What s so Hard about Natural Language Understanding?

Size: px
Start display at page:

Download "What s so Hard about Natural Language Understanding?"

Transcription

1 What s so Hard about Natural Language Understanding? Alan Ritter Computer Science and Engineering The Ohio State University Collaborators: Jiwei Li, Dan Jurafsky (Stanford) Bill Dolan, Michel Galley, Jianfeng Gao (MSR), Colin Cherry (Google) Jeniya Tabassum (Ohio State), Alexander Konovalov (Ohio State), Wei Xu (Ohio State) Brendan O Connor (Umass)

2 What s so Hard about Natural Language Understanding? Alan Ritter Computer Science and Engineering The Ohio State University Collaborators: Jiwei Li, Dan Jurafsky (Stanford) Bill Dolan, Michel Galley, Jianfeng Gao (MSR), Colin Cherry (Google) Jeniya Tabassum (Ohio State), Alexander Konovalov (Ohio State), Wei Xu (Ohio State) Brendan O Connor (Umass)

3

4

5 Q: Why are we so good at Speech, MT (but bad at NLU)? People naturally translate and transcribe.

6 Q: Why are we so good at Speech, MT (but bad at NLU)? People naturally translate and transcribe. Q: Large, End-to-End Datasets for NLU? Web-scale Conversations? Web-scale Structured Data?

7 Q: Why are we so good at Speech, MT (but bad at NLU)? People naturally translate and transcribe. Q: Large, End-to-End Datasets for NLU? Web-scale Conversations? Web-scale Structured Data?

8 Data-Driven Conversation Twitter: ~ 500 Million Public SMS-Style Conversations per Month Goal: Learn conversational agents directly from massive volumes of data. 6

9 Data-Driven Conversation Twitter: ~ 500 Million Public SMS-Style Conversations per Month Goal: Learn conversational agents directly from massive volumes of data. 6

10 [Ritter, Cherry, Dolan EMNLP 2011] Noisy Channel Model Input: Who wants to come over for dinner tomorrow? 7

11 [Ritter, Cherry, Dolan EMNLP 2011] Noisy Channel Model Input: Who wants to come over for dinner tomorrow? { Output: Yum! I 7

12 [Ritter, Cherry, Dolan EMNLP 2011] Noisy Channel Model Input: Who wants to come over for dinner tomorrow? { { Output: Yum! I want to 7

13 [Ritter, Cherry, Dolan EMNLP 2011] Noisy Channel Model Input: Who wants to come over for dinner tomorrow? { { { Output: Yum! I want to be there 7

14 [Ritter, Cherry, Dolan EMNLP 2011] Noisy Channel Model Input: Who wants to come over for dinner tomorrow? { { { { Output: Yum! I want to be there tomorrow! 7

15 Neural Conversation [Sordoni et. al. 2015] [Xu et. al. 2016] [Wen et. al. 2016] [Li et. al. 2016] [Kannan et. al. 2016] [Serban et. al. 2016] 8

16 Neural Conversation [Sordoni et. al. 2015] [Xu et. al. 2016] [Wen et. al. 2016] [Li et. al. 2016] [Kannan et. al. 2016] [Serban et. al. 2016] 8

17 How old are you? 9 Slide Credit: Jiwei Li

18 How old are you? i 'm Slide Credit: Jiwei Li

19 How old are you? i 'm ? 11 Slide Credit: Jiwei Li

20 How old are you? i 'm ? i don 't know what you 're talking about 12 Slide Credit: Jiwei Li

21 How old are you? i 'm ? i don 't know what you 're talking about you don 't know what you 're saying 13 Slide Credit: Jiwei Li

22 How old are you? i 'm ? i don 't know what you 're talking about you don 't know what you 're saying i don 't know what you 're talking about Slide Credit: Jiwei Li

23 How old are you? Bad Action i 'm ? i don 't know what you 're talking about you don 't know what you 're saying i don 't know what you 're talking about Slide Credit: Jiwei Li

24 How old are you? Bad Action i 'm ? Outcome i don 't know what you 're talking about you don 't know what you 're saying i don 't know what you 're talking about Slide Credit: Jiwei Li

25 Deep Reinforcement Learning [Li, Monroe, Ritter, Galley, Gao, Jurafsky EMNLP 2016] How old are you? State Encoding how old are you

26 Deep Reinforcement Learning [Li, Monroe, Ritter, Galley, Gao, Jurafsky EMNLP 2016] How old are you? Action i 'm 16. I m 16. EOS Encoding Decoding how old are you EOS I m 16.

27 Learning: Policy Gradient REINFORCE Algorithm (Williams,1992) What we want to learn How old are you? Action i 'm 16. I m 16. EOS Encoding Decoding how old are you EOS I m 16.

28 Q: Rewards?

29 Q: Rewards? A: Turing Test

30 Q: Rewards? A: Turing Test Adversarial Learning (Goodfellow et al., 2014)

31 Adversarial Learning for Neural Dialogue [Li, Monroe, Shi, Jean, Ritter, Jurafsky EMNLP 2016] Real-world conversations sample human response Discriminator Real or Fake? Response Generator generate response

32 Adversarial Learning for Neural Dialogue [Li, Monroe, Shi, Jean, Ritter, Jurafsky EMNLP 2016] (Alternate Between Training Generator and Discriminator) Real-world conversations sample human response Discriminator Real or Fake? Response Generator generate response

33 Adversarial Learning for Neural Dialogue [Li, Monroe, Shi, Jean, Ritter, Jurafsky EMNLP 2016] (Alternate Between Training Generator and Discriminator) Real-world conversations sample human response Discriminator Real or Fake? Response Generator generate response REINFORCE Algorithm (Williams,1992)

34 Adversarial Learning Improves Response Generation vs vanilla generation model Human Evaluator: Machine Evaluator: [Bowman et. al. 2016] Adversarial Win Adversarial Lose Tie 62% 18% 20% Adversarial Success (How often can you fool a machine) Adversarial Learning 8.0% Standard Seq2Seq model 4.9% Slide Credit: Jiwei Li

35 Q: Why are we so good at Speech, MT (but bad at NLU)? People naturally translate and transcribe. Q: Large, End-to-End Datasets for NLU? Web-scale Conversations? Web-scale Structured Data?

36 Q: Why are we so good at Speech, MT (but bad at NLU)? People naturally translate and transcribe. Q: Large, End-to-End Datasets for NLU? Web-scale Conversations? Generates fluent open domain replies Web-scale Structured Data?

37 Q: Why are we so good at Speech, MT (but bad at NLU)? People naturally translate and transcribe. Q: Large, End-to-End Datasets for NLU? Web-scale Conversations? Web-scale Structured Data? Generates fluent open domain replies Really Natural Language Understanding?

38 Q: Why are we so good at Speech, MT (but bad at NLU)? People naturally translate and transcribe. Q: Large, End-to-End Datasets for NLU? Web-scale Conversations? Web-scale Structured Data? Generates fluent open domain replies Really Natural Language Understanding?

39 Learning from Distant Supervision [Mintz et. al. 2009] 1) Named Entity Recognition Challenge: highly ambiguous labels [Ritter, et. al. EMNLP 2011] 2) Relation Extraction Challenge: missing data [Ritter, et. al. TACL 2013] 3) Time Normalization Challenge: diversity in noisy text [Tabassum, Ritter, Xu, EMNLP 2016] 4) Event Extraction Challenge: lack of negative examples [Ritter, et. al. WWW 2015] [Konovalov, et. al. WWW 2017] O( ) = NX log p (y i x i ) i {z } Log Likelihood U D( p ˆp unlabeled ) {z } Label regularization

40 Learning from Distant Supervision [Mintz et. al. 2009] 1) Named Entity Recognition Challenge: highly ambiguous labels [Ritter, et. al. EMNLP 2011] 2) Relation Extraction Challenge: missing data [Ritter, et. al. TACL 2013] 3) Time Normalization Challenge: diversity in noisy text [Tabassum, Ritter, Xu, EMNLP 2016] 4) Event Extraction Challenge: lack of negative examples [Ritter, et. al. WWW 2015] [Konovalov, et. al. WWW 2017] O( ) = NX log p (y i x i ) i {z } Log Likelihood U D( p ˆp unlabeled ) {z } Label regularization

41 Time Normalization [Tabassum, Ritter, Xu EMNLP 2016] State-ofthe-art time resolvers { } TempEX HeidelTime SUTime UWTime 1 Jan 2016

42 Time Normalization Distant Supervision (no human labels or rules!) [Tabassum, Ritter, Xu EMNLP 2016] State-ofthe-art time resolvers { } TempEX HeidelTime SUTime UWTime 1 Jan 2016

43 Distant Supervision Assumption Mercury Transit May 9,2016

44 Distant Supervision Assumption Mercury Transit May 9,2016

45 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

46 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

47 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

48 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

49 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

50 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

51 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

52 Distant Supervision Assumption Mercury Transit May 9, May 9 May 10 May

53 Multiple Instance Learning Tagger [ Mercury, 5/9/2016 ] w 1 w 2 w 3 w n Words t 1 t 2 t 3 t 4 Mon Sun Past Present Future Sentence Level Tags [Event Database]

54 Multiple Instance Learning Tagger [ Mercury, 5/9/2016 ] Local Classifier exp( f(w i,z i )) w 1 w 2 w 3 w n Words z 1 z 2 z 3 z n Word Level Tags t 1 t 2 t 3 t 4 Mon Sun Past Present Future Sentence Level Tags [Event Database]

55 Multiple Instance Learning Tagger [ Mercury, 5/9/2016 ] Local Classifier exp( f(w i,z i )) w 1 w 2 w 3 w n Words z 1 z 2 z 3 z n Word Level Tags Deterministic OR t 1 t 2 t 3 t 4 Mon Sun Past Present Future Sentence Level Tags [Hoffmann et. al. 2011] [Event Database]

56 Multiple Instance Learning Tagger [ Mercury, 5/9/2016 ] Local Classifier exp( f(w i,z i )) w 1 w 2 w 3 w n Words z 1 z 2 z 3 z n Word Level Tags Deterministic OR Maximize Conditional X Likelihood: z P (z,t w, ) [Hoffmann et. al. 2011] t 1 t 2 t 3 t 4 Mon Sun [Event Database] Past Present Future Sentence Level Tags

57 Missing Data Problem Sentence Level Tags: TL = Future MOY= May DOM=9 DOW= Mon

58 Missing Data Extension w 1 w 2 w 3 w n z 1 z 2 z 3 z n Aggregated Sentence Level Tags t 1 t 2 t 3 t 4 [Event Database]

59 Missing Data Extension Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013] w 1 w 2 w 3 w n z 1 z 2 z 3 z n t 0 1 t 0 2 t 0 3 t 0 4 m 1 m 2 m 3 m 4 [Event Database]

60 Missing Data Extension Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013] w 1 w 2 w 3 w n z 1 z 2 z 3 z n Mentioned in Text t 0 1 t 0 2 t 0 3 t 0 4 m 1 m 2 m 3 m 4 [Event Database]

61 Missing Data Extension Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013] w 1 w 2 w 3 w n z 1 z 2 z 3 z n Mentioned in Text t 0 1 t 0 2 t 0 3 t 0 4 Implied by Event Date m 1 m 2 m 3 m 4 [Event Database]

62 Missing Data Extension Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013] w 1 w 2 w 3 w n z 1 z 2 z 3 z n Mentioned in Text t 0 1 t 0 2 t 0 3 t 0 4 Encourage Agreement Implied by Event Date m 1 m 2 m 3 m 4 [Event Database]

63 Example Tags Word Im Hella excited for tomorrow Tag NA NA Future NA Future Word Thnks for a Christmas party on fri Tag NA NA NA December NA NA Friday

64 Evaluation

65 Evaluation 17% increase in F- score over SUTime

66

67 Where can we find NLU? Follow the data!

68 Where can we find NLU? Follow the data!

69 Where can we find NLU? Follow the data! Opportunistically Gathered Data: Twitter Events (Time Normalization) Billions of Internet Conversations

70 Where can we find NLU? Follow the data! Opportunistically Gathered Data: Twitter Events (Time Normalization) Billions of Internet Conversations Design Models for the Data (rather than the other way around)

71 Where can we find NLU? Follow the data! Opportunistically Gathered Data: Twitter Events (Time Normalization) Billions of Internet Conversations Design Models for the Data (rather than the other way around) Thank You!

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

SGD and Deep Learning

SGD and Deep Learning SGD and Deep Learning Subgradients Lets make the gradient cheating more formal. Recall that the gradient is the slope of the tangent. f(w 1 )+rf(w 1 ) (w w 1 ) Non differentiable case? w 1 Subgradients

More information

Generative Adversarial Networks. Presented by Yi Zhang

Generative Adversarial Networks. Presented by Yi Zhang Generative Adversarial Networks Presented by Yi Zhang Deep Generative Models N(O, I) Variational Auto-Encoders GANs Unreasonable Effectiveness of GANs GANs Discriminator tries to distinguish genuine data

More information

Social Media & Text Analysis

Social Media & Text Analysis Social Media & Text Analysis lecture 5 - Paraphrase Identification and Logistic Regression CSE 5539-0010 Ohio State University Instructor: Wei Xu Website: socialmedia-class.org In-class Presentation pick

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Cyber Rodent Project Some slides from: David Silver, Radford Neal CSC411: Machine Learning and Data Mining, Winter 2017 Michael Guerzhoy 1 Reinforcement Learning Supervised learning:

More information

Learning to translate with neural networks. Michael Auli

Learning to translate with neural networks. Michael Auli Learning to translate with neural networks Michael Auli 1 Neural networks for text processing Similar words near each other France Spain dog cat Neural networks for text processing Similar words near each

More information

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013 More on HMMs and other sequence models Intro to NLP - ETHZ - 18/03/2013 Summary Parts of speech tagging HMMs: Unsupervised parameter estimation Forward Backward algorithm Bayesian variants Discriminative

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing

ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing ACS Introduction to NLP Lecture 3: Language Modelling and Smoothing Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk Language Modelling 2 A language model is a probability

More information

CS 570: Machine Learning Seminar. Fall 2016

CS 570: Machine Learning Seminar. Fall 2016 CS 570: Machine Learning Seminar Fall 2016 Class Information Class web page: http://web.cecs.pdx.edu/~mm/mlseminar2016-2017/fall2016/ Class mailing list: cs570@cs.pdx.edu My office hours: T,Th, 2-3pm or

More information

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018 Deep Learning Sequence to Sequence models: Attention Models 17 March 2018 1 Sequence-to-sequence modelling Problem: E.g. A sequence X 1 X N goes in A different sequence Y 1 Y M comes out Speech recognition:

More information

Discriminative Training. March 4, 2014

Discriminative Training. March 4, 2014 Discriminative Training March 4, 2014 Noisy Channels Again p(e) source English Noisy Channels Again p(e) p(g e) source English German Noisy Channels Again p(e) p(g e) source English German decoder e =

More information

GANs. Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG

GANs. Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG GANs Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG Machine Learning: Jordan Boyd-Graber UMD GANs 1 / 7 Problems with Generation Generative Models Ain t Perfect

More information

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning

TTIC 31230, Fundamentals of Deep Learning, Winter David McAllester. The Fundamental Equations of Deep Learning TTIC 31230, Fundamentals of Deep Learning, Winter 2019 David McAllester The Fundamental Equations of Deep Learning 1 Early History 1943: McCullock and Pitts introduced the linear threshold neuron. 1962:

More information

Attention Based Joint Model with Negative Sampling for New Slot Values Recognition. By: Mulan Hou

Attention Based Joint Model with Negative Sampling for New Slot Values Recognition. By: Mulan Hou Attention Based Joint Model with Negative Sampling for New Slot Values Recognition By: Mulan Hou houmulan@bupt.edu.cn CONTE NTS 1 2 3 4 5 6 Introduction Related work Motivation Proposed model Experiments

More information

Introduction of Reinforcement Learning

Introduction of Reinforcement Learning Introduction of Reinforcement Learning Deep Reinforcement Learning Reference Textbook: Reinforcement Learning: An Introduction http://incompleteideas.net/sutton/book/the-book.html Lectures of David Silver

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 59/259 Lecture 4: Text classification 3 (Sept 5, 207) David Bamman, UC Berkeley . https://www.forbes.com/sites/kevinmurnane/206/04/0/what-is-deep-learning-and-how-is-it-useful

More information

ML4NLP Multiclass Classification

ML4NLP Multiclass Classification ML4NLP Multiclass Classification CS 590NLP Dan Goldwasser Purdue University dgoldwas@purdue.edu Social NLP Last week we discussed the speed-dates paper. Interesting perspective on NLP problems- Can we

More information

Fun with weighted FSTs

Fun with weighted FSTs Fun with weighted FSTs Informatics 2A: Lecture 18 Shay Cohen School of Informatics University of Edinburgh 29 October 2018 1 / 35 Kedzie et al. (2018) - Content Selection in Deep Learning Models of Summarization

More information

Name: Student number:

Name: Student number: UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2018 EXAMINATIONS CSC321H1S Duration 3 hours No Aids Allowed Name: Student number: This is a closed-book test. It is marked out of 35 marks. Please

More information

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department Dialogue management: Parametric approaches to policy optimisation Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 30 Dialogue optimisation as a reinforcement learning

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron)

Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Lecture 13: Discriminative Sequence Models (MEMM and Struct. Perceptron) Intro to NLP, CS585, Fall 2014 http://people.cs.umass.edu/~brenocon/inlp2014/ Brendan O Connor (http://brenocon.com) 1 Models for

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

with Local Dependencies

with Local Dependencies CS11-747 Neural Networks for NLP Structured Prediction with Local Dependencies Xuezhe Ma (Max) Site https://phontron.com/class/nn4nlp2017/ An Example Structured Prediction Problem: Sequence Labeling Sequence

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Helen Yannakoudakis 1 Computer Laboratory University of Cambridge Lent 2018 1 Based on slides created by Simone Teufel So far we ve looked at

More information

Deep Learning Architectures and Algorithms

Deep Learning Architectures and Algorithms Deep Learning Architectures and Algorithms In-Jung Kim 2016. 12. 2. Agenda Introduction to Deep Learning RBM and Auto-Encoders Convolutional Neural Networks Recurrent Neural Networks Reinforcement Learning

More information

Summary of A Few Recent Papers about Discrete Generative models

Summary of A Few Recent Papers about Discrete Generative models Summary of A Few Recent Papers about Discrete Generative models Presenter: Ji Gao Department of Computer Science, University of Virginia https://qdata.github.io/deep2read/ Outline SeqGAN BGAN: Boundary

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 9 Administrativia Next class will be a summary Please email me questions

More information

Experiments on the Consciousness Prior

Experiments on the Consciousness Prior Yoshua Bengio and William Fedus UNIVERSITÉ DE MONTRÉAL, MILA Abstract Experiments are proposed to explore a novel prior for representation learning, which can be combined with other priors in order to

More information

Laconic: Label Consistency for Image Categorization

Laconic: Label Consistency for Image Categorization 1 Laconic: Label Consistency for Image Categorization Samy Bengio, Google with Jeff Dean, Eugene Ie, Dumitru Erhan, Quoc Le, Andrew Rabinovich, Jon Shlens, and Yoram Singer 2 Motivation WHAT IS THE OCCLUDED

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Image Processing 2. Hakan Bilen University of Edinburgh. Computer Graphics Fall 2017

Image Processing 2. Hakan Bilen University of Edinburgh. Computer Graphics Fall 2017 Image Processing 2 Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 This week What is an image? What is image processing? Point processing Linear (Spatial) filters Frequency domain Deep

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward

Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward Kaiyang Zhou, Yu Qiao, Tao Xiang AAAI 2018 What is video summarization? Goal: to automatically

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Naïve Bayes, Maxent and Neural Models

Naïve Bayes, Maxent and Neural Models Naïve Bayes, Maxent and Neural Models CMSC 473/673 UMBC Some slides adapted from 3SLP Outline Recap: classification (MAP vs. noisy channel) & evaluation Naïve Bayes (NB) classification Terminology: bag-of-words

More information

Joint Emotion Analysis via Multi-task Gaussian Processes

Joint Emotion Analysis via Multi-task Gaussian Processes Joint Emotion Analysis via Multi-task Gaussian Processes Daniel Beck, Trevor Cohn, Lucia Specia October 28, 2014 1 Introduction 2 Multi-task Gaussian Process Regression 3 Experiments and Discussion 4 Conclusions

More information

Statistical Ranking Problem

Statistical Ranking Problem Statistical Ranking Problem Tong Zhang Statistics Department, Rutgers University Ranking Problems Rank a set of items and display to users in corresponding order. Two issues: performance on top and dealing

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Maximum Entropy Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 24 Introduction Classification = supervised

More information

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS Dan Hendrycks University of Chicago dan@ttic.edu Steven Basart University of Chicago xksteven@uchicago.edu ABSTRACT We introduce a

More information

CS 188: Artificial Intelligence Spring Today

CS 188: Artificial Intelligence Spring Today CS 188: Artificial Intelligence Spring 2006 Lecture 9: Naïve Bayes 2/14/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Bayes rule Today Expectations and utilities Naïve

More information

Applied Natural Language Processing

Applied Natural Language Processing Applied Natural Language Processing Info 256 Lecture 7: Testing (Feb 12, 2019) David Bamman, UC Berkeley Significance in NLP You develop a new method for text classification; is it better than what comes

More information

Deep Generative Models for Graph Generation. Jian Tang HEC Montreal CIFAR AI Chair, Mila

Deep Generative Models for Graph Generation. Jian Tang HEC Montreal CIFAR AI Chair, Mila Deep Generative Models for Graph Generation Jian Tang HEC Montreal CIFAR AI Chair, Mila Email: jian.tang@hec.ca Deep Generative Models Goal: model data distribution p(x) explicitly or implicitly, where

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Classification, Linear Models, Naïve Bayes

Classification, Linear Models, Naïve Bayes Classification, Linear Models, Naïve Bayes CMSC 470 Marine Carpuat Slides credit: Dan Jurafsky & James Martin, Jacob Eisenstein Today Text classification problems and their evaluation Linear classifiers

More information

Logistic Regression & Neural Networks

Logistic Regression & Neural Networks Logistic Regression & Neural Networks CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Logistic Regression Perceptron & Probabilities What if we want a probability

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks Stefano Ermon, Aditya Grover Stanford University Lecture 10 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 10 1 / 17 Selected GANs https://github.com/hindupuravinash/the-gan-zoo

More information

Mini-project 2 (really) due today! Turn in a printout of your work at the end of the class

Mini-project 2 (really) due today! Turn in a printout of your work at the end of the class Administrivia Mini-project 2 (really) due today Turn in a printout of your work at the end of the class Project presentations April 23 (Thursday next week) and 28 (Tuesday the week after) Order will be

More information

attention mechanisms and generative models

attention mechanisms and generative models attention mechanisms and generative models Master's Deep Learning Sergey Nikolenko Harbour Space University, Barcelona, Spain November 20, 2017 attention in neural networks attention You re paying attention

More information

Task-Oriented Dialogue System (Young, 2000)

Task-Oriented Dialogue System (Young, 2000) 2 Review Task-Oriented Dialogue System (Young, 2000) 3 http://rsta.royalsocietypublishing.org/content/358/1769/1389.short Speech Signal Speech Recognition Hypothesis are there any action movies to see

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Dialogue Systems. Statistical NLU component. Representation. A Probabilistic Dialogue System. Task: map a sentence + context to a database query

Dialogue Systems. Statistical NLU component. Representation. A Probabilistic Dialogue System. Task: map a sentence + context to a database query Statistical NLU component Task: map a sentence + context to a database query Dialogue Systems User: Show me flights from NY to Boston, leaving tomorrow System: [returns a list of flights] Origin (City

More information

IBM Model 1 for Machine Translation

IBM Model 1 for Machine Translation IBM Model 1 for Machine Translation Micha Elsner March 28, 2014 2 Machine translation A key area of computational linguistics Bar-Hillel points out that human-like translation requires understanding of

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP Instructor: Wei Xu Ohio State University CSE 5525 Many slides from Greg Durrett Outline Motivation for neural networks Feedforward neural networks Applying feedforward neural networks

More information

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann Machine Learning! in just a few minutes Jan Peters Gerhard Neumann 1 Purpose of this Lecture Foundations of machine learning tools for robotics We focus on regression methods and general principles Often

More information

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525 Markov Models and Reinforcement Learning Stephen G. Ware CSCI 4525 / 5525 Camera Vacuum World (CVW) 2 discrete rooms with cameras that detect dirt. A mobile robot with a vacuum. The goal is to ensure both

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4731 Dr. Mihail Fall 2017 Slide content based on books by Bishop and Barber. https://www.microsoft.com/en-us/research/people/cmbishop/ http://web4.cs.ucl.ac.uk/staff/d.barber/pmwiki/pmwiki.php?n=brml.homepage

More information

Discriminative Training

Discriminative Training Discriminative Training February 19, 2013 Noisy Channels Again p(e) source English Noisy Channels Again p(e) p(g e) source English German Noisy Channels Again p(e) p(g e) source English German decoder

More information

Information Extraction from Text

Information Extraction from Text Information Extraction from Text Jing Jiang Chapter 2 from Mining Text Data (2012) Presented by Andrew Landgraf, September 13, 2013 1 What is Information Extraction? Goal is to discover structured information

More information

Deep Reinforcement Learning. Scratching the surface

Deep Reinforcement Learning. Scratching the surface Deep Reinforcement Learning Scratching the surface Deep Reinforcement Learning Scenario of Reinforcement Learning Observation State Agent Action Change the environment Don t do that Reward Environment

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Natural Language Understanding. Kyunghyun Cho, NYU & U. Montreal

Natural Language Understanding. Kyunghyun Cho, NYU & U. Montreal Natural Language Understanding Kyunghyun Cho, NYU & U. Montreal 2 Machine Translation NEURAL MACHINE TRANSLATION 3 Topics: Statistical Machine Translation log p(f e) =log p(e f) + log p(f) f = (La, croissance,

More information

Natural Language Processing with Deep Learning CS224N/Ling284

Natural Language Processing with Deep Learning CS224N/Ling284 Natural Language Processing with Deep Learning CS224N/Ling284 Lecture 4: Word Window Classification and Neural Networks Richard Socher Organization Main midterm: Feb 13 Alternative midterm: Friday Feb

More information

Variational Attention for Sequence-to-Sequence Models

Variational Attention for Sequence-to-Sequence Models Variational Attention for Sequence-to-Sequence Models Hareesh Bahuleyan, 1 Lili Mou, 1 Olga Vechtomova, Pascal Poupart University of Waterloo March, 2018 Outline 1 Introduction 2 Background & Motivation

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

arxiv: v1 [cs.cl] 21 May 2017

arxiv: v1 [cs.cl] 21 May 2017 Spelling Correction as a Foreign Language Yingbo Zhou yingbzhou@ebay.com Utkarsh Porwal uporwal@ebay.com Roberto Konow rkonow@ebay.com arxiv:1705.07371v1 [cs.cl] 21 May 2017 Abstract In this paper, we

More information

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology Basic Text Analysis Hidden Markov Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakimnivre@lingfiluuse Basic Text Analysis 1(33) Hidden Markov Models Markov models are

More information

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu

Natural Language Processing. Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Natural Language Processing Slides from Andreas Vlachos, Chris Manning, Mihai Surdeanu Projects Project descriptions due today! Last class Sequence to sequence models Attention Pointer networks Today Weak

More information

CSC321 Lecture 15: Recurrent Neural Networks

CSC321 Lecture 15: Recurrent Neural Networks CSC321 Lecture 15: Recurrent Neural Networks Roger Grosse Roger Grosse CSC321 Lecture 15: Recurrent Neural Networks 1 / 26 Overview Sometimes we re interested in predicting sequences Speech-to-text and

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Domain adaptation for deep learning

Domain adaptation for deep learning What you saw is not what you get Domain adaptation for deep learning Kate Saenko Successes of Deep Learning in AI A Learning Advance in Artificial Intelligence Rivals Human Abilities Deep Learning for

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides mostly from Mitch Marcus and Eric Fosler (with lots of modifications). Have you seen HMMs? Have you seen Kalman filters? Have you seen dynamic programming? HMMs are dynamic

More information

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop

Modeling Data with Linear Combinations of Basis Functions. Read Chapter 3 in the text by Bishop Modeling Data with Linear Combinations of Basis Functions Read Chapter 3 in the text by Bishop A Type of Supervised Learning Problem We want to model data (x 1, t 1 ),..., (x N, t N ), where x i is a vector

More information

Probability Review and Naïve Bayes

Probability Review and Naïve Bayes Probability Review and Naïve Bayes Instructor: Alan Ritter Some slides adapted from Dan Jurfasky and Brendan O connor What is Probability? The probability the coin will land heads is 0.5 Q: what does this

More information

Natural Language Processing (CSE 490U): Language Models

Natural Language Processing (CSE 490U): Language Models Natural Language Processing (CSE 490U): Language Models Noah Smith c 2017 University of Washington nasmith@cs.washington.edu January 6 9, 2017 1 / 67 Very Quick Review of Probability Event space (e.g.,

More information

Log-Linear Models, MEMMs, and CRFs

Log-Linear Models, MEMMs, and CRFs Log-Linear Models, MEMMs, and CRFs Michael Collins 1 Notation Throughout this note I ll use underline to denote vectors. For example, w R d will be a vector with components w 1, w 2,... w d. We use expx

More information

Data Informatics. Seon Ho Kim, Ph.D.

Data Informatics. Seon Ho Kim, Ph.D. Data Informatics Seon Ho Kim, Ph.D. seonkim@usc.edu What is Machine Learning? Overview slides by ETHEM ALPAYDIN Why Learn? Learn: programming computers to optimize a performance criterion using example

More information

2018 EE448, Big Data Mining, Lecture 4. (Part I) Weinan Zhang Shanghai Jiao Tong University

2018 EE448, Big Data Mining, Lecture 4. (Part I) Weinan Zhang Shanghai Jiao Tong University 2018 EE448, Big Data Mining, Lecture 4 Supervised Learning (Part I) Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html Content of Supervised Learning

More information

Sequential Supervised Learning

Sequential Supervised Learning Sequential Supervised Learning Many Application Problems Require Sequential Learning Part-of of-speech Tagging Information Extraction from the Web Text-to to-speech Mapping Part-of of-speech Tagging Given

More information

Machine Learning. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 8 May 2012

Machine Learning. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 8 May 2012 Machine Learning Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421 Introduction to Artificial Intelligence 8 May 2012 g 1 Many slides courtesy of Dan Klein, Stuart Russell, or Andrew

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

CRF Word Alignment & Noisy Channel Translation

CRF Word Alignment & Noisy Channel Translation CRF Word Alignment & Noisy Channel Translation January 31, 2013 Last Time... X p( Translation)= p(, Translation) Alignment Alignment Last Time... X p( Translation)= p(, Translation) Alignment X Alignment

More information

Natural Language Processing (CSEP 517): Text Classification

Natural Language Processing (CSEP 517): Text Classification Natural Language Processing (CSEP 517): Text Classification Noah Smith c 2017 University of Washington nasmith@cs.washington.edu April 10, 2017 1 / 71 To-Do List Online quiz: due Sunday Read: Jurafsky

More information

Language Processing with Perl and Prolog

Language Processing with Perl and Prolog Language Processing with Perl and Prolog es Pierre Nugues Lund University Pierre.Nugues@cs.lth.se http://cs.lth.se/pierre_nugues/ Pierre Nugues Language Processing with Perl and Prolog 1 / 12 Training

More information

Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based

Tasks ADAS. Self Driving. Non-machine Learning. Traditional MLP. Machine-Learning based method. Supervised CNN. Methods. Deep-Learning based UNDERSTANDING CNN ADAS Tasks Self Driving Localizati on Perception Planning/ Control Driver state Vehicle Diagnosis Smart factory Methods Traditional Deep-Learning based Non-machine Learning Machine-Learning

More information