Complex Methods: Example Sheet 1

Size: px
Start display at page:

Download "Complex Methods: Example Sheet 1"

Transcription

1 Complex Methods: Example Sheet Part IB, Lent Term 26 Dr R. E. Hunt Cauch Riemann equations. (i) Where, if anwhere, in the complex plane are the following functions differentiable, and where are the analtic? Imz; z 2 ; sechz. Copright 26 Universit of Cambridge. Not to be quoted or reproduced without permission. (ii) Let f(z) = z 5 / z 4, z, f() =. Show that the real and imaginar parts of f satisf the Cauch Riemann equations at z =, but that f is not differentiable atz =. 2. Find, as functions ofz, complex analtic functions f(z) whose real parts are the following: (i) x (ii) x (iii) sin x cosh (iv) log(x ) (v) (x+) (vi) tan ( 2x x 2 2 Deduce that the above functions are harmonic on appropriatel-chosen domains, which ou should specif. 3. B consideringw(z) = (i+z)/(i z), show that φ(x,) = tan 2x x is harmonic. 4. Verif that the functionφ(x,) = e x (xcos sin) is harmonic. Find its harmonic conjugate and, b considering φ or otherwise, determine the famil of curves orthogonal to φ(x,) = c for a given constant c. Find an analtic function f(z) such that Ref = φ. Can the expression f(z) = φ(z,) be used to determinef(z) in general? Branches of multi-valued functions 5. Show how the principal branch of logz can be used to define a branch of z i which is singlevalued on the domain D = C\R. Evaluatei i for this branch. Show, using polar coordinates, that the branch of z i defined above maps D onto an annulus which is covered infinitel often. How would our answers change, if at all, for a different branch? 6. How man branch points does f(z) = [z(z +)] /3 have? Draw some possible branch cuts in the complex plane and on the Riemann sphere. Repeat forf(z) = (z 2 +) /2. Repeat also forf(z) = [z(z +)(z +2)] /3 and f(z) = [z(z +)(z +2)(z +3)] /2. ) 7. Letf(z) = (z 2 ) /2, and consider two different branches of the functionf(z): f (z) : branch cut[,], f (x) = + x 2 for realx > ; f 2 (z) : branch cut(, ] [, ), f 2 (x) = +i x 2 for real x (,). Find the limiting values of f and f 2 above and below their respective branch cuts. Prove that f is an odd function, i.e.,f (z) = f ( z), and that f 2 is even.

2 Conformal mappings 8. How does the disc z < transform under the mapping z z? Use the identit ( z (z ) 2 = z ) to show that the map f(z) = z/(z ) 2 is a one-to-one conformal mapping of the disc z < onto the domainc\{x+i : x 4, = }. Copright 26 Universit of Cambridge. Not to be quoted or reproduced without permission. 9. Find conformal mappings f i of U i onto V i for each of the following cases. If the mapping is a composition of several functions, provide a sketch for each step. D denotes the unit disc {z : z < }. (i) U = {z : Rez <, < Imz < }, V = D. (ii) U 2 = D, V 2 is the cut complex plane C\R. (iii) U 3 is the angular sector{z : < argz < α}, V 3 = {z : < Imz < }. (iv) U 4 is the open region bounded between two circles { z : z <, z +i > 2 }, V 4 = D. Laplace s equation. Show that g(z) = e z maps the strip S = {z : < Imz < π} onto the UHP {z : Imz > }, h(z) = sinz maps the half-strip H = {z : π 2 < Rez < π 2, Imz > } onto the UHP. Find a conformal map f: H S. Hence find a function φ(x,) which is harmonic on the half-strip H with the following limiting values on its boundar H : { on H in the LHP (x < ), φ(x,) = on H in the RHP (x > ). Giveφas a function ofxand. Is there onl one such function?. Using conformal mapping(s), find a solution to Laplace s equation in the upper half-plane {z : Im z > } with boundar conditions { x [,], φ(x,) = otherwise. [Find a mapf of the upper half-plane onto itself that makes the boundar conditions easier to deal with.] Comments on or corrections to this problem sheet are ver welcome and ma be sent to reh@cam.ac.uk.

3 Talor and Laurent series Complex Methods: Example Sheet 2 Part IB, Lent Term 26 Dr R. E. Hunt. Find the first two non-vanishing coefficients in the Talor expansion about the origin of the following functions, assuming principal branches when there is a choice. You ma make use of standard series expansions forlog(+z), etc. (i) z/log(+z) (ii) (cosz) /2 (iii) log(+e z ) (iv) e ez. Copright 26 Universit of Cambridge. Not to be quoted or reproduced without permission. State the range of values ofz for which each series converges. How would our answers differ if ou assumed branches different from the principal branch? 2. Let a, b be complex constants with < a < b. Use partial fractions to find the Laurent expansions of /{(z a)(z b)} about z = in each of the regions z < a, a < z < b and z > b. 3. Find the first three terms of the Laurent expansion of f(z) = cosec 2 z valid for < z < π. Show that the functionh(z) = f(z) z 2 (z+π) 2 (z π) 2 has onl removable singularities in z < 2π. Explain how to remove them to obtain a functionh(z) analtic in that region. Find a Talor series for H(z) about the origin and explain wh it must be convergent in z < 2π. Hence, or otherwise, find the three non-zero central terms of the Laurent expansion of f(z) valid forπ < z < 2π. 4. Write down the location and tpe of each of the singularities of the following functions: e z e (i) z 3 (z ) 2 (ii) tanz (iii) zcothz (iv) ( z) 3 z (v) exp(tan z) (vi) sinh z 2 (vii) log(+e z ) (viii) tan(z ). Integration and residues 5. Evaluate zdz whenγ is the circle z =, and when γ is the circle z =. γ 6. (i) Show that iff(z) is analtic, then the residue off(z)/(z z ) atz = z is f(z ). (ii) Show that if/f(z) has a simple pole atz = z, then its residue atz = z is/f (z ). (iii) Show that ifh(z) has a simple zero atz = z andg(z) is analtic and non-zero, the residue of g(z)/h(z) at z = z is g(z )/h (z ). (iv) Prove the formula for the residue of a functionf(z) that has a pole of ordern atz = z : { d N ( lim (z z z z (N )! dz N ) N f(z) ) }. 7. Evaluate, using Cauch s theorem or the residue theorem, dz dz e z coszdz (i) +z 2 (ii) +z 2 (iii) (+z 2 )sinz γ γ 2 γ 3 (iv) z 3 e /z dz γ 4 +z whereγ is the ellipsex =,γ 2 is the circlex = 2,γ 3 is the circle z (2+i) = 2 and γ 4 is the circle z = 2.

4 8. B integrating the functionz n (z a) (z a ) around the unit circle in thez-plane (where a is real,a >, and n is a non-negative integer), evaluate 2π cosnθ 2acosθ +a 2 dθ. The calculus of residues 9. Evaluate lim R R R xdx +x+x 2. Wh is the limit here rather than just the integral?. B integrating around a kehole contour, show that Copright 26 Universit of Cambridge. Not to be quoted or reproduced without permission. x a dx +x = π sin(πa) ( < a < ). Explain wh the given restrictions on the value ofaare necessar.. B integrating around a contour involving the real axis and the line z = re 2πi/n, evaluate dx +x n (n 2). Check (b change of variable) that our answer agrees with that of the previous question. 2. Establish the following: (i) cosx 7π (+x 2 dx = ) 3 6e (ii) sin 2 x x 2 dx = π 2 (iii) logx dx =. +x2 [For part (iii), integrate (logz) 2 /( + z 2 ) around a kehole, or logz/( + z 2 ) along the real axis (or both). What goes wrong if ou integratelogz/(+z 2 ) around a kehole?] 3. LetP(z) be a non-constant polnomial. Consider the contour integral P (z) I = P(z) dz. Show that, if γ is a contour that encloses no zeros of P, then I =. γ Evaluate the limit of I as R, where γ is the circle z = R, and deduce that P has at least one zero in the complex plane. 4. B considering the integral of f(z) = cotz/(z 2 +π 2 a 2 ) around a suitable large contour, prove that, providedia is not an integer, n 2 +a 2 = π a coth(πa). B considering a similar integral prove also that, ifais not an integer, Find an expression for n= (n+a) 2 = π 2 sin 2 (πa). n 2 +a 2 and take the limit as a to deduce the value of n 2. n= Comments on or corrections to this problem sheet are ver welcome and ma be sent to reh@cam.ac.uk.

5 Complex Methods: Example Sheet 3 Part IB, Lent Term 26 Dr R. E. Hunt Fourier Transforms. Let x < 2 f(x) = a, otherwise; a x x < a, g(x) = otherwise. Copright 26 Universit of Cambridge. Not to be quoted or reproduced without permission. Show that f(k) = 2 k sin ak 2 and g(k) = 4 k 2 sin2 ak 2. Verif b contour integration the inversion formula for f(x), including the value at x = 2 a. What is the convolution off with itself? 2. Using the results of the previous question and Parseval s identit, evaluate the integrals sin 2 x x 2 dx and sin 4 x x 4 dx. 3. B using the relationship between the Fourier transform and its inverse, show that for real a and b with a >, e a t = a π ω 2 +a 2 eiωt dω and e at sinbth(t) = b 2π (iω +a) 2 +b 2 eiωt dω where H(t) is the Heaviside step function. What are the values of the integrals when a <? What happens when a =? 4. Show that the convolution of the functione x with itself is given bf(x) = (+ x )e x. Use the convolution theorem to show that f(x) = 2 π and verif this result b contour integration. e ikx (+k 2 ) 2 dk 5. Suppose that f(x) has period 2π and let g(x) = f(x)e a x where a >. Show that the Fourier Transform ofg is given b g(k) = F(k ia) F(k +ia) e 2πi(k ia) e 2πi(k+ia) where F(k) = 2π f(x)e ikx dx. Assuming that F is analtic, sketch the locations of the singularities of g in the complex k-plane. Further assuming that F decas sufficientl quickl at infinit, use the Fourier inversion theorem and a suitable contour to show that g(x) = 2π forx > and derive a similar result when x <. F(n)e (in a)x

6 Deduce that f(x) = 2π F(n)e inx. [This shows how the Fourier transform representation of a function reduces to a Fourier series if the function is periodic.] Laplace Transforms 6. Starting from the Laplace transform of (namel p ), and using onl standard properties of the Laplace transform (shifting, etc.), find the Laplace transforms of the following functions: (i)e 2t (ii)t 3 e 3t (iii)e 3t sin4t (iv)e 4t cosh2t. Copright 26 Universit of Cambridge. Not to be quoted or reproduced without permission. 7. Using partial fractions and expressions for the Laplace transforms of elementar functions, find the inverse Laplace transform of f(p) = (p+3)/{(p 2)(p 2 +)}. Verif this result using the Bromwich inversion formula. 8. Use Laplace transforms to solve the differential equation 3 +3 = t 2 e t with initial conditions() =, () =, () = Solve the integral equationf(t)+4 solution. t. Solve the sstem of differential equations d dt (t τ)f(τ)dτ = t for the unknown functionf. Verif our ( ) x = ( 5 )( x ) with. The zeroth order Bessel function J (t) satisfies the differential equation tj +J +tj = ( ) x = ( ) 3 att =. withj () = (andj () = from the equation). Find the Laplace transform ofj and deduce that J (t)dt =. Find the convolution of J with itself. 2. Use Laplace transforms to solve the heat equation T/ t = 2 T/ x 2 with boundar conditions T(x,) = 3sin2πx ( < x < ),T(,t) = T(,t) = (t > ). 3. Using the equalit e x2 dx = 2 π, find the Laplace transform of f(t) = t /2. B integrating around a Bromwich kehole contour, verif the inversion formula for f(t). What is the Laplace transform oft /2? 4. The gamma and beta functions are defined forz,w C b Γ(z) = t z e t dt and B(z,w) = t z ( t) w dt whenrez,rew > (and b analtic continuation elsewhere). Show thatγ(z+) = zγ(z) and hence thatγ(n+) = n! ifnis a positive integer. Using the previous question, write down the value of Γ( 2 ). For a fixed value of z, find the Laplace transform of f(t) = t z in terms of Γ(z). Find the Laplace transform of the convolutiont z t w. Hence establish that B(z,w) = Γ(z)Γ(w) Γ(z +w).

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Part IB. Complex Methods. Year

Part IB. Complex Methods. Year Part IB Year 218 217 216 215 214 213 212 211 21 29 28 27 26 25 24 23 22 21 218 Paper 1, Section I 2A Complex Analysis or 7 (a) Show that w = log(z) is a conformal mapping from the right half z-plane, Re(z)

More information

Complex Variables & Integral Transforms

Complex Variables & Integral Transforms Complex Variables & Integral Transforms Notes taken by J.Pearson, from a S4 course at the U.Manchester. Lecture delivered by Dr.W.Parnell July 9, 007 Contents 1 Complex Variables 3 1.1 General Relations

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that Let fz be the principal branch of z 4i. a Find fi. Solution. fi = exp4i Logi = exp4iπ/2 = e 2π. b Show that fz fz 2 fz z 2 fz fz 2 = λfz z 2 for all z, z 2 0, where λ =, e 8π or e 8π. Proof. We have =

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Comple Analsis II Lecture Notes Part I Chapter 1 Preliminar results/review of Comple Analsis I These are more detailed notes for the results

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

BTL What is the value of m if the vector is solenoidal. BTL What is the value of a, b, c if the vector may be irrotational.

BTL What is the value of m if the vector is solenoidal. BTL What is the value of a, b, c if the vector may be irrotational. VALLIAMMAI ENGINEERING OLLEGE SRM NAGAR, KATTANDKULATHUR Department of Mathematics MA65 - MATHEMATIS II QUESTION BANK - 6 UNIT - I VETOR ALULUS Part - A. Find, if at (, -, ). BTL-. Find the Directional

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

Solution for Final Review Problems 1

Solution for Final Review Problems 1 Solution for Final Review Problems Final time and location: Dec. Gymnasium, Rows 23, 25 5, 2, Wednesday, 9-2am, Main ) Let fz) be the principal branch of z i. a) Find f + i). b) Show that fz )fz 2 ) λfz

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

2 Write down the range of values of α (real) or β (complex) for which the following integrals converge. (i) e z2 dz where {γ : z = se iα, < s < }

2 Write down the range of values of α (real) or β (complex) for which the following integrals converge. (i) e z2 dz where {γ : z = se iα, < s < } Mathematical Tripos Part II Michaelmas term 2007 Further Complex Methods, Examples sheet Dr S.T.C. Siklos Comments and corrections: e-mail to stcs@cam. Sheet with commentary available for supervisors.

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH A REVIEW OF RESIDUES AND INTEGRATION A PROEDURAL APPROAH ANDREW ARHIBALD 1. Introduction When working with complex functions, it is best to understand exactly how they work. Of course, complex functions

More information

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES PHILIP FOTH 1. Cauchy s Formula and Cauchy s Theorem 1. Suppose that γ is a piecewise smooth positively ( counterclockwise ) oriented simple closed

More information

Analyse 3 NA, FINAL EXAM. * Monday, January 8, 2018, *

Analyse 3 NA, FINAL EXAM. * Monday, January 8, 2018, * Analyse 3 NA, FINAL EXAM * Monday, January 8, 08, 4.00 7.00 * Motivate each answer with a computation or explanation. The maximum amount of points for this exam is 00. No calculators!. (Holomorphic functions)

More information

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Math Final Exam.

Math Final Exam. Math 106 - Final Exam. This is a closed book exam. No calculators are allowed. The exam consists of 8 questions worth 100 points. Good luck! Name: Acknowledgment and acceptance of honor code: Signature:

More information

The Calculus of Residues

The Calculus of Residues hapter 7 The alculus of Residues If fz) has a pole of order m at z = z, it can be written as Eq. 6.7), or fz) = φz) = a z z ) + a z z ) +... + a m z z ) m, 7.) where φz) is analytic in the neighborhood

More information

MATH 417 Homework 2 Instructor: D. Cabrera Due June 23. v = e x sin y

MATH 417 Homework 2 Instructor: D. Cabrera Due June 23. v = e x sin y MATH 47 Homework Instructor: D. Cabrera Due June under the trans-. Find and sketch the image of the rectangle 0 < x

More information

Functions of a Complex Variable and Integral Transforms

Functions of a Complex Variable and Integral Transforms Functions of a Complex Variable and Integral Transforms Department of Mathematics Zhou Lingjun Textbook Functions of Complex Analysis with Applications to Engineering and Science, 3rd Edition. A. D. Snider

More information

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

Problem 1. Arfken

Problem 1. Arfken All Arfken problems are reproduced at the end of this assignment Problem 1. Arfken 11.2.11. Problem 2. (a) Do Arfken 11.3.3 (b) The integral Integrals 4 3i 3+4i (x 2 iy 2 ) dz (1) is not defined without

More information

Complex Function. Chapter Complex Number. Contents

Complex Function. Chapter Complex Number. Contents Chapter 6 Complex Function Contents 6. Complex Number 3 6.2 Elementary Functions 6.3 Function of Complex Variables, Limit and Derivatives 3 6.4 Analytic Functions and Their Derivatives 8 6.5 Line Integral

More information

Problems for MATH-6300 Complex Analysis

Problems for MATH-6300 Complex Analysis Problems for MATH-63 Complex Analysis Gregor Kovačič December, 7 This list will change as the semester goes on. Please make sure you always have the newest version of it.. Prove the following Theorem For

More information

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε. 6. Residue calculus Let z 0 be an isolated singularity of f(z), then there exists a certain deleted neighborhood N ε = {z : 0 < z z 0 < ε} such that f is analytic everywhere inside N ε. We define Res(f,

More information

If brute force isn t working, you re not using enough of it. -Tim Mauch

If brute force isn t working, you re not using enough of it. -Tim Mauch Chapter 7 Functions of a Comple Variable If brute force isn t working, ou re not using enough of it. -Tim Mauch In this chapter we introduce the algebra of functions of a comple variable. We will cover

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

Residues and Contour Integration Problems

Residues and Contour Integration Problems Residues and ontour Integration Problems lassify the singularity of fz at the indicated point.. fz = cotz at z =. Ans. Simple pole. Solution. The test for a simple pole at z = is that lim z z cotz exists

More information

Poles, Residues, and All That

Poles, Residues, and All That hapter Ten Poles, Residues, and All That 0.. Residues. A point z 0 is a singular point of a function f if f not analytic at z 0, but is analytic at some point of each neighborhood of z 0. A singular point

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u =

(a) To show f(z) is analytic, explicitly evaluate partials,, etc. and show. = 0. To find v, integrate u = v to get v = dy u = Homework -5 Solutions Problems (a) z = + 0i, (b) z = 7 + 24i 2 f(z) = u(x, y) + iv(x, y) with u(x, y) = e 2y cos(2x) and v(x, y) = e 2y sin(2x) u (a) To show f(z) is analytic, explicitly evaluate partials,,

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

SOLUTIONS MANUAL FOR. Advanced Engineering Mathematics with MATLAB Third Edition. Dean G. Duffy

SOLUTIONS MANUAL FOR. Advanced Engineering Mathematics with MATLAB Third Edition. Dean G. Duffy SOLUTIONS MANUAL FOR Advanced Engineering Mathematics with MATLAB Third Edition by Dean G. Duffy SOLUTIONS MANUAL FOR Advanced Engineering Mathematics with MATLAB Third Edition by Dean G. Duffy Taylor

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M K Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1 This question was in the class test in 016/7 and was worth 5 marks a) Let z +

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Notes 7 Analytic Continuation

Notes 7 Analytic Continuation ECE 6382 Fall 27 David R. Jackson Notes 7 Analtic Continuation Notes are from D. R. Wilton, Dept. of ECE Analtic Continuation of Functions We define analtic continuation as the process of continuing a

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 28 Complex Analysis Module: 6:

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

n } is convergent, lim n in+1

n } is convergent, lim n in+1 hapter 3 Series y residuos redit: This notes are 00% from chapter 6 of the book entitled A First ourse in omplex Analysis with Applications of Dennis G. Zill and Patrick D. Shanahan (2003) [2]. auchy s

More information

MATH FINAL SOLUTION

MATH FINAL SOLUTION MATH 185-4 FINAL SOLUTION 1. (8 points) Determine whether the following statements are true of false, no justification is required. (1) (1 point) Let D be a domain and let u,v : D R be two harmonic functions,

More information

MATH 417 Homework 6 Instructor: D. Cabrera Due July Find the radius of convergence for each power series below. c n+1 c n (n + 1) 2 (z 3) n+1

MATH 417 Homework 6 Instructor: D. Cabrera Due July Find the radius of convergence for each power series below. c n+1 c n (n + 1) 2 (z 3) n+1 MATH 47 Homework 6 Instructor: D. Cabrera Due Jul 2. Find the radius of convergence for each power series below. (a) (b) n 2 (z 3) n n=2 e n (z + i) n n=4 Solution: (a) Using the Ratio Test we have L =

More information

Solutions to Exercises 6.1

Solutions to Exercises 6.1 34 Chapter 6 Conformal Mappings Solutions to Exercises 6.. An analytic function fz is conformal where f z. If fz = z + e z, then f z =e z z + z. We have f z = z z += z =. Thus f is conformal at all z.

More information

Complex Analysis I Miniquiz Collection July 17, 2017

Complex Analysis I Miniquiz Collection July 17, 2017 Complex Analysis I Miniquiz Collection July 7, 207. Which of the two numbers is greater? (a) 7 or 0.7 (b) 3 8 or 0.3 2. What is the area A of a circular disk with radius? A = 3. Fill out the following

More information

Lecture 16 and 17 Application to Evaluation of Real Integrals. R a (f)η(γ; a)

Lecture 16 and 17 Application to Evaluation of Real Integrals. R a (f)η(γ; a) Lecture 16 and 17 Application to Evaluation of Real Integrals Theorem 1 Residue theorem: Let Ω be a simply connected domain and A be an isolated subset of Ω. Suppose f : Ω\A C is a holomorphic function.

More information

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 014 Trigonometric Functions of Special Angles α, degrees α, radians sin α cos α tan α 0 0 0 1 0 30 π 6 45 π 4 1 3 1 3 1 y = sinα π 90,

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

Math 421 Midterm 2 review questions

Math 421 Midterm 2 review questions Math 42 Midterm 2 review questions Paul Hacking November 7, 205 () Let U be an open set and f : U a continuous function. Let be a smooth curve contained in U, with endpoints α and β, oriented from α to

More information

Exam TMA4120 MATHEMATICS 4K. Monday , Time:

Exam TMA4120 MATHEMATICS 4K. Monday , Time: Exam TMA4 MATHEMATICS 4K Monday 9.., Time: 9 3 English Hjelpemidler (Kode C): Bestemt kalkulator (HP 3S eller Citizen SR-7X), Rottmann: Matematisk formelsamling Problem. a. Determine the value ( + i) 6

More information

III. Consequences of Cauchy s Theorem

III. Consequences of Cauchy s Theorem MTH6 Complex Analysis 2009-0 Lecture Notes c Shaun Bullett 2009 III. Consequences of Cauchy s Theorem. Cauchy s formulae. Cauchy s Integral Formula Let f be holomorphic on and everywhere inside a simple

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

Lecture 4. Properties of Logarithmic Function (Contd ) y Log z tan constant x. It follows that

Lecture 4. Properties of Logarithmic Function (Contd ) y Log z tan constant x. It follows that Lecture 4 Properties of Logarithmic Function (Contd ) Since, Logln iarg u Re Log ln( ) v Im Log tan constant It follows that u v, u v This shows that Re Logand Im Log are (i) continuous in C { :Re 0,Im

More information

CODE: GR17A1003 GR 17 SET - 1

CODE: GR17A1003 GR 17 SET - 1 SET - 1 I B. Tech II Semester Regular Examinations, May 18 Transform Calculus and Fourier Series (Common to all branches) Time: 3 hours Max Marks: 7 PART A Answer ALL questions. All questions carry equal

More information

Part IB Complex Methods

Part IB Complex Methods Part IB Complex Methods Based on lectures by R. E. Hunt Notes taken by Dexter Chua Lent 26 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

summation of series: sommerfeld-watson transformation

summation of series: sommerfeld-watson transformation Phsics 2400 Spring 207 summation of series: sommerfeld-watson transformation spring semester 207 http://www.phs.uconn.edu/ rozman/courses/p2400_7s/ Last modified: Ma 3, 207 Sommerfeld-Watson transformation,

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

Topic 2 Notes Jeremy Orloff

Topic 2 Notes Jeremy Orloff Topic 2 Notes Jeremy Orloff 2 Analytic functions 2.1 Introduction The main goal of this topic is to define and give some of the important properties of complex analytic functions. A function f(z) is analytic

More information

Appendix 2 Complex Analysis

Appendix 2 Complex Analysis Appendix Complex Analsis This section is intended to review several important theorems and definitions from complex analsis. Analtic function Let f be a complex variable function of a complex value, i.e.

More information

ONLINE EXAMINATIONS [Mid 2 - M3] 1. the Machaurin's series for log (1+z)=

ONLINE EXAMINATIONS [Mid 2 - M3] 1. the Machaurin's series for log (1+z)= http://www.prsolutions.in ONLINE EXAMINATIONS [Mid 2 - M3] 1. the Machaurin's series for log (1+z)= 2. 3. Expand cosz into a Taylor's series about the point z= cosz= cosz= cosz= cosz= 4. Expand the function

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm Complex Analysis, Stein and Shakarchi Chapter 3 Meromorphic Functions and the Logarithm Yung-Hsiang Huang 217.11.5 Exercises 1. From the identity sin πz = eiπz e iπz 2i, it s easy to show its zeros are

More information

Syllabus: for Complex variables

Syllabus: for Complex variables EE-2020, Spring 2009 p. 1/42 Syllabus: for omplex variables 1. Midterm, (4/27). 2. Introduction to Numerical PDE (4/30): [Ref.num]. 3. omplex variables: [Textbook]h.13-h.18. omplex numbers and functions,

More information

Part IB Complex Analysis

Part IB Complex Analysis Part IB Complex Analysis Theorems Based on lectures by I. Smith Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Math 425 Fall All About Zero

Math 425 Fall All About Zero Math 425 Fall 2005 All About Zero These notes supplement the discussion of zeros of analytic functions presented in 2.4 of our text, pp. 127 128. Throughout: Unless stated otherwise, f is a function analytic

More information

Complex Analysis MATH 6300 Fall 2013 Homework 4

Complex Analysis MATH 6300 Fall 2013 Homework 4 Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,

More information

Complex Analysis. Travis Dirle. December 4, 2016

Complex Analysis. Travis Dirle. December 4, 2016 Complex Analysis 2 Complex Analysis Travis Dirle December 4, 2016 2 Contents 1 Complex Numbers and Functions 1 2 Power Series 3 3 Analytic Functions 7 4 Logarithms and Branches 13 5 Complex Integration

More information

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers.

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers. Complex Analysis Sketches of Solutions to Selected Exercises Homework 2..a ( 2 i) i( 2i) = 2 i i + i 2 2 = 2 i i 2 = 2i 2..b (2, 3)( 2, ) = (2( 2) ( 3), 2() + ( 3)( 2)) = (, 8) 2.2.a Re(iz) = Re(i(x +

More information

Complex Analysis, Stein and Shakarchi The Fourier Transform

Complex Analysis, Stein and Shakarchi The Fourier Transform Complex Analysis, Stein and Shakarchi Chapter 4 The Fourier Transform Yung-Hsiang Huang 2017.11.05 1 Exercises 1. Suppose f L 1 (), and f 0. Show that f 0. emark 1. This proof is observed by Newmann (published

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

Summation of series: Sommerfeld-Watson transformation

Summation of series: Sommerfeld-Watson transformation Summation of series: Sommerfeld-Watson transformation PHYS400, Department of Physics, University of Connecticut http://www.phys.uconn.edu/phys400/ Last modified: March 6, 05 Contour integration can be

More information

Part D. Complex Analysis

Part D. Complex Analysis Part D. Comple Analsis Chapter 3. Comple Numbers and Functions. Man engineering problems ma be treated and solved b using comple numbers and comple functions. First, comple numbers and the comple plane

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

Complex Analysis Problems

Complex Analysis Problems Complex Analysis Problems transcribed from the originals by William J. DeMeo October 2, 2008 Contents 99 November 2 2 2 200 November 26 4 3 2006 November 3 6 4 2007 April 6 7 5 2007 November 6 8 99 NOVEMBER

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 auchy s integral formula 4. Introduction auchy s theorem is a big theorem which we will use almost daily from here on out. Right away it will reveal a number of interesting

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

NOTES ON RIEMANN S ZETA FUNCTION. Γ(z) = t z 1 e t dt

NOTES ON RIEMANN S ZETA FUNCTION. Γ(z) = t z 1 e t dt NOTES ON RIEMANN S ZETA FUNCTION DRAGAN MILIČIĆ. Gamma function.. Definition of the Gamma function. The integral Γz = t z e t dt is well-defined and defines a holomorphic function in the right half-plane

More information

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus Functions of a Complex Variable (S1) Lecture 11 VII. Integral Transforms An introduction to Fourier and Laplace transformations Integral transforms from application of complex calculus Properties of Fourier

More information

MAGIC058 & MATH64062: Partial Differential Equations 1

MAGIC058 & MATH64062: Partial Differential Equations 1 MAGIC58 & MATH6462: Partial Differential Equations Section 6 Fourier transforms 6. The Fourier integral formula We have seen from section 4 that, if a function f(x) satisfies the Dirichlet conditions,

More information

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 23 COMPLEX ANALYSIS EXERCISES DOUGLAS ULMER 1. Meromorphic functions on the Riemann sphere It s often useful to allow functions to take the value. This exercise outlines one way to

More information

III.2. Analytic Functions

III.2. Analytic Functions III.2. Analytic Functions 1 III.2. Analytic Functions Recall. When you hear analytic function, think power series representation! Definition. If G is an open set in C and f : G C, then f is differentiable

More information

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi )

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi ) MATH 16 HOMEWORK 4 SOLUTIONS 1 Show directly from the definition that sin(z) = ezi e zi i sin(z) = sin z cos z = (ezi e zi ) i (e zi + e zi ) = sin z cos z Write the following complex numbers in standard

More information

PSI Lectures on Complex Analysis

PSI Lectures on Complex Analysis PSI Lectures on Complex Analysis Tibra Ali August 14, 14 Lecture 4 1 Evaluating integrals using the residue theorem ecall the residue theorem. If f (z) has singularities at z 1, z,..., z k which are enclosed

More information

Problems 3 (due 27 January)

Problems 3 (due 27 January) Problems 3 due 7 January). You previously found singularities of the functions below. Here, identify the poles, order of these poles and residues for these functions: a) tanhz) = ez e z e z + e z Solution:

More information

u = 0; thus v = 0 (and v = 0). Consequently,

u = 0; thus v = 0 (and v = 0). Consequently, MAT40 - MANDATORY ASSIGNMENT #, FALL 00; FASIT REMINDER: The assignment must be handed in before 4:30 on Thursday October 8 at the Department of Mathematics, in the 7th floor of Niels Henrik Abels hus,

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information