EXAM-3 -B2 MATH 261: Elementary Differential Equations MATH 261 FALL 2012 EXAMINATION COVER PAGE Professor Moseley

Size: px
Start display at page:

Download "EXAM-3 -B2 MATH 261: Elementary Differential Equations MATH 261 FALL 2012 EXAMINATION COVER PAGE Professor Moseley"

Transcription

1 EXAM-3 -B2 MATH 261: Elemetry Differetil Equtios MATH 261 FALL 2012 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Lst Nme, First Nme MI (Wht you wish to be clled) ID # EXAM DATE Fridy, Oct. 29, :30m I swer d/or ffirm tht ll of the work preseted o this exm is my ow d tht I hve either give or received y help durig the exm. Dte Sigture SIGNATURE DATE INSTRUCTIONS: Besides this cover pge, there re 12 pges of questios d problems o this exm. MAKE SURE YOU HAVE ALL THE PAGES. If pge is missig, you will receive grde of zero for tht pge. Red through the etire exm. If you cot red ythig, rise your hd d I will come to you. Plce your I.D. o your desk durig the exm. Your I.D., this exm, d stright edge re ll tht you my hve o your desk durig the exm. NO CALCULATORS! NO SCRATCH PAPER! Use the bck of the exm sheets if ecessry. You my remove the stple if you wish. Prit your me o ll sheets. Pges 1-12 re Filli-the Blk/Multiple Choice or True/Flse. Expect o prt credit o these pges. For ech Fill-i-the Blk/Multiple Choice questio write your swer i the blk provided. Next fid your swer from the list give d write the correspodig letter or letters for your swer i the blk provided. The circle this letter or letters. There re o free respose pges. However, to isure credit, you should expli your solutios fully d crefully. Your etire solutio my be grded, ot just your fil swer. SHOW YOUR WORK! Every thought you hve should be expressed i your best mthemtics o this pper. Prtil credit will be give s deemed pproprite. Proofred your solutios d check your computtios s time llows. GOOD LUCK!! REQUEST FOR REGRADE Plese regrd the followig problems for the resos I hve idicted: (e.g., I do ot uderstd wht I did wrog o pge.) Scores pge poits score (Regrdes should be requested withi week of the dte the exm is retured. Attch dditiol sheets s ecessry to expli your resos.) I swer d/or ffirm tht upo the retur of this exm I hve writte othig o this exm except o this REGRADE FORM. (Writig or chgig ythig is cosidered to be chetig.)

2 Totl 100 MATH 261 EXAM 3-B2 Professor Moseley Pge 1 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. We do ot solve the differetil equtio L[y] = g(x) where L[y] = y + y is lier opertor tht mps A (R,R) to A (R,R) by isoltig the ukow fuctio. We use the lier theory. The dimesio of the ull spce of L[y] is 2. Sice the opertor L[y] = y + y hs costt coefficiets, we ssume solutio of the homogeeous equtio L[y] = 0 of the form y = e rx. This leds to the two lierly idepedet solutios y 1 = cos(x) d y 2 = si(x) so tht bsis of the ullspce of L is B = {cos(x), si(x)}. Hece we c deduce tht y c = c 1 cos(x) + c 2 si(x) is the geerl solutio of the homogeeous equtio y + y = 0. To use the lier theory to obti the geerl solutio of the ohomogeeous equtio L[y] = g(x), we eed prticulr solutio, y p, to y + y = g(x). We hve studied two techiques for this purpose (ttedce is required): i) Udetermied Coefficiets (lso clled judicious guessig) ii) Vritio of Prmeters (lso clled vritio of costts) For ech of the fuctios g(x) give below, circle the correct swer tht describes which of these techiques c be used to fid y p for the ohomogeeous equtio y + y = g(x): 1. (2 pts.) g(x) = 2x 1 e x. A B C D E 2. (2 pts.) g(x) = 3 e x. A B C D E 3. (2 pts.) g(x) = 4 sec (x). A B C D E A) Neither techique works to fid y p. B) Oly Udetermied Coefficiets works to fid y p. C) Oly Vritio of Prmeters works to fid y p. D) Either techique works to fid y p. E) Not eough iformtio is give. AB) Too much iformtio is give. AC) All of the bove sttemets re true. AD) Noe of the bove sttemets re true.

3 Totl poits this pge = 6. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM-3-B2 Professor Moseley Pge 2 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. Let y" 4y +4 y = x 1 e 2x I = (0, ) (i.e. x>0) be (*), L[y] = y" 4y + 4y, d N L be the ull spce of L. Begi the solutio of (*) d the swer the questios below. 4. (3 pts.) The geerl solutio of y" 4y+4y = 0 is y c (x) =. A B C D E 5. (4 pts.) To fid prticulr solutio to y" 4y + 4y = x 1 e x we let y p (x) = u 1 (x)e x + u 2 (x)xe x. Substitutig ito (*) d mkig the pproprite ssumptio we obti the two equtios:. A B C D E Possible swers this pge A)c 1 cos(x) + c 2 si(x) B)c 1 cos(2x) + c 2 si(2x), C)c 1 cos(3x)+c 2 si(3x) D)c 1 cos(4x) + c 2 si(4x) E)c 1 e x + c 2 xe x AB)c 1 e 2x + c 2 xe 2x AC)c 1 e 3x + c 2 xe 3x AD)c 1 e 4x + c 2 xe 4x AE) r = ±2i BC) r =±2i BD) 1,1 BE) 1,1 CD) u 1 (x) e x + u 2 (x) xe x = 0, u 1 (x) e x + u 2 (x) (e x +xe x ) = x 1 e x CE) u 1 (x) e 2x + u 2 (x) xe 2x = 0, 2 u 1 (x) e 2x + u 2 (x) (2xe 2x +e 2x ) = x 1 e 2x DE) u 1 (x) e 3x + u 2 (x) xe 3x = 0 3 u 1 (x) e 3x + u 2 (x) (3xe 3x +e 3x ) = x 1 e 3x ABC) u 1 (x) e 4 + u 2 (x) xe 4x = 0, 4 u 1 (x) e 4x + u 2 (x) (4xe x +e 4x ) = x 1 e4 x ABD) u 1 (x) e x + u 2 (x) xe x = 0, u 1 (x) e x + u 2 (x) (xe x +e x ) = x 1 e x ABE) u 1 (x) e x + u 2 (x) xe x = 0, 2 u 1 (x) e 2x + u 2 (x) (2xe 2x + e 2x ) = x 1 e 2x ACD) u 1 (x) e 2x + u 2 (x) xe 2x = 0, 3 u 1 (x) e 3x + u 2 (x) (3xe 3x +e 3x ) = x 1 e 3x ACE) u 1 (x) e 3x + u 2 (x) xe 3x = 0, 4u 1 (x) e 4x + u 2 (x) (4xe 4x +e 4x ) = x 1 e 4x ADE) u 1 (x) e 4x + u 2 (x) e 4x = 0, u 1 (x) e x u 2 (x) e x = x 1 e x BCD) u 1 (x) e x + u 2 (x) e x = 0, u 1 (x) e x u 2 (x) e x = x 1 e x

4 BCE) u 1 (x) e x + u 2 (x) xe x = 0, u 1 (x) e x u 2 (x) e x = x 1 e x BDE) u 1 (x) e x + u 2 (x) xe x = 0, u 1 (x) e x u 2 (x) e x = x 1 e x ABCDE) Noe of the bove. Totl poits this pge = 7. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Professor Moseley Pge 3 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. Let (*) be the the ODE L[y] = g(x) I = (0,) where L[y] is give secod order lier differetil opertor d ga ((0,),R) d let N L be the ull spce of L. Suppose tht i solvig (*) you hve foud the geerl solutio of L[y] = 0 to be y c (x) = c 1 e 2x + c 2 xe 2x. The followig the stdrd procedure to fid prticulr solutio of (*) usig vritio of prmeters, you let y p (x) = u 1 (x)e 2x + u 2 (x) xe 2x d tht this results i the followig equtios i u 1 (x) d u 2 (x) (see the previous pge for why this might be true): u 1 (x) e 2x + u 2 (x) xe 2x = 0 u 1 (x) e 2x + u 2 (x) (2xe 2x + e 2x ) = 2 x 1 e 2x Give this iformtio, you re to fid u 1 (x) d u 2 (x) d the fiish the solutio of (*) o the ext pge. If your u 1 (x) or u 2 (x) is wrog, the your solutio o the ext pge will be wrog. 6. (2 pts.) Hece u 1 (x) =. A B C D E 7. (2 pts.) Ad u 2 (x) =. A B C D E 8. (3 pts.) We my choose u 1 (x) =. A B C D E 9. (3 pts.) Ad u 2 (x) =. A B C D E

5 Possible swers this pge. A) 1 B) 2 C) 3 D) 4 E) 1 AB) 2 AC) 3 AD) 4 AE) x BC) 2x BD) 3x BE) 4x CD) x CE) 2x DE) 3x ABC) 4x ABD) x 1 ABE) 2x 1 BCD) 3x 1 BCE) 4x 1 BDE) l x CDE) 2 l x ABCD) 3 l x ABCE) 4 l x ABCDE) Noe of the bove Totl poits this pge = 10. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Professor Moseley Pge 4 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios Let (*), L[y], d N L be s o the previous pge. Usig the dt from the previous pge, fid prticulr solutio d the geerl solutio to (*). 10 (2 pts.) A prticulr solutio to (*) is y p (x) =. A B C D E (Recll tht prticulr solutios re ot uique. Use the procedure give i clss. (Attedce is mdtory.) 11 (2 pts.) The geerl solutio to (*) my be writte s y(x) =. A B C D E 12. (2 pts.) A bsis for N L is B =. A B C D E (Recll tht bsis is ot uique. Use the procedure give i clss. (Attedce is mdtory.) Possible swers this pge. A) x 1 B) x 1 C) x 2 D) x 2 E) l x AB) l x AC) x l x AD) x l x AE) (x+ x l x) e x BC) 2 (x+ x l x) e 2x BD) 3 (x+ x l x) e 3x BE) 4 (x+ x l x) e 4x CD)(1+ l x )xe x CE) 2(1l x )xe x DE) 3(1+ l x )xe x ABC)4(1 l x )xe x ABD)c 1 e x + c 2 xe x + (x+ l x) e x ABE) c 1 e 2x + c 2 xe 2x + 2(x+ x l x) e 2x

6 ACD)c 1 e 3x + c 2 xe 3x + 3(x+ x l x) e 3x ABC)c 1 e 4x + c 2 xe 4x + 4(x+ x l x) e 4x ABD)c 1 e x + c 2 xe x +( 1 + l x )xe x ABE)c 1 e x + c 2 xe x + (1 l x )xe x ACD)c 1 e x + c 2 xe x + ( 1 + l x )xe x ACE)c 1 e x + c 2 xe x + ( 1 l x )xe x ADE){1, x} BCE){1, x 1 } BDE) {x, x 1 } CDE){e x, xe x } ABCD){e 2x, xe 2x } ABCE){e 3x, xe 3x } ABDE) {e 4x, xe 4x } ABCDE) Noe of the bove Totl poits this pge = 6. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Professor Moseley Pge 5 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. The dimesio of the ull spce of the lier opertor L[y] = y y tht mps A (R,R) to A (R,R) is 2. Assumig solutio of the homogeeous equtio L[y] = 0 of the form y = e rx leds to the two lierly idepedet solutios y 1 = 1 d y 2 = e x so tht bsis of the ull spce of L is B = {1,e x }. Hece we c deduce tht y c = c 1 + c 2 e x is the geerl solutio of the homogeeous equtio y y = 0. Use the method of udetermied coefficiets s discussed i clss (ttedce is mdtory) to determie the proper (most efficiet) form of the judicious guess for prticulr solutio y p of the followig ode's. Choose the correct (most efficiet) fil form of the judicious guess for prticulr solutio y p of the followig ODE s. 13 (3 pts.) y y = 2 si x First guess: y p = Secod guess (if eeded): y p = Third guess (if eeded): y p = Fil guess. A B C D E 14. (3 pts.) y y = 3 e x First guess: y p = Secod guess (if eeded): y p = Third guess (if eeded): y p = Fil guess. A B C D E 15. (3 pts.) y y = 4 xe x First guess: y p = Secod guess (if eeded): y p = Third guess (if eeded): y p = Fil guess. A B C D E Possible Aswers for Fil Guesses. A) A B) Ax + B C) Ax 2 + Bx + C D) Ax 2 E) Ax 2 + Bx AB) Ae x AC) Axe x AD) Ax 2 e x AE) Axe x + Be x BC) Ax 2 e x + Bxe x BD) Ae x BE) Axe x

7 CD) Ax 2 e x CE) Axe x + Be x DE) Ax 2 e x + Bxe x ABC) A si x ABD) A cos x ABE) A x si x ACD) A x cos x ACE) A si x + B cos x ADE) Ax si x + Bx cos x BCD) A x si x + B x cos x + C si x + D cos x BCE) Udetermied Coefficiets works o this problem, but oe of the bove is the correct form. BDE) Udermied coefficiets does ot work for this problem. Totl poits this pge = 9. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Prof. Moseley Pge 6 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. Also, circle your swer. Let y IV 4y= 0 be (*). Solve (*) below or o the bck of the previous sheet. Also let L:A(R,R) A(R,R) be defied by L[y] = y IV 4y. Be creful s oce you mke mistke, the rest is wrog. 21. (1 pt). The dimesio of the ull spce of L is. A B C D E A) 1 B) 2 C) 3 D) 4 E) 5 AB) 6 AC) 7 ABCDE) Noe of the bove. 22. (2 pts). The uxiliry equtio for (*) is. A B C D E A) r 4 r 2 = 0 B) r 4 4r 2 = 0 C) r 4 9r 2 = 0 D) r 4 16r 2 = 0 E) r 4 4r 3 + 4r 2 = 0 ABCDE) Noe of the bove. 23. (3 pts). Listig repeted roots, the roots of the uxiliry equtio re. A B C D E A) r = 0,0,1,1 B) r = 0, 0, 2, 2 C) r = 0,0,3,3 D) r = 0,0,i, i E) r = 0, 0, 2i,2i AB) r = 0, 0,3i, 3i AC) r = 0, 0, 4i, 4i ABCDE) Noe of the bove. 24. (3 pts). A bsis for the ull spce of L is B =. A B C D E A)){1, x, e x, xe x } B) ){1, x, e 2x, xe 2x } C){1, x, e 3x, xe 3x } D)){1, x, e 4x, e 4x } E){1, x, e x, e x } {1, x, e 2x, e 2x } AC) {1, x, e 3x, e 3x } AD){1, x, e 4x, e 4x } ABCDE) Noe of the bove. AB) 25. (3 pt). The geerl solutio of (*) is y(x) =. A B C D E A)c 1 +c 2 x + c 3 e x + c 4 xe x B)c 1 +c 2 x + c 3 e 2x + c 4 xe 2x C) c 1 +c 2 x + c 3 e 3x + c 4 xe 3x D)c 1 +c 2 x + c 3 e 4x + c 4 xe 4x E) c 1 +c 2 x +c 3 e x +c 4 e x AB) c 1 +c 2 x + c 3 e 2x + c 4 e 2x AC) c 1 +c 2 x + c 3 e 3x + c 4 e 3x AD) c 1 +c 2 x + c 3 e 4x + c 4 e 4x ABCDE) Noe of the bove.

8 Poits this pge = 12. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Prof. Moseley Pge 7 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios y + 2y = 6e x + 16 be (*). Solve (*) o the bck of the previous sheet. 21. (3 pts.) The geerl solutio of y + 2y = 0 is Let y c (x) =. A B C D E 22. (5 pts.) A prticulr solutio of y + 2y = 6e x is y p1 (x) =. A B C D E 23. (5 pts.) A prticulr solutio of y + 2y = 16 is y p2 (x) =. A B C D E 24. (1 pts.) A prticulr solutio of (*) is y p (x) =. A B C D E 25. (2 pts.) The geerl solutio of (*) is y(x) =. A B C D E Possible swers this pge A) c 1 + c 2 x + c 3 e x B) c 1 + c 2 x + c 3 e 2x C)c 1 + c 2 x + c 3 e 3x D) C)c 1 + c 2 x + c 3 e 4x E) c 1 + c 2 si(x) + c 3 cos(x) AB) c 1 e x + c 2 si(x) + c 3 cos(x) AC) ) e x AD) 2e x AE) ) 3e x BC) 4e x BD) x 2 BE) 2x 2 CD) 3x 2 CE) 4x 2 DE) 6x 2 ABC) 8x 2 ABD) e x +2x 2 ABE) 2e x + 4x 2 ACD) 3e x + 6x 2 ACE)4e x +8x 2 ADE) 2 e x + 2 si(x)

9 BCD) 2x 2si(x) BCE) e x +2x 2 + c 1 + c 2 x + c 3 e x BDE)2e x +4x 2 +c 1 +c 2 x+c 3 e 2x CDE) 3e x +6x 2 +c 1 +c 2 x+c 3 e 3x ABCD)4e x +8x 2 + c 1 + c 2 x + c 3 e 4x ABCE) 2x + e x +c 1 si(x)+ c 2 cos(x) + c 3 e x ABDE)2e x +2si(x)+cos(x)+c 1 e x + c 2 e x +c 3 x ACDE) 2e x +2si(x)+ cos(x)+c 1 xe x +c 2 e x +c 3 xe x BCDE) 2e x + 2 si(x) + c 1 e x + c 2 xe x + c 3 ABCDE) Noe of the bove. Totl poits this pge = 16. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Prof. Moseley Pge 8 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. O the bck of the previous sheet fid recursio formul for fidig the coefficiets to power series solutio bout x = 0 to the ODE y + x y 2y = 0 which we cll (*) 26. (1 pts.) To fid the recursio formul for the power series solutio of (*) bout x = 0 we let y =. A B C D E 27. (2 pts) Substitutig this series ito (*) (d o further computtios) we obti the equtio. A B C D E Possible swers this pge A) x N B) x C) D) E) 1 x ( 1)x AB) x 2 1 AC) ( 1)x x x x AD) 0 ( 1)x x 0 x 2 0 x AE) 0 ( 1)x x 0 x 3 0 x BC) 0 ( 1)x x 0 x 4 0 x BD) 0 ( 1)x 0 x 0 x x

10 2 1 BE) CD) ( 1)x x x 2 x 0 ( 1)x x 3 x 0 CE) 2 1 ( 1)x x x 4 x 0 DE) ( 1)x 2 0 x 0 ABCDE) Noe of the bove. Totl poits this pge = 3. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Prof. Moseley Pge 9 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. Let (*) be s o the previous pge. 28. (3 pts) As explied i clss (ttedce is mdtory) by chgig the idex d simplifyig, 2 the term ( 1)x c be chged to obti 0 0 ( 1)x 2 =. A B C D E 29. (3 pts) Cotiuig the procedure give i clss, usig this ew term d other simplifictios, the equtio you obtied o the previous pge c ow be writte s. A B C D E 30. (3 pts.) The recursio formul for fidig the coefficiets i the power series solutio of (*) is. A B C D E Possible swers this pge. A) ( 2)( 1)x B) ( 2)x C) D) ( 2)( 1)x E) AB) ( 2)( 1)x [( 2)( 1) ( 1) ]x 0 AC) 2 AD) [ ( 2)( 1) ( 3) ]x 0 AE) ( 1)x 2 [( 1)( 2) 0 2 ( 2) ]x 0 [ 0 2( 2)( 1) ( 4) ]x 0

11 1 1 BC) [ BD) BE) 0 1( 2)( 1) ( 2) ]x ( 1) ( 2)( 1) CD) 2 CE) 2 DE) 1 ( 2)( 1) ( 2)( 1) ( 2)( 1) ABCDE) Noe of the bove Totl poits this pge = 9. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Prof. Moseley Pge 10 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. Let y + p(x) y + q(x) y = 0 be (*). Suppose (*) hs vrible coefficiets d tht the solutio of (*) by power 1 series leds to the recursio reltio 2 For = 0, 1, 2, 3, 4,... As illustrted i clss 1 (ttedce is mdtory), you re to fid the (first four ozero terms i the) power series solutio to the iitil vlue problem. IVP ODE y + p(x) y + q(x) y = 0 IC s y(0) = 2, y(0) = (1 pts.) 0 =. A B C D E 32.(1 pts.) 1 =. A B C D E 33. (4 pts.) The power series solutio to this IVP is y(x) =. A B C D E Possible swers this pge.

12 A) 0 B) 1 C) 2 D) 3 E) 4 AB) AC) x x x AD) 3 3x x x AE) BC) x x x BD) 1 x x x BE) AD) x x x ABCDE) Noe of the bove x x x x x x x x x Totl poits this pge = 6. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Prof. Moseley Pge 11 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. MATHEMATICAL MODELING. As doe i clss (ttedce is mdtory), o the bck of the previous sheet, you re to develop geerl mthemticl model for the mss/sprig problem. Tke positive distce to be dow. Suppose poit prticle with mss m due to its weight W = mg where g is the ccelertio due to grvity stretches sprig of legth L distce Δ. If the mss is stretched dowwrd distce u 0 from its equilibrium positio d give iitil velocity v 0 i the dowwrd directio, develop pproprite mthemticl model to determie the subsequet motio (i.e. to fid the distce u(t) from the equilibrium positio s fuctio of time). Assume tht the ir resistce is lier with proportiolity costt c > 0 i feet slugs per secod d tht the sprig costt is k i pouds per foot (or slugs per secod squred). Assume exterl force g(t) i slug feet per secod squred. 34. (2 pt) The fudmetl physicl lw used to develop the ODE i the model is. A B C D E A) Ohm's lw, B) Coservtio of mss C) Coservtio of eergy D) Newto's secod lw (Coservtio of mometum) E) Kirchoff's voltge lw AB) Kirchoff's curret lw (Coservtio of chrge) ABCDE) Noe of the bove. 35. (2 pt.) Usig sttics, we my obti the reltioship betwee Δ, k, m, d g s. A B C D E A) k = Δ m g B) k Δ = m g C) k m = Δ g D) k g = m Δ E) k m Δ = g ABCDE) Noe of the bove. 36. (4 pts.)the geerl mthemticl model tht describes the dymics of the mss sprig system whose solutio yields the distce u(t) from the equilibrium positio s fuctio of time is. A B C D E A) mu cu ku g(t) B) mu cu ku 0 C) m u k u g ( t ) D) m u k u g ( t ) E) mu cu ku g(t), u(0) u0 u(0) v0 AB) mu cu ku 0, u(0) u 0 u(0) v 0 AC) mu ku g(t), u(0) u0 u(0) v0 AD) mu ku 0, u(0) u 0 u(0) v 0 ABCDE)Noe of the bove. 37. (1 pt.) The uits for the ODE i this model re. A B C D E A) Feet, B) Secods C) feet per secod, D) feet per secod squred, E) Pouds, AB) Slugs, AC) Slug feet AD) Noe of the bove.

13 Totl poits this pge = 9. TOTAL POINTS EARNED THIS PAGE MATH 261 EXAM 3-B2 Prof. Moseley Pge 12 PRINT NAME ( ) ID No. Follow the istructios o the Exm Cover Sheet for Fill-i-the Blk/Multiple Choice questios. Also, circle your swer. MATHEMATICAL MODELING. Cosider the followig problem (DO NOT SOLVE!): A mss weighig 4 lbs. stretches sprig (which is 12 ft. log) 3 iches. If the mss is lowered 4 iches below its equilibrium positio d give iitil velocity of 4 ft./sec. upwrd, determie the subsequet motio (i.e. fid the distce from the equilibrium positio s fuctio of time). Assume tht the ir resistce is egligible d tht there is o exterl force. O the bck of the previous sheet, pply the dt give bove to the model you developed o the previous pge to obti the specific model for this problem. DO NOT SOLVE! The swer the questios below. 38. (3 pts.) The sprig costt k i pouds per foot (or slugs per secod squred) is k =. A B C D E 39. (2 pts.) The ODE i the specific mthemticl model for the mss sprig system from the dt bove whose solutio yields the distce u(t) dow from the equilibrium positio s fuctio of time is. A B C D E 40. (1 pt.) The iitil positio for the specific mthemticl model for the mss sprig system from the dt bove whose solutio yields the distce u(t) dow from the equilibrium positio s fuctio of time is u(0) =. A B C D E 41. (1 pt.) The iitil velocity for the specific mthemticl model for the mss sprig system from the dt bove whose solutio yields the distce u(t) dow from the equilibrium positio s fuctio of time is u(0) =. A B C D E Possible swrs this pge.

14 A)1 B)2 C)4 D)5 E) 6 AB)4/3 AC) 8/5 AD)32 AE)48 BC)3 BD) 4 BE) 5 CD) 6 1 u u 0 16 CE) 1/6 DE)1/3 ABC)1/4 ABD) 1/2 ABE) 5/(12) ACD) 3/2 ADE) BCD) u 3u 0 8 BDE) u u 0 CDE) u u 0 ABCD) ABCE) ABDE) ABCDE) Noe of the bove. Totl poits this pge = 7. TOTAL POINTS EARNED THIS PAGE 1 u 4 u u 48u u 12u 0 8

EXAM-3 -A4 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley

EXAM-3 -A4 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley EXAM-3 -A4 MATH 261: Elemetry Differetil Equtios MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Lst Nme, First Nme MI (Wht you wish to be clled) ID # EXAM DATE Fridy, Oct. 29,

More information

EXAM-3 MATH 261: Elementary Differential Equations MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley

EXAM-3 MATH 261: Elementary Differential Equations MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley EXAM-3 MATH 261: Elemetary Differetial Equatios MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Friday Ocober

More information

EXAM-3A-1 MATH 261: Elementary Differential Equations MATH 261 FALL 2009 EXAMINATION COVER PAGE Professor Moseley

EXAM-3A-1 MATH 261: Elementary Differential Equations MATH 261 FALL 2009 EXAMINATION COVER PAGE Professor Moseley EXAM-3A-1 MATH 261: Elemetary Differetial Equatios MATH 261 FALL 2009 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Friday,

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2006 EXAM-II FALL 2006 EXAM-II EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2006 EXAM-II FALL 2006 EXAM-II EXAMINATION COVER PAGE Professor Moseley MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2006 EXAM-II FALL 2006 EXAM-II EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID #

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

EXAM-1 -B4 MATH 261: Elementary Differential Equations MATH 261 FALL 2014 EXAMINATION COVER PAGE Professor Moseley

EXAM-1 -B4 MATH 261: Elementary Differential Equations MATH 261 FALL 2014 EXAMINATION COVER PAGE Professor Moseley EXAM-1 -B4 MATH 261: Elementary Differential Equations MATH 261 FALL 2014 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Scores

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-IV FALL 2005 EXAM-IV EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-IV FALL 2005 EXAM-IV EXAMINATION COVER PAGE Professor Moseley MATH 5 MATH 5: Multivariate Calculus MATH 5 FALL 5 EXAM-IV FALL 5 EXAM-IV EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Thursday,

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-I FALL 2005 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-I FALL 2005 EXAM-I EXAMINATION COVER PAGE Professor Moseley MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-I FALL 2005 EXAM-I EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method.

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method. SOLUTION OF SYSTEM OF LINEAR EQUATIONS Lecture 4: () Jcobi's method. method (geerl). (b) Guss Seidel method. Jcobi s Method: Crl Gustv Jcob Jcobi (804-85) gve idirect method for fidig the solutio of system

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2 0 微甲 07- 班期中考解答和評分標準 5%) Fid the poits o the surfce xy z = tht re closest to the origi d lso the shortest distce betwee the surfce d the origi Solutio Cosider the Lgrge fuctio F x, y, z, λ) = x + y + z

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 4 UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios ALL questios re of equl vlue All

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-3 FALL 2005 EXAM-III EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-3 FALL 2005 EXAM-III EXAMINATION COVER PAGE Professor Moseley MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-3 FALL 2005 EXAM-III EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID #

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2012 EXAM-4 SPRING 2012 EXAM-4-B3 EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2012 EXAM-4 SPRING 2012 EXAM-4-B3 EXAMINATION COVER PAGE Professor Moseley MATH 5 MATH 5: Multivariate Calculus MATH 5 SPRING EXAM-4 SPRING EXAM-4-B3 EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Friday,

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Summer Math Requirement Algebra II Review For students entering Pre- Calculus Theory or Pre- Calculus Honors

Summer Math Requirement Algebra II Review For students entering Pre- Calculus Theory or Pre- Calculus Honors Suer Mth Requireet Algebr II Review For studets eterig Pre- Clculus Theory or Pre- Clculus Hoors The purpose of this pcket is to esure tht studets re prepred for the quick pce of Pre- Clculus. The Topics

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley

MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley MATH 6 MATH 6: Elementary Differential Equations MATH 6 FALL 5 FINAL EXAM FALL 5 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called)

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

Laws of Integral Indices

Laws of Integral Indices A Lws of Itegrl Idices A. Positive Itegrl Idices I, is clled the se, is clled the idex lso clled the expoet. mes times.... Exmple Simplify 5 6 c Solutio 8 5 6 c 6 Exmple Simplify Solutio The results i

More information

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise Prticle i Box We must hve me where = 1,,3 Solvig for E, π h E = = where = 1,,3, m 8m d the stte fuctio is x A si for 0 x, d 0 otherwise x ˆ d KE V. m dx I this cse, the Hermiti opertor 0iside the box The

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

PEPERIKSAAN PERCUBAAN SPM TAHUN 2007 ADDITIONAL MATHEMATICS. Form Five. Paper 2. Two hours and thirty minutes

PEPERIKSAAN PERCUBAAN SPM TAHUN 2007 ADDITIONAL MATHEMATICS. Form Five. Paper 2. Two hours and thirty minutes SULIT 347/ 347/ Form Five Additiol Mthemtics Pper September 007 ½ hours PEPERIKSAAN PERCUBAAN SPM TAHUN 007 ADDITIONAL MATHEMATICS Form Five Pper Two hours d thirty miutes DO NOT OPEN THIS QUESTION PAPER

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-I FALL 2009 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-I FALL 2009 EXAM-I EXAMINATION COVER PAGE Professor Moseley MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-I FALL 2009 EXAM-I EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Discrete Mathematics I Tutorial 12

Discrete Mathematics I Tutorial 12 Discrete Mthemtics I Tutoril Refer to Chpter 4., 4., 4.4. For ech of these sequeces fid recurrece reltio stisfied by this sequece. (The swers re ot uique becuse there re ifiitely my differet recurrece

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

b a 2 ((g(x))2 (f(x)) 2 dx

b a 2 ((g(x))2 (f(x)) 2 dx Clc II Fll 005 MATH Nme: T3 Istructios: Write swers to problems o seprte pper. You my NOT use clcultors or y electroic devices or otes of y kid. Ech st rred problem is extr credit d ech is worth 5 poits.

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2010 EXAM-I SPRING 2010 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2010 EXAM-I SPRING 2010 EXAM-I EXAMINATION COVER PAGE Professor Moseley MATH 51 MATH 51: Multivariate Calculus MATH 51 SPRING 010 EXAM-I SPRING 010 EXAM-I EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Mtemtisk sttistik TENTAMEN I SF94 SANNOLIKHETSTEORI/EAM IN SF94 PROBABILITY THE- ORY WEDNESDAY 8th OCTOBER 5, 8-3 hrs Exmitor : Timo Koski, tel. 7 3747, emil: tjtkoski@kth.se Tillåt hjälpmedel Mes

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

Mathematics Extension 2

Mathematics Extension 2 04 Bored of Studies Tril Emitios Mthemtics Etesio Writte b Crrotsticks & Trebl Geerl Istructios Totl Mrks 00 Redig time 5 miutes. Workig time 3 hours. Write usig blck or blue pe. Blck pe is preferred.

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

Mathematics Extension 2

Mathematics Extension 2 05 Bored of Studies Tril Emitios Mthemtics Etesio Writte by Crrotsticks & Trebl Geerl Istructios Totl Mrks 00 Redig time 5 miutes. Workig time 3 hours. Write usig blck or blue pe. Blck pe is preferred.

More information

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents

Algebra II, Chapter 7. Homework 12/5/2016. Harding Charter Prep Dr. Michael T. Lewchuk. Section 7.1 nth roots and Rational Exponents Algebr II, Chpter 7 Hrdig Chrter Prep 06-07 Dr. Michel T. Lewchuk Test scores re vilble olie. I will ot discuss the test. st retke opportuit Sturd Dec. If ou hve ot tke the test, it is our resposibilit

More information

Similar idea to multiplication in N, C. Divide and conquer approach provides unexpected improvements. Naïve matrix multiplication

Similar idea to multiplication in N, C. Divide and conquer approach provides unexpected improvements. Naïve matrix multiplication Next. Covered bsics of simple desig techique (Divided-coquer) Ch. of the text.. Next, Strsse s lgorithm. Lter: more desig d coquer lgorithms: MergeSort. Solvig recurreces d the Mster Theorem. Similr ide

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Recurrece reltio & Recursio 9 Chpter 3 Recurrece reltio & Recursio Recurrece reltio : A recurrece is equtio or iequlity tht describes fuctio i term of itself with its smller iputs. T T The problem of size

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley MATH 5 MATH 5: Multivariate Calculus MATH 5 FALL 5 FINAL EXAM FALL 5 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

MATH 6101 Fall 2008 Newton and Differential Equations

MATH 6101 Fall 2008 Newton and Differential Equations MATH 611 Fall 8 Newto ad Differetial Equatios A Differetial Equatio What is a differetial equatio? A differetial equatio is a equatio relatig the quatities x, y ad y' ad possibly higher derivatives of

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Northwest High School s Algebra 2

Northwest High School s Algebra 2 Northwest High School s Algebr Summer Review Pcket 0 DUE August 8, 0 Studet Nme This pcket hs bee desiged to help ou review vrious mthemticl topics tht will be ecessr for our success i Algebr. Istructios:

More information

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0 8.2. Test About Popultio Me. Cse I: A Norml Popultio with Kow. H - ull hypothesis sttes. X1, X 2,..., X - rdom smple of size from the orml popultio. The the smple me X N, / X X Whe H is true. X 8.2.1.

More information

Lincoln Land Community College Placement and Testing Office

Lincoln Land Community College Placement and Testing Office Licol Ld Commuity College Plcemet d Testig Office Elemetry Algebr Study Guide for the ACCUPLACER (CPT) A totl of questios re dmiistered i this test. The first type ivolves opertios with itegers d rtiol

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

1 Cabin. Professor: What is. Student: ln Cabin oh Log Cabin! Professor: No. Log Cabin + C = A Houseboat!

1 Cabin. Professor: What is. Student: ln Cabin oh Log Cabin! Professor: No. Log Cabin + C = A Houseboat! MATH 4 Sprig 0 Exam # Tuesday March st Sectios: Sectios 6.-6.6; 6.8; 7.-7.4 Name: Score: = 00 Istructios:. You will have a total of hour ad 50 miutes to complete this exam.. A No-Graphig Calculator may

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information