tests STAT 515 -- Chapter 8: Hypothesis Tests CIs are possibly the most useful forms of inference because they give a range of reasonable values for a parameter. But sometimes we want to know whether one particular

More information

Population 1 Population 2

Population 1 Population 2 Two Population Case Testing the Difference Between Two Population Means Sample of Size n _ Sample mean = x Sample s.d.=s x Sample of Size m _ Sample mean = y Sample s.d.=s y Pop n mean=μ x Pop n s.d.=

More information

Tables and Figures to Accompany

Tables and Figures to Accompany Tables and Figures to Accompany CORRELATES OF BELIEF IN REINCARNATION AMONG CHRISTIAN WORSHIPERS John P. Marcum Presbyterian Church (U.S.A.) jmarcum@ctr.pcusa.org Paper presented at the annual meeting

More information

Relative-risk regression and model diagnostics. 16 November, 2015

Relative-risk regression and model diagnostics. 16 November, 2015 Relative-risk regression and model diagnostics 16 November, 2015 Relative risk regression More general multiplicative intensity model: Intensity for individual i at time t is i(t) =Y i (t)r(x i, ; t) 0

More information

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation).

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). Basic Statistics There are three types of error: 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). 2. Systematic error - always too high or too low

More information

Null Hypothesis Significance Testing p-values, significance level, power, t-tests

Null Hypothesis Significance Testing p-values, significance level, power, t-tests Null Hypothesis Significance Testing p-values, significance level, power, t-tests 18.05 Spring 2014 January 1, 2017 1 /22 Understand this figure f(x H 0 ) x reject H 0 don t reject H 0 reject H 0 x = test

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Sellers MM, Keele LJ, Sharoky CE, Wirtalla C, Bailey EA, Kelz RR. Association of surgical practice patterns and clinical outcomes with surgeon training in university- or nonuniversity-based

More information

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2 Review 6 Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected ) A researcher finds that of,000 people who said that

More information

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides Chapter 7 Inference for Distributions Introduction to the Practice of STATISTICS SEVENTH EDITION Moore / McCabe / Craig Lecture Presentation Slides Chapter 7 Inference for Distributions 7.1 Inference for

More information

ECON Introductory Econometrics. Lecture 17: Experiments

ECON Introductory Econometrics. Lecture 17: Experiments ECON4150 - Introductory Econometrics Lecture 17: Experiments Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 13 Lecture outline 2 Why study experiments? The potential outcome framework.

More information

PubH 7405: REGRESSION ANALYSIS INTRODUCTION TO LOGISTIC REGRESSION

PubH 7405: REGRESSION ANALYSIS INTRODUCTION TO LOGISTIC REGRESSION PubH 745: REGRESSION ANALYSIS INTRODUCTION TO LOGISTIC REGRESSION Let Y be the Dependent Variable Y taking on values and, and: π Pr(Y) Y is said to have the Bernouilli distribution (Binomial with n ).

More information

CHAPTER 10 Comparing Two Populations or Groups

CHAPTER 10 Comparing Two Populations or Groups CHAPTER 10 Comparing Two Populations or Groups 10.1 Comparing Two Proportions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Comparing Two Proportions

More information

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions Chapter 9 Inferences from Two Samples 9. Inferences About Two Proportions 9.3 Inferences About Two s (Independent) 9.4 Inferences About Two s (Matched Pairs) 9.5 Comparing Variation in Two Samples Objective

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Pubh 8482: Sequential Analysis

Pubh 8482: Sequential Analysis Pubh 8482: Sequential Analysis Joseph S. Koopmeiners Division of Biostatistics University of Minnesota Week 12 Review So far... We have discussed the role of phase III clinical trials in drug development

More information

ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12

ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12 ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12 Winter 2012 Lecture 13 (Winter 2011) Estimation Lecture 13 1 / 33 Review of Main Concepts Sampling Distribution of Sample Mean

More information

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8 Concepts from previous lectures HUMBEHV 3HB3 one-sample t-tests Week 8 Prof. Patrick Bennett sampling distributions - sampling error - standard error of the mean - degrees-of-freedom Null and alternative/research

More information

DYNAMIC PREDICTION MODELS FOR DATA WITH COMPETING RISKS. by Qing Liu B.S. Biological Sciences, Shanghai Jiao Tong University, China, 2007

DYNAMIC PREDICTION MODELS FOR DATA WITH COMPETING RISKS. by Qing Liu B.S. Biological Sciences, Shanghai Jiao Tong University, China, 2007 DYNAMIC PREDICTION MODELS FOR DATA WITH COMPETING RISKS by Qing Liu B.S. Biological Sciences, Shanghai Jiao Tong University, China, 2007 Submitted to the Graduate Faculty of the Graduate School of Public

More information

Bootstrapping, Randomization, 2B-PLS

Bootstrapping, Randomization, 2B-PLS Bootstrapping, Randomization, 2B-PLS Statistics, Tests, and Bootstrapping Statistic a measure that summarizes some feature of a set of data (e.g., mean, standard deviation, skew, coefficient of variation,

More information

DIFFERENT APPROACHES TO STATISTICAL INFERENCE: HYPOTHESIS TESTING VERSUS BAYESIAN ANALYSIS

DIFFERENT APPROACHES TO STATISTICAL INFERENCE: HYPOTHESIS TESTING VERSUS BAYESIAN ANALYSIS DIFFERENT APPROACHES TO STATISTICAL INFERENCE: HYPOTHESIS TESTING VERSUS BAYESIAN ANALYSIS THUY ANH NGO 1. Introduction Statistics are easily come across in our daily life. Statements such as the average

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

Probability and Discrete Distributions

Probability and Discrete Distributions AMS 7L LAB #3 Fall, 2007 Objectives: Probability and Discrete Distributions 1. To explore relative frequency and the Law of Large Numbers 2. To practice the basic rules of probability 3. To work with the

More information

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur

Fundamentals to Biostatistics. Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Fundamentals to Biostatistics Prof. Chandan Chakraborty Associate Professor School of Medical Science & Technology IIT Kharagpur Statistics collection, analysis, interpretation of data development of new

More information

Inferences for Proportions and Count Data

Inferences for Proportions and Count Data Inferences for Proportions and Count Data Corresponds to Chapter 9 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Ramón V. León (University of Tennessee) 1 Inference

More information

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 9 Inferences from Two Samples 9-1 Overview 9-2 Inferences About Two Proportions 9-3

More information

Lecture (chapter 10): Hypothesis testing III: The analysis of variance

Lecture (chapter 10): Hypothesis testing III: The analysis of variance Lecture (chapter 10): Hypothesis testing III: The analysis of variance Ernesto F. L. Amaral March 19 21, 2018 Advanced Methods of Social Research (SOCI 420) Source: Healey, Joseph F. 2015. Statistics:

More information

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 4 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 9. and 9.3 Lecture Chapter 10.1-10.3 Review Exam 6 Problem Solving

More information

CHAPTER 9: HYPOTHESIS TESTING

CHAPTER 9: HYPOTHESIS TESTING CHAPTER 9: HYPOTHESIS TESTING THE SECOND LAST EXAMPLE CLEARLY ILLUSTRATES THAT THERE IS ONE IMPORTANT ISSUE WE NEED TO EXPLORE: IS THERE (IN OUR TWO SAMPLES) SUFFICIENT STATISTICAL EVIDENCE TO CONCLUDE

More information

Experiments & Observational Studies: Causal Inference in Statistics

Experiments & Observational Studies: Causal Inference in Statistics Experiments & Observational Studies: Causal Inference in Statistics Paul R. Rosenbaum Department of Statistics University of Pennsylvania Philadelphia, PA 19104-6340 1 A Causal Question At age 45, Ms.

More information

Quantile Regression for Residual Life and Empirical Likelihood

Quantile Regression for Residual Life and Empirical Likelihood Quantile Regression for Residual Life and Empirical Likelihood Mai Zhou email: mai@ms.uky.edu Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA Jong-Hyeon Jeong email: jeong@nsabp.pitt.edu

More information

Statistical Experiment A statistical experiment is any process by which measurements are obtained.

Statistical Experiment A statistical experiment is any process by which measurements are obtained. (التوزيعات الا حتمالية ( Distributions Probability Statistical Experiment A statistical experiment is any process by which measurements are obtained. Examples of Statistical Experiments Counting the number

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

Identification Analysis for Randomized Experiments with Noncompliance and Truncation-by-Death

Identification Analysis for Randomized Experiments with Noncompliance and Truncation-by-Death Identification Analysis for Randomized Experiments with Noncompliance and Truncation-by-Death Kosuke Imai First Draft: January 19, 2007 This Draft: August 24, 2007 Abstract Zhang and Rubin 2003) derives

More information

BIOS 2083: Linear Models

BIOS 2083: Linear Models BIOS 2083: Linear Models Abdus S Wahed September 2, 2009 Chapter 0 2 Chapter 1 Introduction to linear models 1.1 Linear Models: Definition and Examples Example 1.1.1. Estimating the mean of a N(μ, σ 2

More information

CBA4 is live in practice mode this week exam mode from Saturday!

CBA4 is live in practice mode this week exam mode from Saturday! Announcements CBA4 is live in practice mode this week exam mode from Saturday! Material covered: Confidence intervals (both cases) 1 sample hypothesis tests (both cases) Hypothesis tests for 2 means as

More information

the yellow gene from each of the two parents he wrote Experiments in Plant

the yellow gene from each of the two parents he wrote Experiments in Plant CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments offspring can have a yellow pod only if it inherits to study

More information

T test for two Independent Samples. Raja, BSc.N, DCHN, RN Nursing Instructor Acknowledgement: Ms. Saima Hirani June 07, 2016

T test for two Independent Samples. Raja, BSc.N, DCHN, RN Nursing Instructor Acknowledgement: Ms. Saima Hirani June 07, 2016 T test for two Independent Samples Raja, BSc.N, DCHN, RN Nursing Instructor Acknowledgement: Ms. Saima Hirani June 07, 2016 Q1. The mean serum creatinine level is measured in 36 patients after they received

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

INFERENCES ON MEDIAN FAILURE TIME FOR CENSORED SURVIVAL DATA

INFERENCES ON MEDIAN FAILURE TIME FOR CENSORED SURVIVAL DATA INFERENCES ON MEDIAN FAILURE TIME FOR CENSORED SURVIVAL DATA by Shaowu Tang B.S. in Applied Mathematics, Wuhan University, China, 1993 M.S. in Applied Mathematics, Wuhan University, China, 1996 Ph.D in

More information

hypotheses. P-value Test for a 2 Sample z-test (Large Independent Samples) n > 30 P-value Test for a 2 Sample t-test (Small Samples) n < 30 Identify α

hypotheses. P-value Test for a 2 Sample z-test (Large Independent Samples) n > 30 P-value Test for a 2 Sample t-test (Small Samples) n < 30 Identify α Chapter 8 Notes Section 8-1 Independent and Dependent Samples Independent samples have no relation to each other. An example would be comparing the costs of vacationing in Florida to the cost of vacationing

More information

β j = coefficient of x j in the model; β = ( β1, β2,

β j = coefficient of x j in the model; β = ( β1, β2, Regression Modeling of Survival Time Data Why regression models? Groups similar except for the treatment under study use the nonparametric methods discussed earlier. Groups differ in variables (covariates)

More information

Examine characteristics of a sample and make inferences about the population

Examine characteristics of a sample and make inferences about the population Chapter 11 Introduction to Inferential Analysis Learning Objectives Understand inferential statistics Explain the difference between a population and a sample Explain the difference between parameter and

More information

Two Sample Problems. Two sample problems

Two Sample Problems. Two sample problems Two Sample Problems Two sample problems The goal of inference is to compare the responses in two groups. Each group is a sample from a different population. The responses in each group are independent

More information

Sections 7.1 and 7.2. This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics

Sections 7.1 and 7.2. This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics Sections 7.1 and 7.2 This chapter presents the beginning of inferential statistics. The two major applications of inferential statistics Estimate the value of a population parameter Test some claim (or

More information

Chapter 23. Inference About Means

Chapter 23. Inference About Means Chapter 23 Inference About Means 1 /57 Homework p554 2, 4, 9, 10, 13, 15, 17, 33, 34 2 /57 Objective Students test null and alternate hypotheses about a population mean. 3 /57 Here We Go Again Now that

More information

COPYRIGHTED MATERIAL. Introduction CHAPTER 1

COPYRIGHTED MATERIAL. Introduction CHAPTER 1 CHAPTER 1 Introduction From helping to assess the value of new medical treatments to evaluating the factors that affect our opinions on various controversial issues, scientists today are finding myriad

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information