Natural Language Understanding. Kyunghyun Cho, NYU & U. Montreal

Size: px
Start display at page:

Download "Natural Language Understanding. Kyunghyun Cho, NYU & U. Montreal"

Transcription

1 Natural Language Understanding Kyunghyun Cho, NYU & U. Montreal

2 2 Machine Translation

3 NEURAL MACHINE TRANSLATION 3 Topics: Statistical Machine Translation log p(f e) =log p(e f) + log p(f) f = (La, croissance, économique, s'est, ralentie, ces, dernières, années,.) Translation model: log p(e f) Fit it with parallel corpora Parallel Corpora TM log p(e f) + LM log p(f) Mono Corpora Language model: log p(f) Fit it with monolingual corpora e = (Economic, growth, has, slowed, down, in, recent, years,.) The whole task log p(f e) is conditional language modelling.

4 NEURAL MACHINE TRANSLATION 4 Topics: Statistical Machine Translation - In Reality log p(f e) NX n=1 Log-linear model Feature function f n (e, f) + C f n (e, f) Count-based or linguistics-based f = (La, croissance, économique, s'est, ralentie, ces, dernières, années,.) Parallel Corpora Mono Corpora + w 1 w 2 w 3 w N Feature Feature Feature Feature... f 1 f 2 f 3 f N Steps: Learned from corpora (1)Experts engineer useful features e = (Economic, growth, has, slowed, down, in, recent, years,.) (2)Use a simple log-linear model (3)Use a strong, external language model

5 NEURAL MACHINE TRANSLATION 5 Topics: Sequence-to-Sequence Learning Word Probability Word Ssample f = (La, croissance, économique, s'est, ralentie, ces, dernières, années,.) u i p i Decoder (Forcada&Ñeco, 1997; Kalchbrenner&Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014) Recurrent State z i Recurrent Statehi Continuous-space Word Representation 1-of-K coding s i w i Encoder e = (Economic, growth, has, slowed, down, in, recent, years,.)

6 NEURAL MACHINE TRANSLATION 6 Topics: Sequence-to-Sequence Learning Encoder Encoder (1)1-of-K coding of source words (2)Continuous-space representation s t 0 = W > x t 0,whereW 2 R V d (3)Recursively read words h t = f(h t 1,s t ), for t =1,...,T Recurrent Continuous-space Word Representation 1-of-K coding Statehi s i w i (1) (2) (3) (4) e = (Economic, growth, has, slowed, down, in, recent, years,.)

7 NEURAL MACHINE TRANSLATION 7 Topics: Sequence-to-Sequence Learning Decoder Decoder (1)Recursively update the memory z t 0 = f(z t 0 1,u t 0 1,h T ) (2)Compute the next word prob. p(u t 0 u <t 0) / exp(r > u t 0 z t 0 + b ut 0 ) (3)Sample a next word Beam search is a good idea Word Ssample Word Probability Recurrent State f = (La, croissance, économique, s'est, ralentie, ces, dernières, années,.) u i p i z i (1) (2) (3) e = (Economic, growth, has, slowed, down, in, recent, years,.) ( )

8 NEURAL MACHINE TRANSLATION 8 Topics: Sequence-to-Sequence Learning Issue This is quite an unrealistic model. Why? You can t cram the meaning of a whole %&!$# sentence into a single $&!#* vector! Ray Mooney Word Ssample Word Probability Recurrent State f = (La, croissance, économique, s'est, ralentie, ces, dernières, années,.) u i p i z i Decoder Recurrent Statehi Continuous-space Word Representation 1-of-K coding s i w i Encoder e = (Economic, growth, has, slowed, down, in, recent, years,.)

9 NEURAL MACHINE TRANSLATION 9 Topics: Attention-based Model Encoder: Bidirectional RNN A set of annotation vectors Word Ssample Recurrent State f = (La, croissance, économique, s'est, ralentie, ces, dernières, années,.) u i z i {h 1,h 2,...,h T } Attention-based Decoder Attention Mechanism a j Attention weight + a j Σ =1 (1)Compute attention weights t 0,t / exp(e(z t 0 1,u t 0 1,h t )) Annotation Vectors (2)Weighted-sum of the annotation vectors c t 0 = P T t=1 t 0,th t h j e = (Economic, growth, has, slowed, down, in, recent, years,.) (3)Use c t 0 instead of h T

10 NEURAL MACHINE TRANSLATION 10 Topics: Attention-based Model Encoder: Bidirectional RNN A set of annotation vectors {h 1,h 2,...,h T } Attention-based Decoder (1)Compute attention weights t 0,t / exp(e(z t 0 1,u t 0 1,h t )) (2)Weighted-sum of the annotation vectors c t 0 = P T t=1 t 0,th t (3)Use c t 0 instead of h T

11 NEURAL MACHINE TRANSLATION 11 Topics: Few tricks for neural machine translation Very large target vocabulary (Jean et al., 2015) p(y t y <t,x)= exp w t > (y t 1,z t,c t ) P k:y k 2V exp w> k (y t 1,z t,c t ) exp w t > (y t 1,z t,c t ) P k:y k 2V exp w > 0 k (y t 1,z t,c t )

12 NEURAL MACHINE TRANSLATION 12 Topics: Few tricks for neural machine translation Deep Fusion of Target Language Model (Gulcehre&Firat et al., 2015) Language Model Recurrent State z i LM Deep Fusion g Translation Model Recurrent State Word Probability z TM i p(y t y <t,x) / exp(y t > (W o f o, (zt LM,g t zt TM,y t 1,c t )+b o ))

13 13 Attention-based neural machine translation is comparable to phrase-based statistical machine translation

14 14 Teaching Machines to Read, Comprehend and Answer Based on (Hermann et al., 2015; Blunsom, 2015)

15 READING COMPREHENSION 15 Topics: Teaching machines to read and comprehend CNN article: Document The BBC producer allegedly struck by Jeremy Clarkson will not press charges against the Top Gear host, his lawyer said Friday. Clarkson, who hosted one of the most-watched television shows in the world, was dropped by the BBC Wednesday after an internal investigation by the British broadcaster found he had subjected producer Oisin Tymon to an unprovoked physical and verbal attack.... Query Producer X will not press charges against Jeremy Clarkson, his lawyer says. Answer Oisin Tymon

16 READING COMPREHENSION 16 Topics: Teaching machines to read and comprehend Deep LSTM Reader Document Reader h t = f(h t 1,w t ), for all t =1,...,T g Summary of the document: h T Query Reader z t = f(z t 1,w 0 t), for all t =1,...,T 0 Mary went to England X visited England No!!! Summary of the query: z T 0 Answer selection p(a {w t } T t=1, {w t 0 } T 0 t 0 =1 )=g a(h T,z T )

17 READING COMPREHENSION 17 Topics: Teaching machines to read and comprehend Attentive Reader g Document Reader: BiRNN Annotation vectors: {h 1,h 2,...,h T } s(1)y(1) s(2)y(2) r s(3)y(3) s(4)y(4) u Query Reader: z T 0 Answer selection Attention mechanism Query-dependent document summary Answer selection: t / e(h t,z T 0) c = P T t=1 th t p(a {w t } T t=1, {w t 0 } T 0 t 0 =1 )=g a(z T 0,c) Mary went to England X visited England

18 READING COMPREHENSION 18 Topics: Teaching machines to read and comprehend Attentive Reader (Examples) Visualize the attention

19 19 Going beyond Natural Languages Is a human language special?

20 20 BEYOND NATURAL LANGUAGES p(two, dolphins, are, diving ) =? Encoder: convolutional network Pretrained as a classifier or autoencoder Decoder: recurrent neural network RNN Language model With attention mechanism (Xu et al., 2015) Word Ssample ui zi Attention weight aj Σ aj =1 + Convolutional Neural Network Task: conditional language modelling Attention Mechanism Recurrent State Topics: Beyond Natural Languages Image Caption Generation f = (a, man, is, jumping, into, a, lake,.) Usm 2i HX- kyr8v- Uu Q 2i HX- kyr8v Annotation Vectors hj X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

21 BEYOND NATURAL LANGUAGES 21 Topics: Beyond Natural Languages Image Caption Generation (Examples)

22 BEYOND NATURAL LANGUAGES 22 Topics: Beyond Natural Languages Image Caption Generation (Examples)

23 + 3-D CNN + Per-frame CNN + Both BEYOND NATURAL LANGUAGES Fig The 3-D convolutional network for motion from [23]. Similarly to all the other previous applications of the attention-based model, the attention mechanism applied to the task of video description also provides a straightforward way to inspect the inner workings of the model. See Fig. 7 for some examples. The othernatural type of encoder in [23] is a so-called 3-D Topics: Beyond Languages Attention Models convolutional network, shown in Fig. 6. Unlike the usual convolutional network which often works only spatially over a (Chorowski two-dimensional image, the 3-D convolutional network applieset al., its (local) filters across the spatial dimensions as well as the temporal dimensions. Furthermore, those filters work not on (Yao et al., 2015) pixels but on local motion statistics, enabling the model to concentrate on motion rather than appearance. Similarly to the strategy from Sec. II-D, the model et wasal., trained on larger (Vinyals 2015) video datasets to recognize an action from each video clip, and the activation vectors from the last convolutional layer were used as context. The authors of [23] suggest that this encoder extracts more local temporal structures complementing the al., 2015) and references therein global structures extracted from the frame-wise application of a 2-D convolutional network. The same type of decoder, a conditional RNN-LM, used in [22] was used with the content-based attention mechanism in Eq. (16). 2) Experimental Result: In [23], this approach to video description generation has been tested on two datasets; (1) Youtube2Text [54] and (2) Montreal DVS [55]. They showed that it is beneficial to have both types of encoders together End-to-End Speech Recognition Video Description Generation Discrete Optimization and many more (Cho et ; Chan et al., 2015)

24 24 Connectionist Approach to Natural Language Understanding (see the slides of my talk at CVSC 2015)

25 25 Department of Computer Science Ph.D. Programme: Application dl. 12th December Center for Data Science M.Sc. Programme in Data Science: Application dl. 4th Februrary

26 26 Department of Computer Science M.Sc. Programme in Machine Learning and Data Mining (Macadamia) Ph.D. Programme: Prof. Tapani Raiko

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018 Deep Learning Sequence to Sequence models: Attention Models 17 March 2018 1 Sequence-to-sequence modelling Problem: E.g. A sequence X 1 X N goes in A different sequence Y 1 Y M comes out Speech recognition:

More information

CS230: Lecture 8 Word2Vec applications + Recurrent Neural Networks with Attention

CS230: Lecture 8 Word2Vec applications + Recurrent Neural Networks with Attention CS23: Lecture 8 Word2Vec applications + Recurrent Neural Networks with Attention Today s outline We will learn how to: I. Word Vector Representation i. Training - Generalize results with word vectors -

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Recurrent Neural Network

Recurrent Neural Network Recurrent Neural Network Xiaogang Wang xgwang@ee..edu.hk March 2, 2017 Xiaogang Wang (linux) Recurrent Neural Network March 2, 2017 1 / 48 Outline 1 Recurrent neural networks Recurrent neural networks

More information

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recap Standard RNNs Training: Backpropagation Through Time (BPTT) Application to sequence modeling Language modeling Applications: Automatic speech

More information

Memory, Reading, and Comprehension

Memory, Reading, and Comprehension Memory, Reading, and Comprehension Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Lei Yu, and Phil Blunsom pblunsom@google.com Deep Learning and NLP:

More information

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016

Machine Learning for Signal Processing Neural Networks Continue. Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 Machine Learning for Signal Processing Neural Networks Continue Instructor: Bhiksha Raj Slides by Najim Dehak 1 Dec 2016 1 So what are neural networks?? Voice signal N.Net Transcription Image N.Net Text

More information

Conditional Language modeling with attention

Conditional Language modeling with attention Conditional Language modeling with attention 2017.08.25 Oxford Deep NLP 조수현 Review Conditional language model: assign probabilities to sequence of words given some conditioning context x What is the probability

More information

Long-Short Term Memory and Other Gated RNNs

Long-Short Term Memory and Other Gated RNNs Long-Short Term Memory and Other Gated RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Sequence Modeling

More information

Multimodal context analysis and prediction

Multimodal context analysis and prediction Multimodal context analysis and prediction Valeria Tomaselli (valeria.tomaselli@st.com) Sebastiano Battiato Giovanni Maria Farinella Tiziana Rotondo (PhD student) Outline 2 Context analysis vs prediction

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM c 1. (Natural Language Processing; NLP) (Deep Learning) RGB IBM 135 8511 5 6 52 yutat@jp.ibm.com a) b) 2. 1 0 2 1 Bag of words White House 2 [1] 2015 4 Copyright c by ORSJ. Unauthorized reproduction of

More information

Neural Architectures for Image, Language, and Speech Processing

Neural Architectures for Image, Language, and Speech Processing Neural Architectures for Image, Language, and Speech Processing Karl Stratos June 26, 2018 1 / 31 Overview Feedforward Networks Need for Specialized Architectures Convolutional Neural Networks (CNNs) Recurrent

More information

Recurrent Neural Networks. Jian Tang

Recurrent Neural Networks. Jian Tang Recurrent Neural Networks Jian Tang tangjianpku@gmail.com 1 RNN: Recurrent neural networks Neural networks for sequence modeling Summarize a sequence with fix-sized vector through recursively updating

More information

arxiv: v1 [cs.cl] 21 May 2017

arxiv: v1 [cs.cl] 21 May 2017 Spelling Correction as a Foreign Language Yingbo Zhou yingbzhou@ebay.com Utkarsh Porwal uporwal@ebay.com Roberto Konow rkonow@ebay.com arxiv:1705.07371v1 [cs.cl] 21 May 2017 Abstract In this paper, we

More information

arxiv: v3 [cs.lg] 14 Jan 2018

arxiv: v3 [cs.lg] 14 Jan 2018 A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation Gang Chen Department of Computer Science and Engineering, SUNY at Buffalo arxiv:1610.02583v3 [cs.lg] 14 Jan 2018 1 abstract We describe

More information

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

Better Conditional Language Modeling. Chris Dyer

Better Conditional Language Modeling. Chris Dyer Better Conditional Language Modeling Chris Dyer Conditional LMs A conditional language model assigns probabilities to sequences of words, w =(w 1,w 2,...,w`), given some conditioning context, x. As with

More information

High Order LSTM/GRU. Wenjie Luo. January 19, 2016

High Order LSTM/GRU. Wenjie Luo. January 19, 2016 High Order LSTM/GRU Wenjie Luo January 19, 2016 1 Introduction RNN is a powerful model for sequence data but suffers from gradient vanishing and explosion, thus difficult to be trained to capture long

More information

Improved Learning through Augmenting the Loss

Improved Learning through Augmenting the Loss Improved Learning through Augmenting the Loss Hakan Inan inanh@stanford.edu Khashayar Khosravi khosravi@stanford.edu Abstract We present two improvements to the well-known Recurrent Neural Network Language

More information

Machine Translation. 10: Advanced Neural Machine Translation Architectures. Rico Sennrich. University of Edinburgh. R. Sennrich MT / 26

Machine Translation. 10: Advanced Neural Machine Translation Architectures. Rico Sennrich. University of Edinburgh. R. Sennrich MT / 26 Machine Translation 10: Advanced Neural Machine Translation Architectures Rico Sennrich University of Edinburgh R. Sennrich MT 2018 10 1 / 26 Today s Lecture so far today we discussed RNNs as encoder and

More information

Generative Models for Sentences

Generative Models for Sentences Generative Models for Sentences Amjad Almahairi PhD student August 16 th 2014 Outline 1. Motivation Language modelling Full Sentence Embeddings 2. Approach Bayesian Networks Variational Autoencoders (VAE)

More information

Text2Action: Generative Adversarial Synthesis from Language to Action

Text2Action: Generative Adversarial Synthesis from Language to Action Text2Action: Generative Adversarial Synthesis from Language to Action Hyemin Ahn, Timothy Ha*, Yunho Choi*, Hwiyeon Yoo*, and Songhwai Oh Abstract In this paper, we propose a generative model which learns

More information

CSC321 Lecture 10 Training RNNs

CSC321 Lecture 10 Training RNNs CSC321 Lecture 10 Training RNNs Roger Grosse and Nitish Srivastava February 23, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 10 Training RNNs February 23, 2015 1 / 18 Overview Last time, we saw

More information

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017 Modelling Time Series with Neural Networks Volker Tresp Summer 2017 1 Modelling of Time Series The next figure shows a time series (DAX) Other interesting time-series: energy prize, energy consumption,

More information

Recurrent Neural Networks. deeplearning.ai. Why sequence models?

Recurrent Neural Networks. deeplearning.ai. Why sequence models? Recurrent Neural Networks deeplearning.ai Why sequence models? Examples of sequence data The quick brown fox jumped over the lazy dog. Speech recognition Music generation Sentiment classification There

More information

Introduction to RNNs!

Introduction to RNNs! Introduction to RNNs Arun Mallya Best viewed with Computer Modern fonts installed Outline Why Recurrent Neural Networks (RNNs)? The Vanilla RNN unit The RNN forward pass Backpropagation refresher The RNN

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Sequence Models. Ji Yang. Department of Computing Science, University of Alberta. February 14, 2018

Sequence Models. Ji Yang. Department of Computing Science, University of Alberta. February 14, 2018 Sequence Models Ji Yang Department of Computing Science, University of Alberta February 14, 2018 This is a note mainly based on Prof. Andrew Ng s MOOC Sequential Models. I also include materials (equations,

More information

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions 2018 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 18) Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions Authors: S. Scardapane, S. Van Vaerenbergh,

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Recurrent Neural Networks Deep Learning Lecture 5. Efstratios Gavves

Recurrent Neural Networks Deep Learning Lecture 5. Efstratios Gavves Recurrent Neural Networks Deep Learning Lecture 5 Efstratios Gavves Sequential Data So far, all tasks assumed stationary data Neither all data, nor all tasks are stationary though Sequential Data: Text

More information

attention mechanisms and generative models

attention mechanisms and generative models attention mechanisms and generative models Master's Deep Learning Sergey Nikolenko Harbour Space University, Barcelona, Spain November 20, 2017 attention in neural networks attention You re paying attention

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Pushpak Bhattacharyya CSE Dept, IIT Patna and Bombay LSTM 15 jun, 2017 lgsoft:nlp:lstm:pushpak 1 Recap 15 jun, 2017 lgsoft:nlp:lstm:pushpak 2 Feedforward Network and Backpropagation

More information

Slide credit from Hung-Yi Lee & Richard Socher

Slide credit from Hung-Yi Lee & Richard Socher Slide credit from Hung-Yi Lee & Richard Socher 1 Review Recurrent Neural Network 2 Recurrent Neural Network Idea: condition the neural network on all previous words and tie the weights at each time step

More information

Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST

Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST 1 Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST Summary We have shown: Now First order optimization methods: GD (BP), SGD, Nesterov, Adagrad, ADAM, RMSPROP, etc. Second

More information

EE-559 Deep learning Recurrent Neural Networks

EE-559 Deep learning Recurrent Neural Networks EE-559 Deep learning 11.1. Recurrent Neural Networks François Fleuret https://fleuret.org/ee559/ Sun Feb 24 20:33:31 UTC 2019 Inference from sequences François Fleuret EE-559 Deep learning / 11.1. Recurrent

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Sequence to Sequence Models and Attention

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Sequence to Sequence Models and Attention TTIC 31230, Fundamentals of Deep Learning David McAllester, April 2017 Sequence to Sequence Models and Attention Encode-Decode Architectures for Machine Translation [Figure from Luong et al.] In Sutskever

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

End-to-end Automatic Speech Recognition

End-to-end Automatic Speech Recognition End-to-end Automatic Speech Recognition Markus Nussbaum-Thom IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598, USA Markus Nussbaum-Thom. February 22, 2017 Nussbaum-Thom: IBM Thomas J. Watson

More information

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation

Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Making Deep Learning Understandable for Analyzing Sequential Data about Gene Regulation Dr. Yanjun Qi Department of Computer Science University of Virginia Tutorial @ ACM BCB-2018 8/29/18 Yanjun Qi / UVA

More information

CSC321 Lecture 15: Recurrent Neural Networks

CSC321 Lecture 15: Recurrent Neural Networks CSC321 Lecture 15: Recurrent Neural Networks Roger Grosse Roger Grosse CSC321 Lecture 15: Recurrent Neural Networks 1 / 26 Overview Sometimes we re interested in predicting sequences Speech-to-text and

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Sequence Modeling with Neural Networks

Sequence Modeling with Neural Networks Sequence Modeling with Neural Networks Harini Suresh y 0 y 1 y 2 s 0 s 1 s 2... x 0 x 1 x 2 hat is a sequence? This morning I took the dog for a walk. sentence medical signals speech waveform Successes

More information

A QUESTION ANSWERING SYSTEM USING ENCODER-DECODER, SEQUENCE-TO-SEQUENCE, RECURRENT NEURAL NETWORKS. A Project. Presented to

A QUESTION ANSWERING SYSTEM USING ENCODER-DECODER, SEQUENCE-TO-SEQUENCE, RECURRENT NEURAL NETWORKS. A Project. Presented to A QUESTION ANSWERING SYSTEM USING ENCODER-DECODER, SEQUENCE-TO-SEQUENCE, RECURRENT NEURAL NETWORKS A Project Presented to The Faculty of the Department of Computer Science San José State University In

More information

Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward

Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward Kaiyang Zhou, Yu Qiao, Tao Xiang AAAI 2018 What is video summarization? Goal: to automatically

More information

Machine Learning for Physicists Lecture 1

Machine Learning for Physicists Lecture 1 Machine Learning for Physicists Lecture 1 Summer 2017 University of Erlangen-Nuremberg Florian Marquardt (Image generated by a net with 20 hidden layers) OUTPUT INPUT (Picture: Wikimedia Commons) OUTPUT

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

Deep Learning and Lexical, Syntactic and Semantic Analysis. Wanxiang Che and Yue Zhang

Deep Learning and Lexical, Syntactic and Semantic Analysis. Wanxiang Che and Yue Zhang Deep Learning and Lexical, Syntactic and Semantic Analysis Wanxiang Che and Yue Zhang 2016-10 Part 2: Introduction to Deep Learning Part 2.1: Deep Learning Background What is Machine Learning? From Data

More information

Natural Language Processing with Deep Learning. CS224N/Ling284

Natural Language Processing with Deep Learning. CS224N/Ling284 Natural Language Processing with Deep Learning CS224N/Ling284 Lecture 9: Recap and Fancy Recurrent Neural Networks for Machine Transla

More information

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Google s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, et al. Google arxiv:1609.08144v2 Reviewed by : Bill

More information

Deep learning for Natural Language Processing and Machine Translation

Deep learning for Natural Language Processing and Machine Translation Deep learning for Natural Language Processing and Machine Translation 2015.10.16 Seung-Hoon Na Contents Introduction: Neural network, deep learning Deep learning for Natural language processing Neural

More information

arxiv: v2 [cs.cl] 1 Jan 2019

arxiv: v2 [cs.cl] 1 Jan 2019 Variational Self-attention Model for Sentence Representation arxiv:1812.11559v2 [cs.cl] 1 Jan 2019 Qiang Zhang 1, Shangsong Liang 2, Emine Yilmaz 1 1 University College London, London, United Kingdom 2

More information

Introduction to Deep Neural Networks

Introduction to Deep Neural Networks Introduction to Deep Neural Networks Presenter: Chunyuan Li Pattern Classification and Recognition (ECE 681.01) Duke University April, 2016 Outline 1 Background and Preliminaries Why DNNs? Model: Logistic

More information

Structured Neural Networks (I)

Structured Neural Networks (I) Structured Neural Networks (I) CS 690N, Spring 208 Advanced Natural Language Processing http://peoplecsumassedu/~brenocon/anlp208/ Brendan O Connor College of Information and Computer Sciences University

More information

Multimodal Machine Learning

Multimodal Machine Learning Multimodal Machine Learning Louis-Philippe (LP) Morency CMU Multimodal Communication and Machine Learning Laboratory [MultiComp Lab] 1 CMU Course 11-777: Multimodal Machine Learning 2 Lecture Objectives

More information

Lecture 15: Exploding and Vanishing Gradients

Lecture 15: Exploding and Vanishing Gradients Lecture 15: Exploding and Vanishing Gradients Roger Grosse 1 Introduction Last lecture, we introduced RNNs and saw how to derive the gradients using backprop through time. In principle, this lets us train

More information

CS230: Lecture 10 Sequence models II

CS230: Lecture 10 Sequence models II CS23: Lecture 1 Sequence models II Today s outline We will learn how to: - Automatically score an NLP model I. BLEU score - Improve Machine II. Beam Search Translation results with Beam search III. Speech

More information

Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries

Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries INTERSPEECH 2017 August 20 24, 2017, Stockholm, Sweden Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries Yu-Hsuan Wang, Cheng-Tao Chung, Hung-yi

More information

Lecture 11 Recurrent Neural Networks I

Lecture 11 Recurrent Neural Networks I Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 01, 2017 Introduction Sequence Learning with Neural Networks Some Sequence Tasks

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee New Activation Function Rectified Linear Unit (ReLU) σ z a a = z Reason: 1. Fast to compute 2. Biological reason a = 0 [Xavier Glorot, AISTATS 11] [Andrew L.

More information

Neural Networks in Structured Prediction. November 17, 2015

Neural Networks in Structured Prediction. November 17, 2015 Neural Networks in Structured Prediction November 17, 2015 HWs and Paper Last homework is going to be posted soon Neural net NER tagging model This is a new structured model Paper - Thursday after Thanksgiving

More information

Natural Language Processing and Recurrent Neural Networks

Natural Language Processing and Recurrent Neural Networks Natural Language Processing and Recurrent Neural Networks Pranay Tarafdar October 19 th, 2018 Outline Introduction to NLP Word2vec RNN GRU LSTM Demo What is NLP? Natural Language? : Huge amount of information

More information

CSC321 Lecture 15: Exploding and Vanishing Gradients

CSC321 Lecture 15: Exploding and Vanishing Gradients CSC321 Lecture 15: Exploding and Vanishing Gradients Roger Grosse Roger Grosse CSC321 Lecture 15: Exploding and Vanishing Gradients 1 / 23 Overview Yesterday, we saw how to compute the gradient descent

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Today s Lecture. Dropout

Today s Lecture. Dropout Today s Lecture so far we discussed RNNs as encoder and decoder we discussed some architecture variants: RNN vs. GRU vs. LSTM attention mechanisms Machine Translation 1: Advanced Neural Machine Translation

More information

Spatial Transformation

Spatial Transformation Spatial Transformation Presented by Liqun Chen June 30, 2017 1 Overview 2 Spatial Transformer Networks 3 STN experiments 4 Recurrent Models of Visual Attention (RAM) 5 Recurrent Models of Visual Attention

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

What s so Hard about Natural Language Understanding?

What s so Hard about Natural Language Understanding? What s so Hard about Natural Language Understanding? Alan Ritter Computer Science and Engineering The Ohio State University Collaborators: Jiwei Li, Dan Jurafsky (Stanford) Bill Dolan, Michel Galley, Jianfeng

More information

Random Coattention Forest for Question Answering

Random Coattention Forest for Question Answering Random Coattention Forest for Question Answering Jheng-Hao Chen Stanford University jhenghao@stanford.edu Ting-Po Lee Stanford University tingpo@stanford.edu Yi-Chun Chen Stanford University yichunc@stanford.edu

More information

EE-559 Deep learning LSTM and GRU

EE-559 Deep learning LSTM and GRU EE-559 Deep learning 11.2. LSTM and GRU François Fleuret https://fleuret.org/ee559/ Mon Feb 18 13:33:24 UTC 2019 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Long-Short Term Memory unit (LSTM) by Hochreiter

More information

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017 Deep Learning for Natural Language Processing Sidharth Mudgal April 4, 2017 Table of contents 1. Intro 2. Word Vectors 3. Word2Vec 4. Char Level Word Embeddings 5. Application: Entity Matching 6. Conclusion

More information

Lecture 11 Recurrent Neural Networks I

Lecture 11 Recurrent Neural Networks I Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor niversity of Chicago May 01, 2017 Introduction Sequence Learning with Neural Networks Some Sequence Tasks

More information

Autoregressive Neural Models for Statistical Parametric Speech Synthesis

Autoregressive Neural Models for Statistical Parametric Speech Synthesis Autoregressive Neural Models for Statistical Parametric Speech Synthesis シンワン Xin WANG 2018-01-11 contact: wangxin@nii.ac.jp we welcome critical comments, suggestions, and discussion 1 https://www.slideshare.net/kotarotanahashi/deep-learning-library-coyotecnn

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Implicitly-Defined Neural Networks for Sequence Labeling

Implicitly-Defined Neural Networks for Sequence Labeling Implicitly-Defined Neural Networks for Sequence Labeling Michaeel Kazi MIT Lincoln Laboratory 244 Wood St, Lexington, MA, 02420, USA michaeel.kazi@ll.mit.edu Abstract We relax the causality assumption

More information

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Erkki Oja Department of Computer Science Aalto University, Finland

More information

PSIque: Next Sequence Prediction of Satellite Images using a Convolutional Sequence-to-Sequence Network

PSIque: Next Sequence Prediction of Satellite Images using a Convolutional Sequence-to-Sequence Network PSIque: Next Sequence Prediction of Satellite Images using a Convolutional Sequence-to-Sequence Network Seungkyun Hong,1,2 Seongchan Kim 2 Minsu Joh 1,2 Sa-kwang Song,1,2 1 Korea University of Science

More information

Natural Language Processing (CSEP 517): Machine Translation (Continued), Summarization, & Finale

Natural Language Processing (CSEP 517): Machine Translation (Continued), Summarization, & Finale Natural Language Processing (CSEP 517): Machine Translation (Continued), Summarization, & Finale Noah Smith c 2017 University of Washington nasmith@cs.washington.edu May 22, 2017 1 / 30 To-Do List Online

More information

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I

CS395T: Structured Models for NLP Lecture 19: Advanced NNs I CS395T: Structured Models for NLP Lecture 19: Advanced NNs I Greg Durrett Administrivia Kyunghyun Cho (NYU) talk Friday 11am GDC 6.302 Project 3 due today! Final project out today! Proposal due in 1 week

More information

Deep Learning Recurrent Networks 2/28/2018

Deep Learning Recurrent Networks 2/28/2018 Deep Learning Recurrent Networks /8/8 Recap: Recurrent networks can be incredibly effective Story so far Y(t+) Stock vector X(t) X(t+) X(t+) X(t+) X(t+) X(t+5) X(t+) X(t+7) Iterated structures are good

More information

Deep Learning Autoencoder Models

Deep Learning Autoencoder Models Deep Learning Autoencoder Models Davide Bacciu Dipartimento di Informatica Università di Pisa Intelligent Systems for Pattern Recognition (ISPR) Generative Models Wrap-up Deep Learning Module Lecture Generative

More information

Neural Networks for NLP. COMP-599 Nov 30, 2016

Neural Networks for NLP. COMP-599 Nov 30, 2016 Neural Networks for NLP COMP-599 Nov 30, 2016 Outline Neural networks and deep learning: introduction Feedforward neural networks word2vec Complex neural network architectures Convolutional neural networks

More information

A Neural-Symbolic Approach to Design of CAPTCHA

A Neural-Symbolic Approach to Design of CAPTCHA A Neural-Symbolic Approach to Design of CAPTCHA Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng, Dapeng Wu {qihua,psmo,xiaohe}@microsoft.com, l.deng@ieee.org, dpwu@ufl.edu Microsoft Research AI, Redmond,

More information

Recurrent Neural Networks

Recurrent Neural Networks Charu C. Aggarwal IBM T J Watson Research Center Yorktown Heights, NY Recurrent Neural Networks Neural Networks and Deep Learning, Springer, 218 Chapter 7.1 7.2 The Challenges of Processing Sequences Conventional

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Contents 1 Pseudo-code for the damped Gauss-Newton vector product 2 2 Details of the pathological synthetic problems

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning

Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning Nicolas Thome Prenom.Nom@cnam.fr http://cedric.cnam.fr/vertigo/cours/ml2/ Département Informatique Conservatoire

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information

Lecture 8: Recurrent Neural Networks

Lecture 8: Recurrent Neural Networks Lecture 8: Recurrent Neural Networks André Martins Deep Structured Learning Course, Fall 2018 André Martins (IST) Lecture 8 IST, Fall 2018 1 / 85 Announcements The deadline for the project midterm report

More information

NEURAL LANGUAGE MODELS

NEURAL LANGUAGE MODELS COMP90042 LECTURE 14 NEURAL LANGUAGE MODELS LANGUAGE MODELS Assign a probability to a sequence of words Framed as sliding a window over the sentence, predicting each word from finite context to left E.g.,

More information

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates

Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Eve: A Gradient Based Optimization Method with Locally and Globally Adaptive Learning Rates Hiroaki Hayashi 1,* Jayanth Koushik 1,* Graham Neubig 1 arxiv:1611.01505v3 [cs.lg] 11 Jun 2018 Abstract Adaptive

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing Deep Learning for Natural Language Processing Dylan Drover, Borui Ye, Jie Peng University of Waterloo djdrover@uwaterloo.ca borui.ye@uwaterloo.ca July 8, 2015 Dylan Drover, Borui Ye, Jie Peng (University

More information

Contents. (75pts) COS495 Midterm. (15pts) Short answers

Contents. (75pts) COS495 Midterm. (15pts) Short answers Contents (75pts) COS495 Midterm 1 (15pts) Short answers........................... 1 (5pts) Unequal loss............................. 2 (15pts) About LSTMs........................... 3 (25pts) Modular

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information