Trigonometric Functions

Size: px
Start display at page:

Download "Trigonometric Functions"

Transcription

1 Trigonometric Functions Here is a review the basic definitions and properties of the trigonometric functions. We provide a list of trig identities at the end.. Definitions The trigonometric functions are defined as ratios of the lengths of the sides of a right angle triangle as shown below. In the figure, H stands for Hpotenuse, stands for djacent side and P stands for opposite side. (,P) H P csc = H P Here are the graphs of the trigonometric functions. sin sin = P H cos = H tan = P sec = H cot = P cos (a) (b) π π π π π π tan cot π π π π π π csc sec π π π π π π. Radians For use in calculus, angles are best measured in units called radians. B definition, an arc of length on a circle of radius one subtends an angle of radians at the center of the circle. c Joel Feldman. 04. ll rights reserved. March 0, 04

2 Because the circumference of a circle of radius one is π, we have π radians = 60 π radians = 80 π π radians = 60 π 4 radians = 45 π 6 radians = 90 radians = 0. rclength and rea onsider a circle of radius r. Denote b L() the length of an arc of that circle that subtends an angle of radians. The angle subtended,, is the fraction of the full circle. So L() is π the fraction of the circumference of the full circle, which is πr. Similarl, denote b () π the area of a wedge of that circle that subtends an angle of radians. The area () is the fraction of the area of the full circle, which is π πr. So () L() L() = π πr = r () = π πr = r 4. Special Triangles From the triangles 0 45 we can read off the values of all of the trigonometric functions for the angles = π 6 = 0, = π 4 = 45 and = π = sin cos tan csc sec cot 0 = 0 rad = π 6 rad 45 = π 4 rad 60 = π rad 90 = π rad = π rad The empt boxes mean that the trig function is undefined (i.e. ± ) for that angle. c Joel Feldman. 04. ll rights reserved. March 0, 04

3 5. Trig Identities Basic The following identities are all immediate consequences of the definitions in (). csc = sin sec = cos tan = sin cot = = cos cos tan sin Because π radians is 60, the angles and +π are reall the same, so sin(+π) = sin cos(+π) = cos The following trig identities are consequences of the figure to their right and Pthagoras theorem, +P = H. (cos,sin) sin( ) = sin() sin +cos = cos( ) = cos() H = = cos P = sin The following trig identities are consequences of the figure to their left. (cos, sin) cos π sin sin ( π ) = cos cos ( π ) = sin 6. Trig Identities ddition and Double ngle Formulae The following trig identities are derived below in 9. Setting = x gives sin(x+) = sinxcos +cosxsin sin(x ) = sinxcos cosxsin cos(x+) = cosxcos sinxsin cos(x ) = cosxcos +sinxsin sin(x) = sinxcosx cos(x) = cos x sin x = cos x since sin x = cos x = sin x since cos x = sin x Solving cos(x) = cos x for cos x and cos(x) = sin x for sin x gives cos x = +cos(x) sin x = cos(x) () c Joel Feldman. 04. ll rights reserved. March 0, 04

4 7. Trig Identities the Sine Law The sine law sas that, if a triangle has sides of length, B and and the angles opposite those sides are a, b and c, then sina = sinb B = sinc To derive sina = sinc, drop a perpendicular to the side of length B from the vertex opposite it, as in the figure below. c The perpedicular has length P = sinc = sina. Dividing b gives sina = sinc. 8. Trig Identities the osine Law B The cosine law sas that, if a triangle has sides of length, B and and the angle opposite the side of length is, then P = +B Bcos Observe that, when = π, this reduces to, (surpise!) Pthagoras theorem = + B. To derive the osine law, appl Pthagoras to the shaded triangle in the right hand figure of B sin a cos That triangle is a right triangle whose hpotenuse has length and whose other two sides have lengths ( B cos ) and sin. So Pthagoras gives as desired. = ( B cos ) + ( sin ) = B B cos+ cos + sin = B B cos+ (since sin +cos = ) B c Joel Feldman. 04. ll rights reserved. 4 March 0, 04

5 9. Trig Identities Derivation of the ddition Formulae We now derive the addition formulae (). The first step is to prove the fourth addition formula, cos(x ) = cosxcos+sinxsin. The angle, of the upper triangle in the figure, (cosx,sinx) x (cos,sin) that is opposite the side of length is x. So, b the cosine law, = + cos(x ) = cos(x ) But the side of length joins the points (cos,sin) and (cosx,sinx) and so we also have, b Pthagoras, = (cos cosx) +(sin sinx) = cos cosxcos +cos x+sin sinxsin +sin x = cosxcos sinxsin (using cos z +sin z = for z = x and z = ) Setting the two formulae for equal to each other gives cos(x ) = cosxcos sinxsin = cos(x ) = cosxcos sinxsin = cos(x ) = cosxcos +sinxsin which is the fourth addition formula. Replacing b gives cos(x+) = cosxcos( )+sinxsin( ) = cosxcos sinxsin which is the third addition formula. Now, replacing x b π x gives cos ( π x+) = cos ( π x) cos sin ( π x) sin Recalling that sin ( π z) = cosz and cos ( π z) = sinz, sin ( x ) = sinxcos cosxsin which is the second addition formula. Finall, replacing b gives the first addition formula. c Joel Feldman. 04. ll rights reserved. 5 March 0, 04

6 0. Trig Identities Summar The basic trig identities are tan = sin csc = sec = cot = = cos (T) cos sin cos tan sin sin( ) = sin cos( ) = cos (T) sin( +π) = sin cos(+π) = cos (Ta) sin( +π) = sin cos(+π) = cos (Tb) sin( π ) = cos cos(π ) = sin (Tc) sin +cos = (T4) sin() = sincos cos() = cos sin sin( +ϕ) = sincosϕ+cossinϕ cos(+ϕ) = coscosϕ sinsinϕ (T5) (T6) (T7a) (T7b) The following trig identities are easil derived from the basic identities above. We use the code that the identities in (T4 ) are easil derived from the identit (T4), that the identit in(t5,t6 ) is easil derived b dividing the identities in(t5) and(t6) and that the identities in (T7 ) are easil derived from the identities in (T7) and (T7 ). tan + = sec +cot = csc (T4 ) tan() = tan tan cos() = cos = sin cos = +cos() sin = cos() tan = cos() +cos() sin( ϕ) = sincosϕ cossinϕ cos( ϕ) = coscosϕ+sinsinϕ tan(+ϕ) = tan+tanϕ tan( ϕ) = tan tanϕ tantanϕ +tantanϕ { } sincosϕ = sin(+ϕ)+sin( ϕ) { } sinsinϕ = cos( ϕ) cos(+ϕ) { } coscosϕ = cos(+ϕ)+cos( ϕ) sinα+sinβ = sin α+β cos α β sinα sinβ = cos α+β sin α β cosα+cosβ = cos α+β cos α β cosα cosβ = sin α+β sin α β (T5,T6 ) (T6 ) (T7 ) (T7 ) c Joel Feldman. 04. ll rights reserved. 6 March 0, 04

Lesson 28 Working with Special Triangles

Lesson 28 Working with Special Triangles Lesson 28 Working with Special Triangles Pre-Calculus 3/3/14 Pre-Calculus 1 Review Where We ve Been We have a new understanding of angles as we have now placed angles in a circle on a coordinate plane

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

4 The Trigonometric Functions

4 The Trigonometric Functions Mathematics Learning Centre, University of Sydney 8 The Trigonometric Functions The definitions in the previous section apply to between 0 and, since the angles in a right angle triangle can never be greater

More information

Since 1 revolution = 1 = = Since 1 revolution = 1 = =

Since 1 revolution = 1 = = Since 1 revolution = 1 = = Fry Texas A&M University Math 150 Chapter 8A Fall 2015! 207 Since 1 revolution = 1 = = Since 1 revolution = 1 = = Convert to revolutions (or back to degrees and/or radians) a) 45! = b) 120! = c) 450! =

More information

Sum-to-Product and Product-to-Sum Formulas

Sum-to-Product and Product-to-Sum Formulas Sum-to-Product and Product-to-Sum Formulas By: OpenStaxCollege The UCLA marching band (credit: Eric Chan, Flickr). A band marches down the field creating an amazing sound that bolsters the crowd. That

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

Chapter 1. Functions 1.3. Trigonometric Functions

Chapter 1. Functions 1.3. Trigonometric Functions 1.3 Trigonometric Functions 1 Chapter 1. Functions 1.3. Trigonometric Functions Definition. The number of radians in the central angle A CB within a circle of radius r is defined as the number of radius

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Trig Identities, Solving Trig Equations Answer Section

Trig Identities, Solving Trig Equations Answer Section Trig Identities, Solving Trig Equations Answer Section MULTIPLE CHOICE. ANS: B PTS: REF: Knowledge and Understanding OBJ: 7. - Compound Angle Formulas. ANS: A PTS: REF: Knowledge and Understanding OBJ:

More information

MTH 122: Section 204. Plane Trigonometry. Test 1

MTH 122: Section 204. Plane Trigonometry. Test 1 MTH 122: Section 204. Plane Trigonometry. Test 1 Section A: No use of calculator is allowed. Show your work and clearly identify your answer. 1. a). Complete the following table. α 0 π/6 π/4 π/3 π/2 π

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University March 14-18, 2016 Outline 1 2 s An angle AOB consists of two rays R 1 and R

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

Trigonometric Identities and Equations

Trigonometric Identities and Equations Trigonometric Identities and Equations Art Fortgang, (ArtF) Lori Jordan, (LoriJ) Say Thanks to the Authors Click http://www.ck.org/saythanks (No sign in required) To access a customizable version of this

More information

Spherical trigonometry

Spherical trigonometry Spherical trigonometry 1 The spherical Pythagorean theorem Proposition 1.1 On a sphere of radius, any right triangle AC with C being the right angle satisfies cos(c/) = cos(a/) cos(b/). (1) Proof: Let

More information

Trigonometric Functions

Trigonometric Functions TrigonometricReview.nb Trigonometric Functions The trigonometric (or trig) functions are ver important in our stud of calculus because the are periodic (meaning these functions repeat their values in a

More information

Math 104 Midterm 3 review November 12, 2018

Math 104 Midterm 3 review November 12, 2018 Math 04 Midterm review November, 08 If you want to review in the textbook, here are the relevant sections: 4., 4., 4., 4.4, 4..,.,. 6., 6., 6., 6.4 7., 7., 7., 7.4. Consider a right triangle with base

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

MATH 109 TOPIC 3 RIGHT TRIANGLE TRIGONOMETRY. 3a. Right Triangle Definitions of the Trigonometric Functions

MATH 109 TOPIC 3 RIGHT TRIANGLE TRIGONOMETRY. 3a. Right Triangle Definitions of the Trigonometric Functions Math 09 Ta-Right Triangle Trigonometry Review Page MTH 09 TOPIC RIGHT TRINGLE TRIGONOMETRY a. Right Triangle Definitions of the Trigonometric Functions a. Practice Problems b. 5 5 90 and 0 60 90 Triangles

More information

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x Precalculus Final Review 1. Given the following values, evaluate (if possible) the other four trigonometric functions using the fundamental trigonometric identities or triangles csc = - 3 5, tan = 4 3.

More information

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk Trigonometry - Part 1 (12 pages; 4/9/16) (1) Sin, cos & tan of 30, 60 & 45 sin30 = 1 2 ; sin60 = 3 2 cos30 = 3 2 ; cos60 = 1 2 cos45 = sin45 = 1 2 = 2 2 tan45 = 1 tan30 = 1 ; tan60 = 3 3 Graphs of y =

More information

Math 005A Prerequisite Material Answer Key

Math 005A Prerequisite Material Answer Key Math 005A Prerequisite Material Answer Key 1. a) P = 4s (definition of perimeter and square) b) P = l + w (definition of perimeter and rectangle) c) P = a + b + c (definition of perimeter and triangle)

More information

Math 143 Final Exam Practice Problems - Part 2

Math 143 Final Exam Practice Problems - Part 2 1. Find the exact value of the following: (a) sin( π 1 ) sin( 1 ) sin(30 ) Math Final Exam Practice Problems - Part sin(30 ) cos( ) sin( ) cos(30 ) ( 1 ) ( ) ( ) ( 3 ) (b) cos(10 ) cos(60 + ) cos(60 )

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Mth 133 Trigonometry Review Problems for the Final Examination

Mth 133 Trigonometry Review Problems for the Final Examination Mth 1 Trigonometry Review Problems for the Final Examination Thomas W. Judson Stephen F. Austin State University Fall 017 Final Exam Details The final exam for MTH 1 will is comprehensive and will cover

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

Special Mathematics Notes

Special Mathematics Notes Special Mathematics Notes Tetbook: Classroom Mathematics Stds 9 & 10 CHAPTER 6 Trigonometr Trigonometr is a stud of measurements of sides of triangles as related to the angles, and the application of this

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 . CONCEPTS & FORMULAS. INTRODUCTION Radian The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is radian r o = o radian r r o radian = o = 6 Positive & Negative

More information

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach Section Notes Page Trigonometric Functions; Unit Circle Approach A unit circle is a circle centered at the origin with a radius of Its equation is x y = as shown in the drawing below Here the letter t

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin. 7.1 Solving Trigonometric Equations with Identities In this section, we explore the techniques needed to solve more complex trig equations: By Factoring Using the Quadratic Formula Utilizing Trig Identities

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

Sum and Difference Identities

Sum and Difference Identities Sum and Difference Identities By: OpenStaxCollege Mount McKinley, in Denali National Park, Alaska, rises 20,237 feet (6,168 m) above sea level. It is the highest peak in North America. (credit: Daniel

More information

3.1 Fundamental Identities

3.1 Fundamental Identities www.ck.org Chapter. Trigonometric Identities and Equations. Fundamental Identities Introduction We now enter into the proof portion of trigonometry. Starting with the basic definitions of sine, cosine,

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

6.1: Verifying Trigonometric Identities Date: Pre-Calculus

6.1: Verifying Trigonometric Identities Date: Pre-Calculus 6.1: Verifying Trigonometric Identities Date: Pre-Calculus Using Fundamental Identities to Verify Other Identities: To verify an identity, we show that side of the identity can be simplified so that it

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9 Chapter Review. Lines Eample. Find the equation of the line that goes through the point ( 2, 9) and has slope 4/5. Using the point-slope form of the equation we have the answer immediately: y = 4 5 ( (

More information

secθ 1 cosθ The pythagorean identities can also be expressed as radicals

secθ 1 cosθ The pythagorean identities can also be expressed as radicals Basic Identities Section Objectives: Students will know how to use fundamental trigonometric identities to evaluate trigonometric functions and simplify trigonometric expressions. We use trig. identities

More information

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

From now on angles will be drawn with their vertex at the. The angle s initial ray will be along the positive. Think of the angle s

From now on angles will be drawn with their vertex at the. The angle s initial ray will be along the positive. Think of the angle s Fry Texas A&M University!! Math 150!! Chapter 8!! Fall 2014! 1 Chapter 8A Angles and Circles From now on angles will be drawn with their vertex at the The angle s initial ray will be along the positive.

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

MATH 127 SAMPLE FINAL EXAM I II III TOTAL

MATH 127 SAMPLE FINAL EXAM I II III TOTAL MATH 17 SAMPLE FINAL EXAM Name: Section: Do not write on this page below this line Part I II III TOTAL Score Part I. Multiple choice answer exercises with exactly one correct answer. Each correct answer

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 1.1 Pythagorean Theorem and its Converse 1. 194. 6. 5 4. c = 10 5. 4 10 6. 6 5 7. Yes 8. No 9. No 10. Yes 11. No 1. No 1 1 1. ( b+ a)( a+ b) ( a + ab+ b ) 1 1 1 14. ab + c ( ab + c ) 15. Students must

More information

Basic Trigonometry. DSchafer05. October 5, 2005

Basic Trigonometry. DSchafer05. October 5, 2005 Basic Trigonometry DSchafer05 October 5, 005 1 Fundementals 1.1 Trigonometric Functions There are three basic trigonometric functions, sine, cosine and tangent, whose definitions can be easily observed

More information

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent Trigonometry Recall: hypotenuse opposite adjacent 1 There are 3 other ratios: the reciprocals of sine, cosine and tangent. Secant: Cosecant: (cosec θ) Cotangent: 2 Example: Determine the value of x. a)

More information

Notes on Radian Measure

Notes on Radian Measure MAT 170 Pre-Calculus Notes on Radian Measure Radian Angles Terri L. Miller Spring 009 revised April 17, 009 1. Radian Measure Recall that a unit circle is the circle centered at the origin with a radius

More information

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS 4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS MR. FORTIER 1. Trig Functions of Any Angle We now extend the definitions of the six basic trig functions beyond triangles so that we do not have to restrict

More information

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 3.1 TRIGONOMETRY 1 (Angles & trigonometric functions) by A.J.Hobson 3.1.1 Introduction 3.1.2 Angular measure 3.1.3 Trigonometric functions UNIT 3.1 - TRIGONOMETRY 1 - ANGLES

More information

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016 Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions Math&1 November 8, 016 1. Convert the angle in degrees to radian. Express the answer as a multiple of π. a 87 π rad 180 = 87π 180 rad b 16 π rad

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions This section reviews radian measure and the basic trigonometric functions. C ' θ r s ' ngles ngles are measured in degrees or radians. The number of radians in the central angle

More information

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15 Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A. 0.09 B. 0.18 C. 151.83 D. 303.67. Determine the period of y = 6cos x + 8. 15 15 A. B. C. 15 D. 30 15 3. Determine the exact value of

More information

CHAPTER 6. Section Two angles are supplementary. 2. Two angles are complementary if the sum of their measures is 90 radians

CHAPTER 6. Section Two angles are supplementary. 2. Two angles are complementary if the sum of their measures is 90 radians SECTION 6-5 CHAPTER 6 Section 6. Two angles are complementary if the sum of their measures is 90 radians. Two angles are supplementary if the sum of their measures is 80 ( radians).. A central angle of

More information

x 2 x 2 4 x 2 x + 4 4x + 8 3x (4 x) x 2

x 2 x 2 4 x 2 x + 4 4x + 8 3x (4 x) x 2 MTH 111 - Spring 015 Exam Review (Solutions) Exam (Chafee Hall 71): April rd, 6:00-7:0 Name: 1. Solve the rational inequality x +. State your solution in interval notation. x DO NOT simply multiply both

More information

Section 7.3 Double Angle Identities

Section 7.3 Double Angle Identities Section 7.3 Double Angle Identities 3 Section 7.3 Double Angle Identities Two special cases of the sum of angles identities arise often enough that we choose to state these identities separately. Identities

More information

Week #6 - Taylor Series, Derivatives and Graphs Section 10.1

Week #6 - Taylor Series, Derivatives and Graphs Section 10.1 Week #6 - Taylor Series, Derivatives and Graphs Section 10.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 005 by John Wiley & Sons, Inc. This material is used by

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Trigonometric Identities

Trigonometric Identities Trigonometric Identities Bradley Hughes Larry Ottman Lori Jordan Mara Landers Andrea Hayes Brenda Meery Art Fortgang Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required) To

More information

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by.

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by. Chapter 6. Trigonometric Functions of Angles 6.1 Angle Measure Radian Measure 1 radians 180º Therefore, o 180 π 1 rad, or π 1º 180 rad Angle Measure Conversions π 1. To convert degrees to radians, multiply

More information

Trigonometric Functions () 1 / 28

Trigonometric Functions () 1 / 28 Trigonometric Functions () 1 / 28 Trigonometric Moel On a certain ay, ig tie at Pacific Beac was at minigt. Te water level at ig tie was 9.9 feet an later at te following low tie, te tie eigt was 0.1 ft.

More information

Exam 3: December 3 rd 7:00-8:30

Exam 3: December 3 rd 7:00-8:30 MTH 111 - Fall 01 Exam Review (Solutions) Exam : December rd 7:00-8:0 Name: This exam review contains questions similar to those you should expect to see on Exam. The questions included in this review,

More information

1 The six trigonometric functions

1 The six trigonometric functions Spring 017 Nikos Apostolakis 1 The six trigonometric functions Given a right triangle, once we select one of its acute angles, we can describe the sides as O (opposite of ), A (adjacent to ), and H ().

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c.

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c. MATH 6 WINTER 06 University Calculus I Worksheet # 8 Mar. 06-0 The topic covered by this worksheet is: Derivative of Inverse Functions and the Inverse Trigonometric functions. SamplesolutionstoallproblemswillbeavailableonDL,

More information

1.3 Basic Trigonometric Functions

1.3 Basic Trigonometric Functions www.ck1.org Chapter 1. Right Triangles and an Introduction to Trigonometry 1. Basic Trigonometric Functions Learning Objectives Find the values of the six trigonometric functions for angles in right triangles.

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University Abstract This handout defines the trigonometric function of angles and discusses the relationship between trigonometric

More information

CK-12 Trigonometry - Second Edition, Solution Key

CK-12 Trigonometry - Second Edition, Solution Key CK-1 Trigonometry - Second Edition, Solution Key CK-1 Foundation Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required) www.ck1.org To access a customizable version of this

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by.

Chapter 6. Trigonometric Functions of Angles. 6.1 Angle Measure. 1 radians = 180º. π 1. To convert degrees to radians, multiply by. Chapter 6. Trigonometric Functions of Angles 6.1 Angle Measure Radian Measure 1 radians = 180º Therefore, o 180 π 1 rad =, or π 1º = 180 rad Angle Measure Conversions π 1. To convert degrees to radians,

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. (a) 5

More information

Things You Should Know Coming Into Calc I

Things You Should Know Coming Into Calc I Things You Should Know Coming Into Calc I Algebraic Rules, Properties, Formulas, Ideas and Processes: 1) Rules and Properties of Exponents. Let x and y be positive real numbers, let a and b represent real

More information

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is Radian Measure Given any circle with radius r, if θ is a central angle of the circle and s is the length of the arc sustained by θ, we define the radian measure of θ by: θ = s r For a semi-circle with

More information

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019 A-Level Mathematics TRIGONOMETRY G. David Boswell - R2S Explore 2019 1. Graphs the functions sin kx, cos kx, tan kx, where k R; In these forms, the value of k determines the periodicity of the trig functions.

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Overview: 5.1 Using Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Solving Trig Equations 5.4 Sum and Difference Formulas 5.5 Multiple-Angle and Product-to-sum

More information

Math Analysis Chapter 5 Notes: Analytic Trigonometric

Math Analysis Chapter 5 Notes: Analytic Trigonometric Math Analysis Chapter 5 Notes: Analytic Trigonometric Day 9: Section 5.1-Verifying Trigonometric Identities Fundamental Trig Identities Reciprocal Identities: 1 1 1 sin u = cos u = tan u = cscu secu cot

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES Before starting this section, you might need to review the trigonometric functions. DIFFERENTIATION RULES In particular, it is important to remember that,

More information

1. Which of the following defines a function f for which f ( x) = f( x) 2. ln(4 2 x) < 0 if and only if

1. Which of the following defines a function f for which f ( x) = f( x) 2. ln(4 2 x) < 0 if and only if . Which of the following defines a function f for which f ( ) = f( )? a. f ( ) = + 4 b. f ( ) = sin( ) f ( ) = cos( ) f ( ) = e f ( ) = log. ln(4 ) < 0 if and only if a. < b. < < < < > >. If f ( ) = (

More information

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER Prof. Israel N. Nwaguru MATH 11 CHAPTER,,, AND - REVIEW WORKOUT EACH PROBLEM NEATLY AND ORDERLY ON SEPARATE SHEET THEN CHOSE THE BEST ANSWER TO EARN ANY CREDIT, YOU MUST SHOW STEPS LEADING TO THE ANSWER

More information

MATH 1113 A Review for Exam 1 Solution. 1. For the next few questions, consider the function. b. What is the domain of f? All real numbers except 3

MATH 1113 A Review for Exam 1 Solution. 1. For the next few questions, consider the function. b. What is the domain of f? All real numbers except 3 MATH 1113 A Review for Exam 1 Solution 1. For the next few questions, consider the function. a. Evaluate 0,2.5 and 3. 0,2.5 8 and 3 b. What is the domain of f? All real numbers except 3 c. For what value

More information

You should be comfortable with everything below (and if you aren t you d better brush up).

You should be comfortable with everything below (and if you aren t you d better brush up). Review You should be comfortable with everything below (and if you aren t you d better brush up).. Arithmetic You should know how to add, subtract, multiply, divide, and work with the integers Z = {...,,,

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

Solving Equations. Pure Math 30: Explained! 255

Solving Equations. Pure Math 30: Explained!   255 Solving Equations Pure Math : Explained! www.puremath.com 55 Part One - Graphically Solving Equations Solving trigonometric equations graphically: When a question asks you to solve a system of trigonometric

More information

2. Pythagorean Theorem:

2. Pythagorean Theorem: Chapter 4 Applications of Trigonometric Functions 4.1 Right triangle trigonometry; Applications 1. A triangle in which one angle is a right angle (90 0 ) is called a. The side opposite the right angle

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

3.5 Derivatives of Trig Functions

3.5 Derivatives of Trig Functions 3.5 Derivatives of Trig Functions Problem 1 (a) Suppose we re given the right triangle below. Epress sin( ) and cos( ) in terms of the sides of the triangle. sin( ) = B C = B and cos( ) = A C = A (b) Suppose

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

Lesson 33 - Trigonometric Identities. Pre-Calculus

Lesson 33 - Trigonometric Identities. Pre-Calculus Lesson 33 - Trigonometric Identities Pre-Calculus 1 (A) Review of Equations An equation is an algebraic statement that is true for only several values of the variable The linear equation 5 = 2x 3 is only

More information

CHAPTERS 5-7 TRIG. FORMULAS PACKET

CHAPTERS 5-7 TRIG. FORMULAS PACKET CHAPTERS 5-7 TRIG. FORMULAS PACKET PRE-CALCULUS SECTION 5-2 IDENTITIES Reciprocal Identities sin x = ( 1 / csc x ) csc x = ( 1 / sin x ) cos x = ( 1 / sec x ) sec x = ( 1 / cos x ) tan x = ( 1 / cot x

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Unit 6 Trigonometric Identities

Unit 6 Trigonometric Identities Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations Prove trigonometric identities, using: Reciprocal identities Quotient identities Pythagorean identities Sum

More information

Name: Top Ten Things You ve Learned #10: Graphing Lines, Parabolas, and other Functions I. No Calculator: Sketch a graph of each equation

Name: Top Ten Things You ve Learned #10: Graphing Lines, Parabolas, and other Functions I. No Calculator: Sketch a graph of each equation Name: #: Graphing Lines, Parabolas, and other Functions I. No Calculator: Sketch a graph of each equation... - - - - - -.. 6. - - - - - - 7. 8. 9. - - - - - - ... a f - - - - - - II. Use a graphing calculator

More information

Sect 7.4 Trigonometric Functions of Any Angles

Sect 7.4 Trigonometric Functions of Any Angles Sect 7.4 Trigonometric Functions of Any Angles Objective #: Extending the definition to find the trigonometric function of any angle. Before we can extend the definition our trigonometric functions, we

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013

Practice Questions for Midterm 2 - Math 1060Q - Fall 2013 Eam Review Practice Questions for Midterm - Math 060Q - Fall 0 The following is a selection of problems to help prepare ou for the second midterm eam. Please note the following: anthing from Module/Chapter

More information

Pre-Calc Trigonometry

Pre-Calc Trigonometry Slide 1 / 207 Slide 2 / 207 Pre-Calc Trigonometry 2015-03-24 www.njctl.org Slide 3 / 207 Table of Contents Unit Circle Graphing Law of Sines Law of Cosines Pythagorean Identities Angle Sum/Difference Double

More information

Algebra II Standard Term 4 Review packet Test will be 60 Minutes 50 Questions

Algebra II Standard Term 4 Review packet Test will be 60 Minutes 50 Questions Algebra II Standard Term Review packet 2017 NAME Test will be 0 Minutes 0 Questions DIRECTIONS: Solve each problem, choose the correct answer, and then fill in the corresponding oval on your answer document.

More information

Pre-Calculus EOC Review 2016

Pre-Calculus EOC Review 2016 Pre-Calculus EOC Review 2016 Name The Exam 50 questions, multiple choice, paper and pencil. I. Limits 8 questions a. (1) decide if a function is continuous at a point b. (1) understand continuity in terms

More information

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 12 TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. 12.2 The Trigonometric Functions Copyright Cengage Learning. All rights reserved. The Trigonometric Functions and Their Graphs

More information