MAS3301 Bayesian Statistics

Size: px
Start display at page:

Download "MAS3301 Bayesian Statistics"

Transcription

1 MAS3301 Bayesian Statistics M. Farrow School of Mathematics and Statistics Newcastle University Semester 2,

2 11 Conjugate Priors IV: The Dirichlet distribution and multinomial observations 11.1 The Dirichlet distribution The Dirichlet distribution is a distribution for a set of quantities θ 1,..., θ m where θ i 0 and m θ i = 1. An obvious application is to a set of probabilities for a partition (i.e. for an exhaustive set of mutually exclusive events). The probability density function is f(θ 1,..., θ m ) = Γ(a i) θ ai 1 i where A = m a i and a 1,..., a m are parameters with a i > 0 for i = 1,..., m. Clearly, if m = 2, we obtain a beta(a 1, a 2 ) distribution as a special case. The mean of θ j is the variance of θ j is var(θ j ) = and the covariance of θ j and θ k, where j k, is E(θ j ) = a j A a j A(A + 1) a 2 j A 2 (A + 1) covar(θ j, θ k ) = a ja k A 2 (A + 1). Also the marginal distribution of θ j is beta(a j, A a j ). Note that the space of the parameters θ 1,..., θ m has only m 1 dimensions because of the constraint m θ i = 1, so that, for example, θ m = 1 m 1 θ i. Therefore, when we integrate over this space, the integration has only m 1 dimensions. Proof (mean) The mean is E(θ j ) = = = θ j Γ(a i) Γ(a j + 1) Γ(A + 1) Γ(a j ) Γ(a j + 1) = a j Γ(A + 1) Γ(a j ) A θ ai 1 i dθ 1... dθ m 1 Γ(A + 1) m Γ(a i ) θ a i 1 i dθ 1... dθ m 1 where a i = a i when i j and a j = a j

3 Proof (variance) Similarly so E(θ 2 j ) = Γ(a j + 2) = (a j + 1)a j Γ(A + 2) Γ(a j ) (A + 1)A var(θ j ) = (a j + 1)a ( j (A + 1)A aj ) 2 a j = A A(A + 1) a 2 j A 2 (A + 1) Proof (covariance) Also so E(θ j θ k ) = Γ(A + 2) Γ(a j + 1) Γ(a k + 1) = a ja k Γ(a j ) Γ(a k ) (A + 1)A covar(θ j, θ k ) = a ja k (A + 1)A a j a k A A = a ja k A 2 (A + 1) Proof (marginal) We can write the joint density of θ 1,..., θ m as f 1 (θ 1 )f 2 (θ 2 θ 1 )f 3 (θ 3 θ 1, θ 2 ) f m 1 (θ m 1 θ 1,..., θ m 2 ). (We do not need to include a final term in this for θ m because θ m is fixed once θ 1,..., θ m 1 are fixed). In fact we can write the joint density as Γ(a 1 )Γ(A a 1 ) θa1 1 1 (1 θ 1 ) A a1 1 Γ(A a 1 ) θ a2 1 2 (1 θ 1 θ 2 ) A a1 a2 1 Γ(a 2 )Γ(A a 1 a 2 ) (1 θ 1 ) A a1 1 Γ(A a 1 a m 2 ) θ am 1 1 m 1 θm am 1 Γ(a m 1 )Γ(A a 1 a m 1 ) (1 θ 1 θ m 2 ) am 1+am 1. A bit of cancelling shows that this simplifies to the correct Dirichlet density. 70

4 Thus we can see that the marginal distribution of θ 1 is a beta(a 1, A a 1 ) distribution and similarly that the marginal distribution of θ j is a beta(a j, A a j ) distribution. We can also deduce the distribution of a subset of θ 1,..., θ m. For example if θ 3 = 1 θ 1 θ 2 θ 3, then the distribution of θ 1, θ 2, θ 3, θ 3 is Dirichlet(a 1, a 2, a 3, ã 3 ) where ã 3 = A a 1 a 2 a Multinomial observations Model Suppose that we will observe X 1,..., X m where these are the frequencies for categories 1,..., m, the total N = m X i is fixed and the probabilities for these categories are θ 1,..., θ m where m θ i = 1. Then, given θ, where θ = (θ 1,..., θ m ) T, the distribution of X 1,..., X m is multinomial with Pr(X 1 = x 1,..., X m = x m ) = N! x i! θ xi i. Notice that, with m = 2, this is just a binomial(n, θ 1 ) distribution. Then the likelihood is L(θ; x) = N! x i! θ xi i. The conjugate prior is a Dirichlet distribution which has a pdf proportional to The posterior pdf is proportional to θ ai 1 i θ ai 1 i. θ xi i = θ xi i θ ai+xi 1 i. This is proportional to the pdf of a Dirichlet distribution with parameters a 1 + x 1, a 2 + x 2,... a m + x m Example In a survey 1000 English voters are asked to say for which party they would vote if there were a general election next week. The choices offered were 1: Labour, 2: Liberal, 3: Conservative, 4: Other, 5: None, 6: Undecided. We assume that the population is large enough so that the responses may be considered independent given the true underlying proportions. Let θ 1,..., θ 6 be the probabilities that a randomly selected voter would give each of the responses. Our prior distribution for θ 1,..., θ 6 is a Dirichlet(5, 3, 5, 1, 2, 4) distribution. This gives the following summary of the prior distribution. Response a i Prior mean Prior var. Prior sd. Labour Liberal Conservative Other None Undecided Total Suppose our observed data are as follows. 71

5 Labour Liberal Conservative Other None Undecided Then we can summarise the posterior distribution as follows. Response a i + x i Posterior mean Posterior var. Posterior sd. Labour Liberal Conservative Other None Undecided Total

6 12 Sufficiency 12.1 Introduction Consider the following problem. We are going to observe two random variables X 1, X 2. In each case, given the value of µ, we have X i µ N(µ, V ) where the variance V is known but we wish to learn about the value of µ. Further, given µ, the two variables X 1, X 2 are independent. The likelihood comes from the joint pdf of X 1, X 2 but an exactly equivalent observation would be Y 1, Y 2 where It is easily seen that Y 1 = X 1 + X 2 Y 2 = X 1 X 2 Y 1 N(2µ, 2V ) Y 2 N(0, 2V ) and that Y 1 and Y 2 are independent. Therefore Y 2 does not depend on µ and its value can not tell us anything about µ. On the other hand the value of Y 1 tells us everything which we can learn from the data about µ. We say that Y 1 is sufficient for µ and Y 2 is ancillary for µ Definition Suppose we have an unknown (e.g. a parameter) θ and we will observe data Y. The density (or probability) of Y given θ is f Y θ (y θ) and this gives us the likelihood, L(θ; y). Suppose we have a statistic T (Y ), with value t. Since, once we know Y, we can calculate T, can always write f Y θ (y θ) = f Y,T θ (y, t θ) = f T θ (t θ)f Y t,θ (y t, θ). In some cases f Y t,θ (y t, θ) does not depend on θ so f Y t,θ (y t, θ) = f Y t (y t). In this case f Y θ (y θ) = f T θ (t θ)f Y t (y t). (9) In such a case we say that T (Y ) is a sufficient statistic for θ given Y. Often we simply say that T is sufficient for θ Factorisation theorem Another way to express (9) is to say that T is sufficient for θ if and only if there are functions g, h such that where h(y) does not depend on θ. This is known as Neyman s factorisation theorem. f Y θ (y θ) = g(θ, t)h(y) (10) Proof: If T is sufficient for θ then we can write g(θ, t) = f T θ (t θ) and h(y) = f Y t (y t). To prove the converse we start by integrating (or summing) (10) over all values of y where T (y) = t. This gives f T θ (t θ) = g(θ, t)h(t) 73

7 for some function H(t). This gives us which we substitute in (10) to obtain Now so g(θ, t) = f T θ(t θ) H(t) f Y θ (y θ) = f T θ(t θ)h(y). H(t) f Y t,θ (y t, θ) = f Y,T θ(y, t θ) f T θ (t θ) f Y t,θ (y t, θ) = h(y) H(t). = f Y θ(y θ) f T θ (t θ) The right hand side of this equation does not depend on θ so the theorem is proved Sufficiency principle From (9) we can see that, if T is sufficient for θ, then the likelihood for θ from y is proportional to the likelihood for θ from t. Therefore, instead of using the likelihood for the full data we can use the likelihood based simply on the distribution of T Examples Poisson Suppose that we observe random variables Y 1,..., Y n where, given the value of the parameter λ, Y i is independent of Y j for i j and Y i Poisson(λ) for i = 1,..., n. Then the likelihood is L(λ; y) = n e λ λ yi y i! = e nλ λ S n = g(λ, S)h(y) where S = n y i, g(λ, S) = e nλ λ S and h(y) = n 1 y i!. So S is sufficient for λ. Furthermore S Poisson(nλ) so an equivalent likelihood is 1 y i! L S (λ; y) = e nλ (nλ) S S! e nλ λ S. 74

8 Normal Suppose that we observe random variables Y 1,..., Y n where, given the value of the parameters µ, σ 2, Y i is independent of Y j for i j and Y i N(µ, σ 2 ) for i = 1,..., n. Here the parameter is θ = (µ, σ 2 ) T. The likelihood is n L(µ, σ 2 ; y) = (2πσ 2 ) 1/2 exp 1 } 2σ 2 (y i µ) 2 } = (2πσ 2 ) n/2 exp 1 n 2σ 2 (y i µ) 2 } = (2πσ 2 ) n/2 exp 1 n 2σ 2 (y i ȳ + ȳ µ) 2 [ = (2πσ 2 ) n/2 exp 1 n ]} 2σ 2 (y i ȳ) 2 + n(ȳ µ) 2 = (2πσ 2 ) n/2 exp 1 [ S + n(ȳ µ) 2 ] } 2σ 2 where h(y) = 1, T = (ȳ, S) T, = g(θ, T )h(y) ȳ = 1 n n y i and S = n (y i ȳ) 2. Hence ȳ and S are sufficient for µ and σ 2. Furthermore, in the case where σ 2 is known, ȳ is sufficient for µ since L(µ; y) = exp n 2σ 2 (ȳ µ)2} (2πσ 2 ) n/2 exp S } 2σ 2 = g(µ, ȳ)h(y) with h(y) = (2πσ 2 ) n/2 exp S } 2σ 2. 75

MAS3301 Bayesian Statistics

MAS3301 Bayesian Statistics MAS3301 Bayesian Statistics M. Farrow School of Mathematics and Statistics Newcastle University Semester, 008-9 1 13 Sequential updating 13.1 Theory We have seen how we can change our beliefs about an

More information

MAS8303 Modern Bayesian Inference Part 2

MAS8303 Modern Bayesian Inference Part 2 MAS8303 Modern Bayesian Inference Part 2 M. Farrow School of Mathematics and Statistics Newcastle University Semester 1, 2012-13 2 Chapter 0 Inference for More Than One Unknown 0.1 More than one unknown

More information

MAS3301 Bayesian Statistics

MAS3301 Bayesian Statistics MAS331 Bayesian Statistics M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 28-9 1 9 Conjugate Priors II: More uses of the beta distribution 9.1 Geometric observations 9.1.1

More information

MAS3301 Bayesian Statistics

MAS3301 Bayesian Statistics MAS3301 Bayesian Statistics M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2008-9 1 15 Inference for Normal Distributions II 15.1 Student s t-distribution When we look

More information

MAS3301 Bayesian Statistics Problems 5 and Solutions

MAS3301 Bayesian Statistics Problems 5 and Solutions MAS3301 Bayesian Statistics Problems 5 and Solutions Semester 008-9 Problems 5 1. (Some of this question is also in Problems 4). I recorded the attendance of students at tutorials for a module. Suppose

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

MAS3301 Bayesian Statistics Problems 2 and Solutions

MAS3301 Bayesian Statistics Problems 2 and Solutions MAS33 Bayesian Statistics Problems Solutions Semester 8-9 Problems Useful integrals: In solving these problems you might find the following useful Gamma functions: Let a b be positive Then where Γ(a) If

More information

Bayesian Inference. Chapter 2: Conjugate models

Bayesian Inference. Chapter 2: Conjugate models Bayesian Inference Chapter 2: Conjugate models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in

More information

HT Introduction. P(X i = x i ) = e λ λ x i

HT Introduction. P(X i = x i ) = e λ λ x i MODS STATISTICS Introduction. HT 2012 Simon Myers, Department of Statistics (and The Wellcome Trust Centre for Human Genetics) myers@stats.ox.ac.uk We will be concerned with the mathematical framework

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Weakness of Beta priors (or conjugate priors in general) They can only represent a limited range of prior beliefs. For example... There are no bimodal beta distributions (except when the modes are at 0

More information

HPD Intervals / Regions

HPD Intervals / Regions HPD Intervals / Regions The HPD region will be an interval when the posterior is unimodal. If the posterior is multimodal, the HPD region might be a discontiguous set. Picture: The set {θ : θ (1.5, 3.9)

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Properties of Point Estimators and Methods of Estimation 2 3 If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition

More information

2.6.3 Generalized likelihood ratio tests

2.6.3 Generalized likelihood ratio tests 26 HYPOTHESIS TESTING 113 263 Generalized likelihood ratio tests When a UMP test does not exist, we usually use a generalized likelihood ratio test to verify H 0 : θ Θ against H 1 : θ Θ\Θ It can be used

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Weakness of Beta priors (or conjugate priors in general) They can only represent a limited range of prior beliefs. For example... There are no bimodal beta distributions (except when the modes are at 0

More information

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Matthew S. Johnson New York ASA Chapter Workshop CUNY Graduate Center New York, NY hspace1in December 17, 2009 December

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics Estimating a proportion using the beta/binomial model A fundamental task in statistics is to estimate a proportion using a series of trials: What is the success probability of a new cancer treatment? What

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Thais Paiva STA 111 - Summer 2013 Term II August 7, 2013 1 / 31 Thais Paiva STA 111 - Summer 2013 Term II Lecture 23, 08/07/2013 Lecture

More information

Advanced topics from statistics

Advanced topics from statistics Advanced topics from statistics Anders Ringgaard Kristensen Advanced Herd Management Slide 1 Outline Covariance and correlation Random vectors and multivariate distributions The multinomial distribution

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 Minimize this by maximizing

More information

SOLUTION FOR HOMEWORK 6, STAT 6331

SOLUTION FOR HOMEWORK 6, STAT 6331 SOLUTION FOR HOMEWORK 6, STAT 633. Exerc.7.. It is given that X,...,X n is a sample from N(θ, σ ), and the Bayesian approach is used with Θ N(µ, τ ). The parameters σ, µ and τ are given. (a) Find the joinf

More information

Introduction to Machine Learning. Lecture 2

Introduction to Machine Learning. Lecture 2 Introduction to Machine Learning Lecturer: Eran Halperin Lecture 2 Fall Semester Scribe: Yishay Mansour Some of the material was not presented in class (and is marked with a side line) and is given for

More information

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is Multinomial Data The multinomial distribution is a generalization of the binomial for the situation in which each trial results in one and only one of several categories, as opposed to just two, as in

More information

Conjugate Priors: Beta and Normal Spring 2018

Conjugate Priors: Beta and Normal Spring 2018 Conjugate Priors: Beta and Normal 18.05 Spring 2018 Review: Continuous priors, discrete data Bent coin: unknown probability θ of heads. Prior f (θ) = 2θ on [0,1]. Data: heads on one toss. Question: Find

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Multiparameter models (cont.)

Multiparameter models (cont.) Multiparameter models (cont.) Dr. Jarad Niemi STAT 544 - Iowa State University February 1, 2018 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 1, 2018 1 / 20 Outline Multinomial Multivariate

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

INTRODUCTION TO BAYESIAN METHODS II

INTRODUCTION TO BAYESIAN METHODS II INTRODUCTION TO BAYESIAN METHODS II Abstract. We will revisit point estimation and hypothesis testing from the Bayesian perspective.. Bayes estimators Let X = (X,..., X n ) be a random sample from the

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

Monte Carlo in Bayesian Statistics

Monte Carlo in Bayesian Statistics Monte Carlo in Bayesian Statistics Matthew Thomas SAMBa - University of Bath m.l.thomas@bath.ac.uk December 4, 2014 Matthew Thomas (SAMBa) Monte Carlo in Bayesian Statistics December 4, 2014 1 / 16 Overview

More information

Conjugate Priors: Beta and Normal Spring 2018

Conjugate Priors: Beta and Normal Spring 2018 Conjugate Priors: Beta and Normal 18.05 Spring 018 Review: Continuous priors, discrete data Bent coin: unknown probability θ of heads. Prior f (θ) = θ on [0,1]. Data: heads on one toss. Question: Find

More information

Likelihoods. P (Y = y) = f(y). For example, suppose Y has a geometric distribution on 1, 2,... with parameter p. Then the pmf is

Likelihoods. P (Y = y) = f(y). For example, suppose Y has a geometric distribution on 1, 2,... with parameter p. Then the pmf is Likelihoods The distribution of a random variable Y with a discrete sample space (e.g. a finite sample space or the integers) can be characterized by its probability mass function (pmf): P (Y = y) = f(y).

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

Department of Large Animal Sciences. Outline. Slide 2. Department of Large Animal Sciences. Slide 4. Department of Large Animal Sciences

Department of Large Animal Sciences. Outline. Slide 2. Department of Large Animal Sciences. Slide 4. Department of Large Animal Sciences Outline Advanced topics from statistics Anders Ringgaard Kristensen Covariance and correlation Random vectors and multivariate distributions The multinomial distribution The multivariate normal distribution

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution.

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution. The binomial model Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for the use of performance enhancing analytics. Let

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

ECE531 Lecture 8: Non-Random Parameter Estimation

ECE531 Lecture 8: Non-Random Parameter Estimation ECE531 Lecture 8: Non-Random Parameter Estimation D. Richard Brown III Worcester Polytechnic Institute 19-March-2009 Worcester Polytechnic Institute D. Richard Brown III 19-March-2009 1 / 25 Introduction

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

1 Bayesian Linear Regression (BLR)

1 Bayesian Linear Regression (BLR) Statistical Techniques in Robotics (STR, S15) Lecture#10 (Wednesday, February 11) Lecturer: Byron Boots Gaussian Properties, Bayesian Linear Regression 1 Bayesian Linear Regression (BLR) In linear regression,

More information

Conjugate Priors: Beta and Normal Spring January 1, /15

Conjugate Priors: Beta and Normal Spring January 1, /15 Conjugate Priors: Beta and Normal 18.05 Spring 2014 January 1, 2017 1 /15 Review: Continuous priors, discrete data Bent coin: unknown probability θ of heads. Prior f (θ) = 2θ on [0,1]. Data: heads on one

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information

Notes on the Multivariate Normal and Related Topics

Notes on the Multivariate Normal and Related Topics Version: July 10, 2013 Notes on the Multivariate Normal and Related Topics Let me refresh your memory about the distinctions between population and sample; parameters and statistics; population distributions

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 19, 010, 8:00 am - 1:00 noon Instructions: 1. You have four hours to answer questions in this examination.. You must show your

More information

Stats 579 Intermediate Bayesian Modeling. Assignment # 2 Solutions

Stats 579 Intermediate Bayesian Modeling. Assignment # 2 Solutions Stats 579 Intermediate Bayesian Modeling Assignment # 2 Solutions 1. Let w Gy) with y a vector having density fy θ) and G having a differentiable inverse function. Find the density of w in general and

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Hypothesis Testing: The Generalized Likelihood Ratio Test

Hypothesis Testing: The Generalized Likelihood Ratio Test Hypothesis Testing: The Generalized Likelihood Ratio Test Consider testing the hypotheses H 0 : θ Θ 0 H 1 : θ Θ \ Θ 0 Definition: The Generalized Likelihood Ratio (GLR Let L(θ be a likelihood for a random

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts

ICML Scalable Bayesian Inference on Point processes. with Gaussian Processes. Yves-Laurent Kom Samo & Stephen Roberts ICML 2015 Scalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes Machine Learning Research Group and Oxford-Man Institute University of Oxford July 8, 2015 Point Processes

More information

Regression Estimation Least Squares and Maximum Likelihood

Regression Estimation Least Squares and Maximum Likelihood Regression Estimation Least Squares and Maximum Likelihood Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 3, Slide 1 Least Squares Max(min)imization Function to minimize

More information

Nuisance parameters and their treatment

Nuisance parameters and their treatment BS2 Statistical Inference, Lecture 2, Hilary Term 2008 April 2, 2008 Ancillarity Inference principles Completeness A statistic A = a(x ) is said to be ancillary if (i) The distribution of A does not depend

More information

Bayesian Inference for Normal Mean

Bayesian Inference for Normal Mean Al Nosedal. University of Toronto. November 18, 2015 Likelihood of Single Observation The conditional observation distribution of y µ is Normal with mean µ and variance σ 2, which is known. Its density

More information

2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling

2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling 2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling Jon Wakefield Departments of Statistics and Biostatistics University of Washington Outline Introduction and Motivating

More information

Machine Learning. Lecture 3: Logistic Regression. Feng Li.

Machine Learning. Lecture 3: Logistic Regression. Feng Li. Machine Learning Lecture 3: Logistic Regression Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2016 Logistic Regression Classification

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics

CS 540: Machine Learning Lecture 2: Review of Probability & Statistics CS 540: Machine Learning Lecture 2: Review of Probability & Statistics AD January 2008 AD () January 2008 1 / 35 Outline Probability theory (PRML, Section 1.2) Statistics (PRML, Sections 2.1-2.4) AD ()

More information

The Bayesian Paradigm

The Bayesian Paradigm Stat 200 The Bayesian Paradigm Friday March 2nd The Bayesian Paradigm can be seen in some ways as an extra step in the modelling world just as parametric modelling is. We have seen how we could use probabilistic

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

ECE531 Homework Assignment Number 6 Solution

ECE531 Homework Assignment Number 6 Solution ECE53 Homework Assignment Number 6 Solution Due by 8:5pm on Wednesday 3-Mar- Make sure your reasoning and work are clear to receive full credit for each problem.. 6 points. Suppose you have a scalar random

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Lecture 7 October 13

Lecture 7 October 13 STATS 300A: Theory of Statistics Fall 2015 Lecture 7 October 13 Lecturer: Lester Mackey Scribe: Jing Miao and Xiuyuan Lu 7.1 Recap So far, we have investigated various criteria for optimal inference. We

More information

Lecture 5. i=1 xi. Ω h(x,y)f X Θ(y θ)µ Θ (dθ) = dµ Θ X

Lecture 5. i=1 xi. Ω h(x,y)f X Θ(y θ)µ Θ (dθ) = dµ Θ X LECURE NOES 25 Lecture 5 9. Minimal sufficient and complete statistics We introduced the notion of sufficient statistics in order to have a function of the data that contains all information about the

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL*

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* 3 Conditionals and marginals For Bayesian analysis it is very useful to understand how to write joint, marginal, and conditional distributions for the multivariate

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

2018 SISG Module 20: Bayesian Statistics for Genetics Lecture 2: Review of Probability and Bayes Theorem

2018 SISG Module 20: Bayesian Statistics for Genetics Lecture 2: Review of Probability and Bayes Theorem 2018 SISG Module 20: Bayesian Statistics for Genetics Lecture 2: Review of Probability and Bayes Theorem Jon Wakefield Departments of Statistics and Biostatistics University of Washington Outline Introduction

More information

Introduction to Bayesian Statistics. James Swain University of Alabama in Huntsville ISEEM Department

Introduction to Bayesian Statistics. James Swain University of Alabama in Huntsville ISEEM Department Introduction to Bayesian Statistics James Swain University of Alabama in Huntsville ISEEM Department Author Introduction James J. Swain is Professor of Industrial and Systems Engineering Management at

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Compute f(x θ)f(θ) dθ

Compute f(x θ)f(θ) dθ Bayesian Updating: Continuous Priors 18.05 Spring 2014 b a Compute f(x θ)f(θ) dθ January 1, 2017 1 /26 Beta distribution Beta(a, b) has density (a + b 1)! f (θ) = θ a 1 (1 θ) b 1 (a 1)!(b 1)! http://mathlets.org/mathlets/beta-distribution/

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

Latent Variable Models Probabilistic Models in the Study of Language Day 4

Latent Variable Models Probabilistic Models in the Study of Language Day 4 Latent Variable Models Probabilistic Models in the Study of Language Day 4 Roger Levy UC San Diego Department of Linguistics Preamble: plate notation for graphical models Here is the kind of hierarchical

More information

Bayesian SAE using Complex Survey Data Lecture 1: Bayesian Statistics

Bayesian SAE using Complex Survey Data Lecture 1: Bayesian Statistics Bayesian SAE using Complex Survey Data Lecture 1: Bayesian Statistics Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 101 Outline Motivation Bayesian Learning Probability

More information

The Delta Method and Applications

The Delta Method and Applications Chapter 5 The Delta Method and Applications 5.1 Local linear approximations Suppose that a particular random sequence converges in distribution to a particular constant. The idea of using a first-order

More information

Practice Examination # 3

Practice Examination # 3 Practice Examination # 3 Sta 23: Probability December 13, 212 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use a single

More information

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory Charles J. Geyer School of Statistics University of Minnesota 1 Asymptotic Approximation The last big subject in probability

More information

Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2)

Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2) Lectures on Machine Learning (Fall 2017) Hyeong In Choi Seoul National University Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2) Topics to be covered:

More information

2 Belief, probability and exchangeability

2 Belief, probability and exchangeability 2 Belief, probability and exchangeability We first discuss what properties a reasonable belief function should have, and show that probabilities have these properties. Then, we review the basic machinery

More information

STAT J535: Chapter 5: Classes of Bayesian Priors

STAT J535: Chapter 5: Classes of Bayesian Priors STAT J535: Chapter 5: Classes of Bayesian Priors David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Spring 2012 The Bayesian Prior A prior distribution must be specified in a Bayesian analysis. The choice

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information