The Handbook of Essential Mathematics

Size: px
Start display at page:

Download "The Handbook of Essential Mathematics"

Transcription

1 Fo Pulic Relese: Distiutio Ulimited The Ai Foce Resech Lotoy The Hdook of Essetil Mthemtics Fomuls, Pocesses, d Tles Plus Applictios i Pesol Fice X Y Y XY Y X X XY X Y X XY Y Compiltio d Epltios: Joh C. Spks Editos: Dold D. Gegoy d Vicet R. Mille Fo Puic Relese: Distiutio Ulimited

2 The Hdook of Essetil Mthemtics Ai Foce Pulictio 6 Fo Pulic Relese: Distiutio Ulimited

3 Fowd Wight-Ptteso Ai Foce Bse WPAFB hs ejoyed legthy d distiguished histoy of sevig the Gete-Dyto commuity i viety of wys. Oe of these wys is though the WPAFB Eductiol Outech EO Pogm, fo which the Ai Foce Resech Lotoy AFRL is poud d cotiuous suppote, povidig oth techicl epetise fom ove pcticig scietists d egiees d ogoig esouces fo the vious pogms sposoed y the WPAFB Eductiol Outech. The missio of the WPAFB EO pogm is To fom leig pteships with the K- eductiol commuity i ode to icese studet weess d ecitemet i ll fields of mth, sciece, vitio, d eospce; ultimtely developig ou tio s futue scietific d techicl wokfoce. I suppot of this missio, the WPAFB EO spies to e the est oe-stop esouce fo ecougemet d ehcemet of K- sciece, mth d techology eductio thoughout the Uited Sttes Ai Foce. It is i this spiit tht AFRL offes The Hdook of Essetil Mthemtics, compedium of mthemticl fomuls d othe useful techicl ifomtio tht will well seve oth studets d teches like fom ely gdes though ely college. It is ou sicee hope tht you will use this esouce to eithe futhe you ow eductio o the eductio of those futue scietists d egiees so vitl to pesevig ou cheished Ameic feedoms. LESTER MCFAWN, SES Eecutive Diecto Ai Foce Resech Lotoy 3

4 Itoductio Fomuls! They seem to e the e of evey egiig mthemtics studet who hs yet to elize tht fomuls e out stuctue d eltioship d ot out memoiztio. Gted, fomuls hve to e memoized; fo, it is ptly though memoiztio tht we evetully ecome ucosciously competet : tue mste of ou skill, pcticig it i lmost effotless, utomtic sese. I mthemtics, eig ucosciously competet mes we hve msteed the udelyig lgeic lguge to the sme degee tht we hve msteed ou tive togue. Kowig fomuls d udestdig the esoig ehid them popels oe towds the od to mthemticl fluecy, so essetil i ou mode high-tech society. The Hdook of Essetil Mthemtics cotis thee mjo sectios. Sectio I, Fomuls, cotis most of the mthemticl fomuls tht peso would epect to ecoute though the secod ye of college egdless of mjo. I dditio, thee e fomuls ely see i such compiltios, icluded s mthemticl tet fo the iquisitive. Sectio I lso icludes select mthemticl pocesses, such s the pocess fo solvig lie equtio i oe ukow, with suppotig emples. Sectio II, Tles, icludes oth pue mth tles d physicl-sciece tles, useful i viety of disciples gig fom physics to usig. As i Sectio I, some tles e icluded just to utue cuiosity i spiit of fu. I Sectios I d II, ech fomul d tle is eumeted fo esy efel. Sectio III, Applictios i Pesol Fice, is smll tetook withi ook whee the lguge of lge is pplied to tht eveydy ficil wold ffectig ll of us thoughout ou lives fom ith to deth. Note: The ide of comiig mthemtics fomuls with ficil pplictios is ot oigil i tht my fthe hd simil type ook s Pudue egieeig studet i the ely 93s. I would like to tke this oppotuity to thk M. Al Gimoe Chim of the Deptmet of Mthemtics, Sicli Commuity College, Dyto, Ohio fo povidig equiedmemoiztio fomul lists fo Sicli mthemtics couses fom which the fomul compiltio ws ptilly uilt. Joh C. Spks Mch 6 4

5 Dedictio The Hdook of Essetil Mthemtics is dedicted to ll Ai Foce fmilies O Icus I ide high... With whoosh to my ck Ad o wid to my fce, Folded hds I quiet est Wtchig...O Icus... The clouds glide y, Thei fields f elow Of gold-illumed sow, Ple yellow, tquil moo To my ight Eveig sky. Ad Wight...O Icus... Mde it so Silveed chiot stekig O togues of fie lepig Ad I will soo e sleepig Aove you dems... August : Joh C. Spks th Aivesy of Poweed Flight

6 Tle of Cotets Sectio I: Fomuls with Select Pocesses Ide to Pocesses Pge 6. Alge 3.. Wht is Vile? 3.. Field Aioms 4.3. Divisiility Tests 5.4. Sutctio, Divisio, Siged Numes 6.5. Rules fo Fctios 8.6. Ptil Fctios 9.7. Rules fo Epoets.8. Rules fo Rdicls.9. Fcto Fomuls.. Lws of Equlity 4.. Lws of Iequlity 6.. Ode of Opetios 7.3. Thee Meigs of Equls 7.4. The Seve Petheses Rules 8.5. Rules fo Logithms 3.6. Comple Numes 3.7. Wht is Fuctio? 3.8. Fuctio Alge Qudtic Equtios & Fuctios 34.. Cdo s Cuic Solutio 36.. Theoy of Polyomil Equtios 37.. Detemits d Cme s Rule Biomil Theoem 4.4. Aithmetic Seies 4.5. Geometic Seies 4.6. Boole Alge 4.7. Vitio Fomuls 43 6

7 Tle of Cotets cot. Clssicl d Alytic Geomety 44.. The Pllel Postultes 44.. Agles d Lies Tigles Coguet Tigles Simil Tigles Pl Figues Solid Figues Pythgoe Theoem 5.9. Heo s Fomul 5.. Golde Rtio 53.. Distce d Lie Fomuls 54.. Fomuls fo Coic Sectios Coic Sectios 3. Tigoomety Bsic Defiitios: Fuctios & Iveses Fudmetl Defiitio-Bsed Idetities Pythgoe Idetities Negtive Agle Idetities Sum d Diffeece Idetities Doule Agle Idetities Hlf Agle Idetities Geel Tigle Fomuls Ac d Secto Fomuls Degee/Rdi Reltioship Additio of Sie d Cosie Pol Fom of Comple Numes Rectgul to Pol Coodites Tigoometic Vlues fom Right Tigles Elemety Vecto Alge Bsic Defiitios d Popeties Dot Poducts Coss Poducts Lie d Ple Equtios Miscelleous Vecto Equtios 67 7

8 Tle of Cotets cot 5. Elemety Clculus Wht is Limit? Wht is Diffeetil? Bsic Diffeetitio Rules Tscedetl Diffeetitio Bsic Atidiffeetitio Rules Tscedetl Atidiffeetitio Lies d Appoimtio Itepettio of Defiite Itegl Fudmetl Theoem of Clculus Geometic Itegl Fomuls Select Elemety Diffeetil Equtios Lplce Tsfom: Geel Popeties Lplce Tsfom: Specific Tsfoms Moey d Fice Wht is Iteest? Simple Iteest Compoud d Cotiuous Iteest Effective Iteest Rtes Peset-to-Futue Vlue Fomuls Peset Vlue of Futue Deposit Stem Peset Vlue of with Iitil Lump Sum Peset Vlue of Cotiuous Types o Retiemet Svigs Accouts Lo Amotiztio Auity Fomuls Mkup d Mkdow Clculus of Fice Poility d Sttistics Poility Fomuls Bsic Cocepts of Sttistics Mesues of Cetl Tedecy Mesues of Dispesio Smplig Distiutio of the Me Smplig Distiutio of the Popotio 9 8

9 Tle of Cotets cot Sectio II: Tles. Numeicl 94.. Fctos of Iteges though Pime Numes less th Rom Numel d Aic Equivlets Nie Elemety Memoy Numes Ameic Nmes fo Lge Numes Selected Mgic Sques Thitee-y-Thitee Multiplictio Tle.8. The Rdom Digits of PI.9. Stdd Noml Distiutio 3.. Two-Sided Studet s t Distiutio 4.. Dte d Dy of Ye 5. Physicl Scieces 6.. Covesio Fctos i Allied Helth 6.. Medicl Aevitios i Allied Helth 7.3. Wid Chill Tle 8.4. Het Ide Tle 8.5. Tempetue Covesio Fomuls 9.6. Uit Covesio Tle 9.7. Popeties of Eth d Moo.8. Metic System 3.9. Bitish System 4 Sectio III: Applictios i Pesol Fice. The Alge of Iteest 8.. Wht is Iteest? 8.. Simple Iteest.3. Compoud Iteest.4. Cotiuous Iteest 4.5. Effective Iteest Rte 9 9

10 Tle of Cotets cot. The Alge of the Nest Egg 35.. Peset d Futue Vlue 35.. Gowth of Iitil Lump Sum Deposit Gowth of Deposit Stem 4.4. The Two Gowth Mechisms i Cocet Summy 5 3. The Alge of Cosume Det Lo Amotiztio You Home Motgge C Los d Leses The Auity s Motgge i Revese The Clculus of Fice Jco Beoulli s Diffeetil Equtio Diffeetils d Iteest Rte Beoulli d Moey Applictios 9 Appedices A. Geek Alphet B. Mthemticl Symols C. My Most Used Fomuls 4

11 Sectio I Fomuls with Select Pocesses

12 Ide to Pocesses Pocess Whee i Sectio I. Comple Rtioliztio Pocess.8.. Qudtic Tiomil Fctoig Pocess Lie Equtio Solutio Pocess.. 4. Lie Iequlity Solutio Pocess Ode of Opetios.. 6. Ode of Opetios with Petheses Rules Logithmic Simplifictio Pocess Comple Nume Multiplictio Comple Nume Divisio.6.9. Pocess of Costuctig Ivese Fuctios.8.6. Qudtic Equtios y Fomul.9.3. Qudtic Equtios y Fctoig Cdo s Cuic Solutio Pocess Cme s Rule, Two-y-Two System Cme s Rule, Thee-y-Thee System Removl of y Tem i Coic Sectios The Lie Fist-Ode Diffeetil Equtio Medi Clcultio 7.3.6

13 . Alge.. Wht is Vile? I the fll of 96, I fist ecouteed the moste clled i my high-school feshm lge clss. The lette is still moste to my, whose el tue hs ee cofused y such wods s vile d ukow: pehps the most hoifyig desciptio of eve iveted! Actully, is vey esily udestood i tems of lguge metpho. I Eglish, we hve oth pope ous d poous whee oth e distict d diffeet pts of speech. Pope ous e specific pesos, plces, o thigs such s Joh, Ohio, d Toyot. Poous e ospecific pesos o etities such s he, she, o it. To see how the cocept of poous d ous pplies to lge, we fist emie ithmetic, which c e thought of s pecise lguge of qutifictio hvig fou ctio ves, ve of eig, d pletho of pope ous. The fou ctio ves e dditio, sutctio, multiplictio, d divisio deoted espectively y,,,. The ve of eig is clled equls o is, 3 deoted y. Specific umes such s, 3. 45, 3 5, 3 769,.4563, 45,, seve s the ithmeticl equivlet to pope ous i Eglish. So, wht is? is meely ospecific ume, the mthemticl equivlet to poou i Eglish. Eglish poous getly epd ou cpility to descie d ifom i geel fshio. Hece, poous dd icesed fleiility to the Eglish lguge. Likewise, mthemticl poous such s, y, z, see Appedi B fo list of symols used i this ook getly epd ou cpility to qutify i geel fshio y ddig fleiility to ou lguge of ithmetic. Aithmetic, with the dditio of, y, z d othe mthemticl poous s ew pt of speech, is clled lge. I Summy: Alge c e defied s geelized ithmetic tht is much moe poweful d fleile th stdd ithmetic. The icesed cpility of lge ove ithmetic is due to the iclusio of the mthemticl poou d its ssocites y, z, etc. A moe use-fiedly me fo vile o ukow is poume. 3

14 .. Field Aioms The field ioms decee the fudmetl opetig popeties of the el ume system d povide the sis fo ll dvced opetig popeties i mthemtics. Let, & c e y thee el umes poumes. The field ioms e s follows. Popeties Additio Multiplictio. Closue is uique el ume is uique el ume Commuttive Associtive c c c c Idetity Ivese Distiutive o Likig Popety Tsitivity Note: c c & c c > & > c > c < & < c < c e ltete epesettios of 4

15 .3. Divisiility Tests Diviso Coditio Tht Mkes it So The lst digit is,,4,6, o 8 3 The sum of the digits is divisile y 3 4 The lst two digits e divisile y 4 5 The lst digit is o 5 6 The ume is divisile y oth d 3 The ume fomed y ddig five times the lst 7 digit to the ume defied y the emiig digits is divisile y 7** 8 The lst thee digits e divisile y 8 9 The sum of the digits is divisile y 9 The lst digit is divides the ume fomed y sutctig two times the lst digit fom the emiig digits** The ume is divisile y oth 3 d divides the ume fomed y ddig fou times the lst digit to the emiig digits** 4 The ume is divisile y oth d 7 5 The ume is divisile y oth 3 d divides the ume fomed y sutctig five times the lst digit fom the emiig digits** 9 9 divides the ume fomed y ddig two times the lst digit to the emiig digits** 3 3 divides the ume fomed y ddig seve times the lst digit to the emiig digits** 9 9 divides the ume fomed y ddig thee times the lst digit to the emiig digits** 3 divides the ume fomed y sutctig 3 thee times the lst digit fom the emiig digits** 37 divides the ume fomed y sutctig 37 eleve times the lst digit fom the emiig digits** **These tests e itetive tests i tht you cotiue to cycle though the pocess util ume is fomed tht c e esily divided y the diviso i questio. 5

16 .4. Sutctio, Divisio, Siged Numes.4.. Defiitios: Sutctio: Divisio:.4.. Altete epesettio of :.4.3. Divisio Popeties of Zeo Zeo i umeto: Zeo i deomito: is udefied Zeo i oth: is udefied.4.4. Demosttio tht divisio-y-zeo is udefied c c fo ll el umes c, the c fo ll el umes, If lgeic impossiility.4.5. Demosttio tht ttempted divisio-y-zeo leds to eoeous esults. y Let ; the multiplyig oth sides y gives y y y y y y y y Dividig oth sides y y whee y gives y y y y. The lst equlity is flse sttemet. 6

17 .4.6. Siged Nume Multiplictio:.4.7. Tle fo Multiplictio of Siged Numes: the itlicized wods i the ody of the tle idicte the esultig sig of the ssocited poduct. Multiplictio of Sig of Sig of Plus Mius Plus Plus Mius Mius Mius Plus.4.8. Demosttio of the lgeic esoleess of the lws of multiplictio fo siged umes. I oth colums, oth the middle d ightmost umes decese i the epected logicl fshio

18 .5. Rules fo Fctios c Let d e fctios with d d. d c d c c c c c.5.. Fctiol Equlity: d c.5.. Fctiol Equivlecy:.5.3. Additio like deomitos:.5.4. Additio ulike deomitos: c d c d c d d d d Note: d is the commo deomito.5.5. Sutctio like deomitos:.5.6. Sutctio ulike deomitos: c d c d.5.7. Multiplictio:.5.8. Divisio:.5.9. Divisio missig qutity:.5.. Reductio of Comple Fctio:.5.. Plcemet of Sig: c c c c c d d d d c c d d c d d c d c c c c c c d d c d c c 8

19 9.6. Ptil Fctios Let P e polyomil epessio with degee less th the degee of the fctoed deomito s show..6.. Two Distict Lie Fctos: B A P The umetos B A, e give y P B P A,.6.. Thee Distict Lie Fctos: c C B A c P The umetos C B A,, e give y,, c c c P C c P B c P A.6.3. N Distict Lie Fctos: i i i i i A P with i j j j i i i P A

20 .7. Rules fo Epoets.7.. Additio: m m.7.. Sutctio: m m.7.3. Multiplictio: m m.7.4. Distiuted ove Simple Poduct:.7.5. Distiuted ove Comple Poduct: p m p m.7.6. Distiuted ove Simple Quotiet:.7.7. Distiuted ove Comple Quotiet: p m p m.7.8. Defiitio of Negtive Epoet:.7.9. Defiitio of Rdicl Epessio:.7.. Defiitio whe No Epoet is Peset:.7.. Defiitio of Zeo Epoet:.7.. Demosttio of the lgeic esoleess of the defiitios fo d vi successive divisios y. Notice the powe deceses y with ech divisio [] [] []

21 .8. Rules fo Rdicls.8.. Bsic Defiitios: d.8.. m Comple Rdicl:.8.3. m m m Associtive:.8.4. Simple Poduct:.8.5. Simple Quotiet:.8.6. Comple Poduct: m m m.8.7. Comple Quotiet: m m.8.8. m m Nestig:.8.9. Rtiolizig Numeto fo > m :.8.. Rtiolizig Deomito fo > m :.8.. Comple Rtioliztio Pocess: c c c c c c c m m m m m Numeto: c c c.8.. Defiitio of Sud Pis: If ± the the ssocited sud is give y is dicl epessio, m.

22 .9. Fcto Fomuls.9.. Simple Commo Fcto: c c c.9.. Gouped Commo Fcto: d c d c c c d c dc d c.9.3. Diffeece of Sques:.9.4. Epded Diffeece of Sques: c c c.9.5. Sum of Sques: i i i comple.9.6. Pefect Sque: ± ±.9.7. Geel Tiomil:.9.8. Sum of Cues: Diffeece of Cues: Diffeece of Fouths: Powe Reductio to Itege: Powe Reductio to Rdicl:.9.3. Powe Reductio to Itege plus Rdicl:

23 .9.4. Qudtic Tiomil Fctoig Pocess c Let e qudtic tiomil whee the thee coefficiets,, c e iteges. M, N such tht Step : Fid iteges M N. M N c Step : Sustitute fo, c M N c Step 3: Fcto y Goupig.9. M N c M N M N M M N M N Note: if thee e o pi of iteges M, N with oth M N d M N c the the qudtic tiomil is pime. Emple: Fcto the epessio 3 7. : MN 7 4 & M N 3 M 4, N : :

24 .. Lws of Equlity Let A B e lgeic equlity dc, D e y qutities.... Additio: A C B C... Sutctio: A C B C..3. Multiplictio: A C B C..4. Divisio: A B povided C C C..5. Epoet: A B povided is itege..6. Recipocl: povided A, B A B C D..7. Mes & Etemes: CB AD if A, B A B..8. Zeo Poduct Popety: A B A o B..9. The Cocept of Equivlecy Whe solvig equtios, the Lws of Equlity with the eceptio of..5, which poduces equtios with et o eteous solutios i dditio to those fo the oigil equtio e used to mufctue equtios tht e equivlet to the oigil equtio. Equivlet equtios e equtios tht hve ideticl solutios. Howeve, equivlet equtios e ot ideticl i ppece. The gol of y equtio-solvig pocess is to use the Lws of Equlity to cete successio of equivlet equtios whee ech equtio i the equivlecy chi is lgeiclly simple th the pecedig oe. The fil equtio i the chi should e epessio of the fom, the o-ie fom tht llows the solutio to e immeditely detemied. I tht lgeic mistkes c e mde whe poducig the equivlecy chi, the fil swe must lwys e checked i the oigil equtio. Whe usig..5, oe must check fo eteous solutios d delete them fom the solutio set.... Lie Equtio Solutio Pocess Stt with the geel fom L R whee L d R e fist-degee polyomil epessios o the left-hd side d ight-hd side of the equls sig. 4

25 Step : Usig pope lge, idepedetly comie like tems fo oth L d R Step : Use.. d.. o s-eeded sis to cete equivlet equtio of the fom. Step 3: use eithe..3 o..4 to cete the fil equivlet fom fom which the solutio is esily deduced. Step 4: Check solutio i oigil equtio. Emple: Solve 4{3[7 y 3 9] y 9} 5 y 3. : 4{3[7 y 3 9] y 9} 5 y 3 4{3[7 y 9] y 8} 5y 5 3 4{3[7 y ] y 8} 5y 8 4{y 36 y 8} 5y 8 4{3y 54} 5y 8 9y 6 5y 8 9y 7 5y 8 : 9y 7 5y 8 9y 5y 7 5y 5y 8 87y y y 9 3 :87y 9 9 y : Check the fil swe y i the oigil equtio 87 4{3[7 y 3 9] y 9} 5 y 3. 5

26 .. Lws of Iequlity Let A > B e lgeic iequlity d C e y qutity.... Additio: A C > B C... Sutctio: A C > B C C > A C > B C..3. Multiplictio: C < A C < B C A B C > > C C..4. Divisio: A B C < < C C..5. Recipocl: < povided A, B A B Simil lws hold fo A < B, A B, d A B. Whe multiplyig o dividig y egtive C, oe must evese the diectio of the oigil iequlity sig. Replcig ech side of the iequlity with its ecipocl lso eveses the diectio of the oigil iequlity...6. Lie Iequlity Solutio Pocess Stt with the geel fom L > R whee L d R e s descied i... Follow the sme fou-step pocess s tht give i.. modifyig pe the checks elow. Revese the diectio of the iequlity sig whe multiplyig o dividig oth sides of the iequlity y egtive qutity. Revese the diectio of the iequlity sig whe eplcig ech side of iequlity with its ecipocl. The fil swe will hve oe the fou foms >,, <, d. Oe must ememe tht i of the fou cses, hs ifiitely my solutios s opposed to oe solutio fo the lie equtio. 6

27 .. Ode of Opetios Step : Pefom ll powe isigs i the ode they occu fom left to ight Step : Pefom ll multiplictios d divisios i the ode they occu fom left to ight Step 3: Pefom ll dditios d sutctios i the ode they occu fom left to ight Step 4: If petheses e peset, fist pefom steps though 3 o s-eeded sis withi the iemost set of petheses util sigle ume is chieved. The pefom steps though 3 gi, o s-eeded sis fo the et level of petheses util ll petheses hve ee systemticlly emoved. Step 5: If fctio is peset, simulteously pefom steps though 4 fo the umeto d deomito, tetig ech s totlly-septe polem util sigle ume is chieved. Oce sigle umes hve ee chieved fo oth the umeto d the deomito, the fil divisio c e pefomed..3. Thee Meigs of Equls. Equls is the mthemticl equivlet of the Eglish ve is, the fudmetl ve of eig. A simple ut sutle use of equls i this fshio is.. Equls implies equivlecy of mig i tht the sme udelyig qutity is eig med i two diffeet wys. This c e illustted y the epessio 3 MMIII. Hee, the two divese symols o oth sides of the equls sig efe to the sme d ect udelyig qutity. 3. Equls sttes the poduct eithe itemedite o fil tht esults fom pocess o ctio. Fo emple, i the epessio 4, we e ddig two umes o the lefthd side of the equls sig. Hee, dditio c e viewed s pocess o ctio etwee the umes d. The esult o poduct fom this pocess o ctio is the sigle ume 4, which ppes o the ight-hd side of the equls sig. 7

28 .4. The Seve Petheses Rules.4.. Cosecutive pocessig sigs,,, e septed y petheses..4.. Thee o moe cosecutive pocessig sigs e septed y ested pethesis whee the ightmost sig will e i the iemost set of petheses Nested petheses e typiclly witte usig the vious cketig symols to fcilitte edig The ightmost pocessig sig d the ume to the immedite ight of the ightmost sig e oth eclosed withi the sme set of petheses Petheses my eclose siged o usiged ume y itself ut eve sig y itself Moe th oe ume c e witte iside set of petheses depedig o wht pt of the ovell pocess is emphsized Whe petheses septe umes with o iteveig multiplictio sig, multiplictio is udestood. The sme is tue if just oe plus o mius sig septes the two umes d the petheses eclose oth the ightmost ume d the septig sig Demosttig the Seve Bsic Petheses Rules 5 : Popely witte s 5..4., : Popely witte s 5..4., : Popely witte s 5 [ ]..4. thu 4 5 : Icoect pe : Coect pe.4.,.4.4, : Does ot eed petheses to chieve septio sice the 5 seves the sme pupose. Ay use of petheses would e optiol 5 : The optiol petheses, though ot eeded, emphsize the egtive5 pe : The optiol petheses emphsize the fct tht the fil outcome is egtive pe.4.5,.4.6 8

29 4 : The mdtoy petheses idicte tht 4 is multiplyig. Without the petheses, the epessio would e popely ed s the sigle ume 4, : The mdtoy petheses idicte tht 7 is multiplyig 5. Without the iteveig petheses, the epessio is popely ed s the diffeece 7 5, : The mdtoy petheses idicte tht 3 is multiplyig 5. The epessio 3 5 lso sigifies the sme, Demosttio of Use of Ode-of-Opetios with Petheses Rules to Reduce Rtiol Epessio { 8} { 8} [8 8]

30 .5. Rules fo Logithms.5.. Defiitio of Logithm to Bse > : y log if d oly if y.5.. Logithm of the Sme Bse: log.5.3. Logithm of Oe: log.5.4. Logithm of the Bse to Powe: log p p log p.5.5. Bse to the Logithm: p.5.6. Nottio fo Logithm Bse : Log log.5.7. Nottio fo Logithm Bse e : l log log N.5.8. Chge of Bse Fomul: log N log.5.9. Poduct: log MN log N log M M.5.. Quotiet: log log M log N N p.5.. Powe: log N plog N.5.. Logithmic Simplifictio Pocess m A B Let X, the p C m A B log X log p C m p log X log A B log C log X log log X log m p A log B log C A mlog B p log C Note: The use of logithms tsfoms comple lgeic epessios whee poducts ecome sums, quotiets ecome diffeeces, d epoets ecome coefficiets, mkig the mipultio of these epessios esie i some istces. e 3

31 .6. Comple Numes.6.. Defiitio of the imgiy uit i : i is defied to e the solutio to the equtio..6.. Popeties of the imgiy uit i : i i i.6.3. Defiitio of Comple Nume: Numes of the fom i whee, e el umes.6.4. Defiitio of Comple Cojugte: i i.6.5. Defiitio of Comple Modulus: i.6.6. Additio: i c di c d i.6.7. Sutctio: i c di c d i.6.8. Pocess of Comple Nume Multiplictio i c di c d c i di c d c i d c d d c i.6.9. Pocess of Comple Nume Divisio i c di i c di c di c di i c di c di c di c d c d i c d c d c d i c d c d 3

32 .7. Wht is Fuctio? The mthemticl cocept clled fuctio is foudtiol to the study of highe mthemtics. With this sttemet i mid, let us defie i wokig sese the wod fuctio: A fuctio is y pocess whee umeicl iput is tsfomed ito umeicl output with the opetig estictio tht ech uique iput must led to oe d oly oe output. Fuctio Nme f Iput Side Pocessig Rule f Output Side The ove figue is digm of the geel fuctio pocess fo fuctio med f. Fuctio mes e usully lowe-cse lettes, f, g, h, etc. Whe mthemtici sys, let f e fuctio, the etie iput-output pocess stt to fiish comes ito discussio. If two diffeet fuctio mes e eig used i oe discussio, the two diffeet fuctios e eig discussed, ofte i tems of thei eltioship to ech othe. The vile is the idepedet o iput vile; it is idepedet ecuse y specific iput vlue c e feely chose. Oce specific iput vlue is chose, the fuctio the pocesses the iput vlue vi the pocessig ule i ode to cete the output vile f, lso clled the depedet vile sice the vlue of f is etiely detemied y the ctio of the pocessig ule upo. Notice tht the comple symol f eifoces the fct tht output vlues e ceted y diect ctio of the fuctio pocess f upo the idepedet vile. Sometimes, simple y will e used to epeset the output vile f whe it is well udestood tht fuctio pocess is ideed i plce. Two moe defiitios e oted. The set of ll possile iput vlues fo fuctio f is clled the domi d is deoted y the symol Df. The set of ll possile output vlues is clled the ge d is deoted y Rf. 3

33 .8. Fuctio Alge Let f d g e fuctios, d let f e the ivese fo f.8.. Ivese Popety: f f f [ ] [ f ].8.. Additio/Sutctio: f ± g f ± g.8.3. Multiplictio: f g f g f f g g.8.4. Divisio: ; g g f f f o g f [ g ].8.5. Compositio: g o f g[ f ].8.6. Pocess fo Costuctig Ivese Fuctios Step : Stt with f f, the pocess equlity tht must e i plce fo ivese fuctio to eist. Step : Replce f with y to fom the equlity f y. Step 3: Solve fo y i tems of. The esultig y is f. Step 4: Veify y the popety f f f f Demosttio of.8.6: Fid f fo f 3. : f f : y 3 : y y 4 : f : f f f f

34 .9. Qudtic Equtios & Fuctios.9.. Defiitio d Discussio A complete qudtic equtio i stdd fom edy-to-esolved is equtio hvig the lgeic stuctue c whee,, c. If eithe o c, the qudtic equtio is clled icomplete. If, the qudtic equtio educes to lie equtio. All qudtic equtios hve ectly two solutios if comple solutios e llowed. Solutios e otied y eithe fctoig o y use of the qudtic fomul. If, withi the cotet of pticul polem comple solutios e ot dmissile, qudtic equtios c hve up to two el solutios. As with ll el-wold pplictios, the ume of dmissile solutios depeds o cotet..9.. Qudtic Fomul with Developmet: c c 4 ± ± c 4c 4 4c 4 4c.9.3. Solutio of Qudtic Equtios y Fomul To solve qudtic equtio usig the qudtic fomul the moe poweful of two commo methods fo solvig qudtic equtios pply the followig fou steps. Step : Rewite the qudtic equtio so it mtches the stdd fom c. 34

35 Step : Idetify the two coefficiets d costt tem,,& c. Step 3: Apply the fomul d solve. Step 4: Check you swes i the oigil equtio Solutio Discimito: 4c 4c > two el solutios 4c oe el solutio of multiplicity two two comple cojugtes solutios 4c <.9.5. Solutio whe & : c c.9.6. Solutio of Qudtic Equtios y Fctoig To solve qudtic equtio usig the fctoig method, pply the followig fou steps. Step : Rewite the qudtic equtio i stdd fom Step : Fcto the left-hd side ito two lie fctos usig the qudtic tiomil fctoig pocess.9.4. Step 3: Set ech lie fcto equl to zeo d solve. Step 4: Check swes i the oigil equtio Note: Use the qudtic fomul whe qudtic equtio cot e fctoed o is hd to fcto Qudtic-i-Fom Equtio: U U c whee U is lgeic epessio of vyig compleity Defiitio of Qudtic Fuctio: 4c f c Ais of Symmety fo Qudtic Fuctio: 4c.9.. Vete fo Qudtic Fuctio:, 4 35

36 .. Cdo s Cuic Solutio d 3 Let c e cuic equtio witte i stdd fom with Step : Set y. Afte this sustitutio, the ove cuic 3 3 c ecomes y py q whee p d 3 c q d Step : Defie u & v such tht y u v d p 3uv 3 Step 3: Sustitute fo y & p i the equtio y py q p This leds to u qu, which is qudtici-fom i u 7 3. Step 4: Use the qudtic fomul.9.3 to solve fo u q 4 3 q 3 7 p 3 u Step 5: Solve fo u 3 u & v whee q q 4 7 p v to oti 3u 3 p q 3 & v q 4 7 p 3 Step 6: Solve fo whee y 3 u v 3 36

37 .. Theoy of Polyomil Equtios... Let P e polyomil witte i stdd fom. The Eight Bsic Theoems... Fudmetl Theoem of Alge: Evey polyomil P of degee N hs t lest oe solutio fo which P. This solutio my e el o comple i.e. hs the fom i.... Numes Theoem fo Roots d Tuig Poits: If P is polyomil of degee N, the the equtio P hs up to N el solutios o oots. The equtio P hs ectly N oots if oe couts comple solutios of the fom i. Lstly, the gph of P will hve up to N tuig poits which icludes oth eltive mim d miim...3. Rel Root Theoem: If P is of odd degee hvig ll el coefficiets, the P hs t lest oe el oot...4. Rtiol Root Theoem: If P hs ll itege coefficiets, the y tiol oots fo the equtio P p must hve the fom q whee p is fcto of the costt coefficiet d q is fcto of the led coefficiet. Note: This esult is used to fom tiol-oot possiility list...5. Comple Cojugte Pi Root Theoem: Suppose P hs ll el coefficiets. If i is oot fo P with P i, the P i...6. Itiol Sud Pi Root Theoem: Suppose P hs ll tiol coefficiets. If is oot fo P with P, the P. 37

38 ..7. Remide Theoem: If P is divided y c, the the emide R is equl to P c. Note: this esult is etesively used to evlute give polyomil P t vious vlues of...8. Fcto Theoem: If c is y ume with P c, the c is fcto of P. This mes P c Q whee Q is ew, educed polyomil hvig degee oe less th P. The covese P c Q P c is lso tue. The Fou Advced Theoems..9. Root Loctio Theoem: Let, e itevl o the is with P P <. The thee is vlue, such tht P.... Root Boudig Theoem: Divide P y d to oti P d Q R. Cse d > : If oth R d ll the coefficiets of Q e positive, the P hs o oot > d. Cse d < : If the oots of Q ltete i sig with the emide R i syc t the ed the P hs o oot < d. Note: Coefficiets of zeo c e couted eithe s positive o egtive which eve wy helps i the susequet detemitio.... Desctes Rule of Sigs: Age P i stdd ode s show i the title. The ume of positive el solutios equls the ume of coefficiet sig vitios o tht ume decesed y eve ume. Likewise, the ume of egtive el solutios equls the ume of coefficiet sig vitios i o tht ume decesed y eve ume. P... Tuig Poit Theoem: Let polyomil P hve degee N. The the ume of tuig poits fo polyomil P c ot eceed N. 38

39 .. Detemits d Cme s Rule... Two y Two Detemit Epsio: d c c d... Thee y Thee Detemit Epsio: c e f d f d e d e f c h i g i g h g h i ei fh di fg c dh eg ei hf fg di cdh ceg..3. Cme s Rule fo Two-y-Two Lie System Give y e c dy f with D c d The e f d d D y e c f D..4. Cme s Rule fo Thee-y-Thee Lie System Give y cz j c d ey fz k with D d e f g hy iz l g h i The j c j c k e f d k f l h i g l i, y, z D D d g e h D j k l 39

40 D..5. Solutio Types i i D D, D i i D i, D i hs ifiite solutios D i, D i hs uique solutio D i, D i hs o solutio i.3. Biomil Theoem Let d e positive iteges with..3.. Defiitio of!:!...,.3.. Specil Fctoils:! d!!.3.3. Comitoil Symol:!!.3.4. Summtio Symols:... i 3 4 i i k k k k 3... i k.3.5. Biomil Theoem: i i i.3.6. Sum of Biomil Coefficiets whe : i i i i.3.7. Fomul fo the th Tem: i 4

41 :.3.8. Pscl s Tigle fo Aithmetic Seies.4.. Defiitio: S i i whee is the commo icemet.4.. Summtio Fomul fo S : S [ ].5. Geometic Seies i.5.. Defiitio: G whee is the commo tio i.5.. Summtio Fomul fo G : G i G G i G i G i i i i i i.5.3. Ifiite Sum Povided < < : i i i 4

42 .6. Boole Alge I the followig tles, the popositios o Flse F..6.. Elemety Tuth Tle: p & q e eithe Tue T d : o : egtio ~: implies, p q ~ p ~ q p q p q p q p q T T F F T T T T T F F T F T F F F T T F F T F F F F T T T F T T.6.. Tuth Tle fo the Eclusive O p q p e q T T F T F T F T T F F F e :.6.3. Modus Poes: Let p q & p T. The, q T Chi Rule: Let p q & q. The p T Modus Tolles: Let p q & q F. The ~ q ~ p T Fllcy of Affimig the Cosequet: Let p q & q T.The q p F Fllcy of Deyig the Atecedet: Let p q & p F. The ~ p ~ q F Disjuctive Syllogism fo the Eclusive O: p Let p e q T & q F. The T 4

43 .6.9. Demosttio tht the Eglish doule-egtive i the slg epessio I do t got oe ctully ffims the opposite of wht is iteded. Step Phse Commet I do ot hve y The oigil popositio p s iteded I do hve oe Assume p T I do ot hve oe Negtio of p : ~ p F 3 I do t hve oe Pope cotcted fom of 3: ~ p F 4 I do t got oe Slg vesio of 3 5 I hve some Logicl cosequece of 3: ~ p F ~ ~ p T.7. Vitio o Popotiolity Fomuls.7.. Diect: y k k.7.. Ivese: y.7.3. Joit: z ky k.7.4. Ivese Joit: z y.7.5. Diect to Powe: y k k.7.6. Ivese to Powe: y 43

44 . Geomety.. The Pllel Postultes... Let poit eside outside give lie. The thee is ectly oe lie pssig though the poit pllel to the give lie.... Let poit eside outside give lie. The thee is ectly oe lie pssig though the poit pepedicul to the give lie...3. Two lies oth pllel to thid lie e pllel to ech othe...4. If tsvese lie itesects two pllel lies, the coespodig gles i the figues so fomed e coguet...5. If tsvese lie itesects two lies d mkes coguet, coespodig gles i the figues so fomed, the the two oigil lies e pllel... Agles d Lies α β α β α β 8 α β 9... Complimety Agles: Two gles α, β with α β 9. 44

45 ... Supplemety Agles: Two gles α, β with α β Lie Sum of Agles: The sum of the two gles α, β fomed whe stight lie is itesected y lie segmet is equl to Acute Agle: A gle less th..5. Right Agle: A gle ectly equl to Otuse Agle: A gle gete th 9.3. Tigles γ α β γ 8 α c β.3.. Tigul Sum of Agles: The sum of the thee iteio gles α, β, γ i y tigle is equl to Acute Tigle: A tigle whee ll thee iteio glesα, β, γ e cute.3.3. Right Tigle: A tigle whee oe iteio gle fom the tid α, β, γ is equl to Otuse Tigle: A tigle whee oe iteio gle fom the tid α, β, γ is gete th Sclee Tigle: A tigle whee o two of the thee side-legths,, c e equl to othe.3.6. Isosceles Tigle: A tigle whee ectly two of the side-legths,, c e equl to ech othe.3.7. Equiltel Tigle: A tigle whee ll thee sidelegths,, c e ideticl c o ll thee gles α, β, γ e equl with α β γ 6 45

46 .3.8. Coguet Tigles: Two tigles e coguet equl if they hve ideticl iteio gles d side-legths Simil Tigles: Two tigles e simil if they hve ideticl iteio gles..3.. Icluded Agle: The gle tht is etwee two give sides.3.. Opposite Agle: The gle opposite give side.3.. Icluded Side: The side tht is etwee two give gles.3.3. Opposite Side: The side opposite give gle.4. Coguet Tigles Give the coguet two tigles s show elow γ e ω d α c β φ.4.. Side-Agle-Side SAS: If y two side-legths d the icluded gle e ideticl, the the two tigles e coguet. Emple: & α & c e & φ & f.4.. Agle-Side-Agle ASA: If y two gles d the icluded side e ideticl, the the two tigles e coguet. Emple: α & c & β φ & f & ϕ.4.3. Side-Side-Side SSS: If the thee side-legths e ideticl, the the tigles e coguet. Emple: & c & e & f & d.4.4. Thee Attiutes Ideticl: If y thee ttiutes side-legths d gles e equl with t lest oe ttiute eig side-legth, the the two tigles e coguet. These othe cses e of the fom Agle-Agle-Side AAS o Side-Side-Agle SSA. Emple SSA: & & β e & d & ϕ Emple AAS: & & & & d f α β φ ϕ ϕ 46

47 .5. Simil Tigles Give the two simil tigles s show elow ω γ e d α β c φ ϕ f.5.. Miiml Coditio fo Simility: If y two gles e ideticl AA, the the tigles e simil. Suppose The α φ & β ϕ α β γ 8 α 8 β γ 8 & φ ϕ ϖ 8 ϕ ϖ φ.5.. Rtio lws fo Simil Tigles: Give simil c tigles s show ove, the e f d.6. Pl Figues A is the pl e, P is the peimete, is the ume of sides..6.. Degee Sum of Iteio Agles i Geel Polygo: D 8 [ ] D 54 6 D Sque: A s : P 4s, s is the legth of side s 47

48 .6.3. Rectgle: A h : P h, & h e the se d height h.6.4. Tigle: A h, & h e the se d ltitude h.6.5. Pllelogm: A h, & h e the se d ltitude h.6.6. Tpezoid: A B h, B & e the two pllel ses d h is the ltitude h B π π.6.7. Cicle: A : P whee is the dius, o P πd whee d, the dimete Ellipse: A π ; & e the hlf legths of the mjo & mio es 48

49 .7. Solid Figues A is totl sufce e, V is the volume.7.. Cue: A 6s V s 3 :, s is the legth of side s π Sphee: A 4 : V, is the dius 3 π.7.3. Cylide: A π πl : V π l, & l the dius d legth l e.7.4. Coe: A π πt : V π h, & t & h e the dius, slt height, d ltitude 3 h t 49

50 .7.5. Pymid sque se: A s st : V 3 s h, s & t & h e the side, slt height, d ltitude s h t.8. Pythgoe Theoem.8.. Sttemet: Let ight tigle ABC hve oe side AC of legth, secod side AB of legth y, d hypoteuse log side BC of legth z. The z y B y A z C.8.. Tditiol Algeic Poof: Costuct ig sque y igig togethe fou coguet ight tigles. z y 5

51 The e of the ig sque is give y A y A z 4. Equtig: y y z 4 z y, o equivletly y y y y z y z y Visul Pe-Algeic Pythgoe Poof: The ide is to oseve tht the two five-sided iegul polygos o eithe side of the dotted lie hve equivlet es. Tkig wy thee coguet ight tigles fom ech e leds to the desied Pythgoe equlity Pythgoe Tiples: Positive iteges, such tht L M N L M, N.8.5. Geetig Fomuls fo Pythgoe tiples: Let m, with m > > e iteges. The, N m, d M m L m 5

52 5.9. Heo s Fomul Let c s e the semi-peimete of geel tigle d A e the itel e eclosed y the sme..9.. Heo s Fomul: c s s s s A.9.. Deivtio Usig Pythgoe Theoem: : Cete two equtios fo the ukows h d : : c h E h E : Sutct E fom E d solve fo c c c c c : 3 Sustitute the vlue fo ito E c c h : 4 Solve fo h [ ] 4 4 c c c h c h c

53 53 [ ] { } [ ] { } [ ] { }[ ] { } { }{ }{ }{ } c c c c c h c c c h c c c c c h : 5 Solve fo e usig ch A. { }{ }{ }{ } { }{ }{ }{ } 6 4 c c c c A c c c c c c A : 6 Sustitute c s d simplify. } { c s s s s A s s s c s A s s s c s A.. Golde Rtio... Defiitio: Let p e the semi-peimete of ectgle whose se d height e i the popotio show, defiig the Golde Rtioφ. Solvig fo leds to 68. φ. φ

54 ... Golde Tigles: Tigles whose sides e popotioed to the Golde Rtio. Two emples e show elow. B B 36 φ 8 C 7 A C A D.. Distce d Lie Fomuls Let, y d, y e two poits whee >.... -D Distce Fomul: D y y... 3-D Distce Fomul: Fo the poits, y, z d, y,, z y y z y y D z..3. Midpoit Fomul:, Lie Fomuls y y..4. Slope of Lie: m..5. Poit/Slope Fom: y y m..6. Geel Fom: A By C..7. Slope/Itecept Fom: y m whee, m d, e the d y Itecepts: 54

55 y..8. Itecept/Itecept Fom: whee, d, e the d y itecepts..9. Slope Reltioship etwee two Pllel Lies L d L hvig slopes m d m : m m... Slope Reltioship etwee two Pepedicul Lies L d L hvig slopes m d m : m m... Slope of Lie Pepedicul to Lie of Slope m : m.. Fomuls fo Coic Sectios... Geel: A By Cy D Ey F... Cicle of Rdius Ceteed t h, k : h y k..3. Ellipse Ceteed t h y k h, k : I If >, the two foci e o the lie y k d e give y h c, k & h c, k whee. II If >, the two foci e o the lie h d e give y h, k c & h, k c whee c...4. Hypeol Ceteed t h, k : h y k y k h o h I Whe is to the left of the mius sig, the two foci e o the lie y k d e give y h c, k & h c, k whee c. c 55

56 y k II Whe is to the left of the mius sig, the two foci e o the lie h d e give y h, k c & h, k c whee c...5. Pol with Vete t h, k d Focl Legth p : y k 4 p h o h 4 p y k I Fo y k, the focus is h p, k d the diecti is give y the lie h p. II Fo h, the focus is h, k p d the diecti is give y the lie. y k p..6. Tsfomtio Pocess fo Removl of y Tem i the Geel Coic Equtio A By Cy D Ey F : B Step : Set t θ d solve fo θ. A C Step : let cosθ y siθ y siθ y cosθ Step 3: Sustitute the vlues fo, y otied i Step ito A By Cy D Ey F. Step 4: Reduce. The fil esult should e of the fom A C y D E y F. 56

57 3. Tigoomety 3.. Bsic Defiitios of Tigoometic Fuctios & Tigoometic Ivese Fuctios z y α Let the figue ove e ight tigle with oe side of legth, secod side of legth y, d hypoteuse of legth z. The gle α is opposite the side of legth. The si tigoometic fuctios whee ech is fuctio of α e defied s follows: Z : Aity Z is Ivese whe Z is y 3... siα siα y si y α z 3... cosα cosα cos α z y y y tα tα t α cotα cotα cot α y y y z secα sec α sec α z cscα csc α csc α y y y si Note: is lso kow s csi. Likewise, the othe iveses e lso kow s ccos, ct, c cot, csec d c csc. 57

58 3.. Fudmetl Defiitio-Bsed Idetities 3... csc α si α 3... sec α cos α si α t α cos α cos α cot α si α t α cot α 3.3. Pythgoe Idetities si α cos α t α sec α cot α csc α 3.4. Negtive Agle Idetities si α si α cos α cos α t α t α cot α cot α 3.5. Sum d Diffeece Idetities α si β si α cos β cos αsi β si α β si α cos β cos αsi β cos α β cos α cos β si αsi β cos β cos α cos β si αsi β α 58

59 t α t β t α β t α t β t α t β t α β t α t β Deivtio of Fomuls fo cos β si α β : α d I the figue elow, ech coodite of the poit {cos α β,si α β } is decomposed ito two compoets usig oth defiitios fo the sie d cosie i 3... d 3... y {cos α β,si α β } si β si α siβ cosβ α y si β cos α {cos α,si α} y si αcos β β, α, cos αcos β Fom the figue, we hve cos α β cos α β cos αcos β si αsi β si α β y y. si α β si αcos β si β cos α 59

60 3.6. Doule Agle Idetities si α si α cos α α α α cos cos si α cos cos si t α t α t α α 3.7. Hlf Agle Idetities α α si ± cos α α cos α cos ± α t ± cos α cos α si α cos α cos α si α 3.8. Geel Tigle Fomuls Applicle to ll tigles: ight d o-ight z β y α θ Sum of Iteio Agles: α β θ 8 lso.3.. si α si β si θ Lw of Sies: y z 6

61 Lw of Cosies: y z z cos α y z yz cos β c z y y cos θ Ae Fomuls fo Geel Tigle: A z si α A yz si β y si θ c A Deivtio of Lw of Sies d Cosies: Let ABC e geel tigle d dop pepedicul fom the pe s show. C A β γ h y c y α B Fo the Lw of Sies we hve h : si α h si α h : si β h si β 3 : si α si β si β si α The lst equlity is esily eteded to iclude the thid gle γ. 6

62 Fo the Lw of Cosies we hve h siα. : Solve fo y d i tems of the gle α y cos α y cos α c y c cos α : Use the Pythgoe Theoem to complete the deivtio. h [ c cos α] c c ccos α ccos α c [ si α] ccos α cos α si α Simil epessios c e witte fo the emiig two sides Ac d Secto Fomuls θ s Ac Legth s : s θ Ae of Secto: A θ 3.. Degee/Rdi Reltioship 3... Bsic Covesio: 8 π dis 6

63 3... Covesio Fomuls: Fom To Multiply y Rdis Degees Degees Rdis 8 π π Additio of Sie d Cosie siθ cosθ k si θ α whee k α si o α cos 3.. Pol Fom of Comple Numes 3... i cos i si whee θ, θ T iθ θ 3... Defiitio of e : e i cosθ i siθ iπ Eule s Fmous Equlity: e iθ iθ De-Moive s Theoem: e e o [ cosθ i siθ ] cos[ θ ] i si[ θ ] θ 63

64 3..5. Pol Fom Multiplictio: iα iβ i α β e e e Pol Fom Divisio: e iα i α β e iβ e 3.3. Rectgul to Pol Coodites, y, θ cosθ, y siθ y, θ t y / 3.4. Tigoometic Vlues fom Right Tigles I the ight tigle elow, let si α si α. α The cos α t α cot α sec α csc α 64

65 4. Elemety Vecto Alge 4.. Bsic Defiitios d Popeties Let V v, v,, U u, u, e two vectos. v3 u3 U θ V 4... Sum d/o Diffeece: U ± V U ± V u ± v, u ± v, u3 ± v Scl Multiplictio: α U αu, αu, αu Negtive Vecto: U U Zeo Vecto:,, Vecto Legth: U u u u Uit Vecto Pllel tov : V V Two Pllel Vectos: V U mes thee is scl c such tht V c U 4.. Dot Poducts 4... Defiitio of Dot Poduct: U V uv u v u3v3 U V 4... Agleθ Betwee Two Vectos: cosθ U V Othogol Vectos: U V 65

66 Pojectio of U otov : [ ] cos V V U V V V V U V V V U U poj V θ 4.3. Coss Poducts Defiitio of Coss Poduct: 3 3 v v v u u u k j i V U Oiettio of V U ; Othogol to BothU dv : V U V V U U Ae of Pllelogm: θ si V U V U A Itepettio of the Tiple Scl Poduct: w w w v v v u u u W V U The tiple scl poduct is umeiclly equl to the volume of the pllelepiped t the top of the et pge U V θ V U

67 U W V 4.4. Lie d Ple Equtios Give poit P,, c Lie Pllel to P Pssig Though, y, z : If, y, z is poit o the lie, the y y z z c Ple Noml to P Pssig Though, y, z. If, y, z is poit o the ple, the,, c, y y, z z Distce D etwee poit & ple: If poit is give y, y, z d y cz d is ple, the y cz d D c 4.5. Miscelleous Vecto Equtios The Thee Diectio Cosies: v v v3 cosα,cos β,cosγ V V V Defiitio of Wok: costt foce F log the pth PQ : W F PQ poj F PQ PQ 67

68 5. Elemety Clculus 5.. Wht is Limit? Limits e foudtiol to clculus d will lwys e so. Limits led to esults uotile y lge loe. So wht is limit? A limit is umeicl tget, tget cquied d locked. Coside the epessio 7 whee is idepedet vile. The ow poits to tget o the ight, i this cse the ume 7. The vile o the left is tgetig 7 i mode smt-wepo sese. This mes is movig, movig towds tget, closig ge, d pogmmed to mege evetully with the tget. Notice tht the qutity is tue idepedet vile i tht hs ee luched d set i motio towds tget, tget tht cot escpe fom its sights. Idepedet viles usully fid themselves emedded iside lgeic o tscedetl epessio of some sot, which is eig used s pocessig ule fo fuctio. Coside the epessio 3 whee the idepedet vile is out to e set o the missio 5. Does the etie epessio 3 i tu tget umeicl vlue s 5? A wy to phse this questio usig ew type of mthemticl ottio might e t g et 3? Itepetig the ottio, we e 5 skig if the dymic output stem fom the epessio 3 tgets umeicl vlue i the mode smt-wepo sese s the eqully-dymic tgets the vlue 5. Mthemticl judgmet sys yes; the output stem tgets the vlue 7. Hece, we complete ou ew ottio s t get This epltio is esole ecept fo oe little polem: the wod tget is owhee to e foud i clculus tets. The tditiol eplcemet weighig i with 3 yes of histoy is the wod limit, which leds to the followig wokig defiitio: Wokig Defiitio: A limit is tget i the mode smt-wepo sese. I the ove emple, we will wite lim

69 5.. Wht is Diffeetil? The diffeetil cocept is oe of the two coe cocepts udelyig clculus, limits eig the othe. Wee is Scottish wod tht mes vey smll, tiy, dimiutive, o miuscule. I the cotet of clculus, wee c e used i simil fshio to help epli the cocept of diffeetil, lso clled ifiitesiml. To hve diffeetil, we fist must hve vile,, y, z etc. Oce we hve vile, sy, we c cete secody qutity d, which is clled the diffeetil of the vile. Wht ectly is this d, ed dee? The qutity d is vey smll, tiy, dimiutive, o miuscule umeicl mout whe comped to the oigil. Moeove, it is the vey smll size of d tht mkes it, y defiitio, wee. How smll? I mthemticl tems, the followig two coditios hold: d < d << d < <<. The two ove coditios stte d is smll eough to gutee tht oth its poduct d quotiet with the oigil qutity is still vey smll d much, much close to zeo th to oe the meig of the symol <<. Both iequlities imply tht d is lso vey smll whe cosideed idepedetly < d <<. Lstly, oth iequlities stte tht d >, which igs us to the followig vey impott poit: lthough vey smll, the qutity d is eve zeo. Oe c lso thik of d s the fil h i limit pocess lim whee the pocess uptly stops just shot of tget, h i effect svig the pidly vishig h fom disppeig ito olivio! Thikig of d i this fshio mkes the diffeetil pepckged o foze limit of sots. Diffeetils e desiged to e so smll tht secod-ode d highe tems ivolvig diffeetils, such s 7 d, c e totlly igoed i ssocited lgeic epessios. This fil popety distiguishes the diffeetil s topic elogig to the suject of clculus. 69

70 5.3. Bsic Diffeetitio Rules Limit Defiitio of Deivtive: f h f f ' lim h h Diffeetitio Pocess Idicto: [] Costt: [ k ] Powe:[ ], c e y epoet Coefficiet:[ f ] f ' Sum/Diffeece:[ f ± g ] f ± g Poduct:[ f g ] f g' g f ' f g f ' f g' Quotiet: g g Chi:[ f g ] f ' g g' Ivese: [ f ] f ' f Geelized Powe: [{ f } ] { f } f ' ; Agi, c e y epoet 5.4. Tscedetl Diffeetitio [l ] [log ] l [ e ] e [ ] l [si ] cos 7

71 [si ] [cos ] si [cos ] [t ] sec [t ] [sec ] sec t [sec ] 5.5. Bsic Atidiffeetitio Rules Atidiffeetitio Pocess Idicto: Costt: kd k C Coefficiet: f d f d Powe Rule fo : d C Powe Rule fo : d d l C Sum: [ g ] d f d f g d Diffeece: [ f g ] d f d g d Pts: f g d f g g f d Chi: f g g d f g C 7

72 5.5.. Geelized Powe Rule fo : [ f ] f d [ f ] C Geelized Powe Rule fo : f d l f C, f f f Geel Epoetil: e f d e C 5.6. Tscedetl Atidiffeetitio l d l C e d e C e d e C d C l cos d si C si d cos C t d l cos C cot d l si C sec d l sec t C sec t d sec C sec d t C csc d l csc cot C csc d cot C 7

73 d si C d t C d l C 5.7. Lies d Appoimtio Tget Lie t, f : y f f Noml Lie t, f : y f f Lie Appoimtio: f f f Secod Ode Appoimtio: f f f f f Newto s Itetive Fomul: f Diffeetil Equlities: y f dy f d f d f f d F d F f d 5.8. Itepettio of Defiite Itegl At lest thee itepettios e vlid fo the defiite itegl. Fist Itepettio: As pocessig symol fo fuctios, the defiite itegl f d istucts the opeto to stt the pocess y fidig F the pimy tideivtive fo f d d fiish it y evlutig the qutity F F F. This itepettio is pue pocess-to-poduct with o cotet. 73

74 Secod Itepettio: As summtio symol fo diffeetil qutities, f d sigls to the opeto tht myids of ifiitesiml qutities of the fom f d e eig cotiuously summed o the itevl [, ] with the summtio pocess sttig t d edig t. Depedig o the cotet fo give polem, such s summig e ude cuve, the diffeetil qutities f d d susequet totl c tke o viety of meigs. This mkes cotiuous summig poweful tool fo solvig el-wold polems. The fct tht cotiuous sums c lso e evluted y f d F F F is key cosequece of the Fudmetl Theoem of Clculus Thid Itepettio: The defiite itegl f d c e itepeted s poit solutio y to y eplicit diffeetil equtio hvig the geel fom dy f d : y. I this itepettio f d is fist modified y itegtig ove the vile suitevl [, z] [, ]. This leds to z y z f d F z F. Sustitutig gives the stted oudy coditio y F F d sustitutig gives y F F f d. I this cotet, the fuctio y z F z F, s uique solutio to dy f d : y, c lso e itepeted s cotiuous uig sum fom to z. 74

75 5.9. The Fudmetl Theoem of Clculus Let f d e defiite itegl epesetig cotiuous summtio pocess, d let F e such tht F f. The, f d c e evluted y the ltetive pocess f d F F F. Note: A cotiuous summtio o dditio pocess o the itevl[, ] sums millios upo millios of cosecutive, tiy qutities fom to whee ech idividul qutity hs the geel fom f d. 5.. Geometic Itegl Fomuls 5... Ae Betwee two Cuves fo f g o [, ] : A [ f g ] d 5... Ae Ude f o [, ] : A f d Volume of Revolutio out Ais Usig Disks: V π [ f ] d Volume of Revolutio out y Ais usig Shells: V π f d Ac Legth: s [ f ] d 75

76 5..6. Revolved Sufce Ae out Ais: SA π f [ f ' ] d Revolved Sufce Ae out y Ais: SA π [ f ' ] d Totl Wok with Vile Foce F o [, ] : W F d 5.. Select Odiy Diffeetil Equtios ODE dy 5... Fist Ode Lie: f y g d dy 5... Beoulli Equtio: f y g y d ODE Seple if it educes to: g y dy f d dv Fllig Body with Dg: m mg kv dt Costt Rte Gowth o Decy: dy ky : y y dt dy Logistic Gowth: k L y y : y y dt Cotiuous Piciple Gowth: dp P c : P P dt Newto s Lw i Oe Dimesio: d mv F dt Newto s Lw i Thee d Dimesios: mv F dt 76

77 Pocess fo Solvig Lie ODE Step: Let F e such tht f F Step : Fomulte the itegtig fcto F e Step 3: Multiply oth sides of g y f d dy y F e g e ye d d g e y f e d dy e F F F F F Step 4: Pefom the idefiite itegtio. [ ] F F F F F Ce d g e e y y C d g e y e 5.. Lplce Tsfom; Geel Popeties 5... Defiitio: ] [ s F dt e t f t f L st 5... Lie Opeto Popety: ] [ s G s F t g t f L Tsfom of the Deivtive:... ] [ f f s f s s F s t f L Deivtive of the Tsfom: t f t s F Tsfom of the Defiite Itegl: s s F d f L t / ] [ τ τ

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 3. Fid the geel solutio of the diffeetil equtio blk d si y ycos si si, d givig you swe i the fom y = f(). (8) 6 *M3544A068* PhysicsAdMthsTuto.com Jue

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 7. () Sketch the gph of y, whee >, showig the coodites of the poits whee the gph meets the es. () Leve lk () Solve, >. (c) Fid the set of vlues of fo

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com 5. () Show tht d y d PhysicsAdMthsTuto.com Jue 009 4 y = sec = 6sec 4sec. (b) Fid Tylo seies epsio of sec π i scedig powes of 4, up to d 3 π icludig the tem i 4. (6) (4) blk *M3544A08*

More information

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds.

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds. Jso Mille 8 Udestd the piciples, popeties, d techiques elted to sequece, seies, summtio, d coutig sttegies d thei pplictios to polem solvig. Polomil Diffeece Theoem: f is polomil fuctio of degee iff fo

More information

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan.

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. SULT 347/ Rumus-umus eikut oleh memtu d mejw sol. Simol-simol yg diei dlh yg is diguk. LGER. 4c x 5. log m log m log 9. T d. m m m 6. log = log m log 0. S d m m 3. 7. log m log m. S, m m logc 4. 8. log.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level 3 Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MSS SEQUENCE AND SERIES CA SEQUENCE A sequece is fuctio of tul ubes with codoi is the set of el ubes (Coplex ubes. If Rge is subset of el ubes (Coplex ubes the it is clled el sequece (Coplex sequece. Exple

More information

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder Joul of Applied Mthemtics d Physics, 5, 3, 75-8 Published Olie Juy 5 i SciRes. http://www.scip.og/joul/jmp http://dx.doi.og/.436/jmp.5.3 Expsio by Lguee Fuctio fo Wve Diffctio oud Ifiite Cylide Migdog

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

Rahul Chacko. IB Mathematics HL Revision Step One

Rahul Chacko. IB Mathematics HL Revision Step One IB Mthemtics HL Revisio Step Oe Rhul Chcko Chpte. Aithmetic sequeces d seies; sum of fiite ithmetic seies; geometic sequeces d seies; sum of fiite d ifiite geometic seies. Sigm ottio. Aithmetic Sequeces

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Lincoln Land Community College Placement and Testing Office

Lincoln Land Community College Placement and Testing Office Licol Ld Commuity College Plcemet d Testig Office Elemetry Algebr Study Guide for the ACCUPLACER (CPT) A totl of questios re dmiistered i this test. The first type ivolves opertios with itegers d rtiol

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity.

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity. Numercy Itroductio to Logrithms Logrithms re commoly credited to Scottish mthemtici med Joh Npier who costructed tle of vlues tht llowed multiplictios to e performed y dditio of the vlues from the tle.

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range.

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range. -. ALGEBRA () Fuctios A reltioship etwee two vriles tht ssigs to ech elemet i the domi ectly oe elemet i the rge. () Fctorig Aother ottio for fuctio of is f e.g. Domi: The domi of fuctio Rge: The rge of

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

INTEGRATION IN THEORY

INTEGRATION IN THEORY CHATER 5 INTEGRATION IN THEORY 5.1 AREA AROXIMATION 5.1.1 SUMMATION NOTATION Fibocci Sequece First, exmple of fmous sequece of umbers. This is commoly ttributed to the mthemtici Fibocci of is, lthough

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

Rectangle Square Triangle Parallelogram Trapezoid Circle P = 2l + 2w P = 4s P = a + b + c P = 2a + 2b P = a + b + c + d C = 2pr = pd

Rectangle Square Triangle Parallelogram Trapezoid Circle P = 2l + 2w P = 4s P = a + b + c P = 2a + 2b P = a + b + c + d C = 2pr = pd Geoet eiete d Ae = eiete, A = Ae, C = Cicufeece, V = Volue ectgle Sque Tigle llelog Tpezoid Cicle = l + w = 4s = + + c = + = + + c + d C = p = pd A = lw A = s A= A = A= ( + c) A = p c w s c d d l Volue

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information

YOUR FINAL IS THURSDAY, MAY 24 th from 10:30 to 12:15

YOUR FINAL IS THURSDAY, MAY 24 th from 10:30 to 12:15 Algebr /Trig Fil Em Study Guide (Sprig Semester) Mrs. Duphy YOUR FINAL IS THURSDAY, MAY 4 th from 10:30 to 1:15 Iformtio About the Fil Em The fil em is cumultive for secod semester, coverig Chpters, 3,

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.0 Clculus Jso Strr Due by :00pm shrp Fll 005 Fridy, Dec., 005 Solutios to Problem Set 7 Lte homework policy. Lte work will be ccepted oly with medicl ote or for other Istitute pproved reso. Coopertio

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2 STUDENT NAME: STUDENT ID: ELEC ENG FH3: MIDTERM EXAMINATION QUESTION SHEET This emitio is TWO HOURS log. Oe double-sided cib sheet is llowed. You c use the McMste ppoved clculto Csio f99. You c tke y mteil

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Mathematics. Trigonometrical Ratio, Functions & Identities

Mathematics. Trigonometrical Ratio, Functions & Identities Mthemtics Tigmeticl Rti, Fuctis & Idetities Tble f tet Defiitis stems f Mesuemet f gles Relti betwee Thee stems f Mesuemet f gle Relti betwee c d gle 5 Tigmeticl Rtis Fuctis 6 Tigmeticl Rtis f llied gles

More information

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents Algebr II, Chpter 7 Hrdig Chrter Prep 06-07 Dr. Michel T. Lewchuk Test scores re vilble olie. I will ot discuss the test. st retke opportuit Sturd Dec. If ou hve ot tke the test, it is our resposibilit

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -, 0,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls.

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information