Heat Transfer Equipment

Size: px
Start display at page:

Download "Heat Transfer Equipment"

Transcription

1 Università di Pisa Facoltà di Ingegneria Heat Transfer Equipment Unit Operation I Prof. Cristiano Nicolella

2 Typical overall heat transfer coefficients

3 Fouling factors

4 Frank nomograph

5 Fouling factors

6 Exchanger types: fixed-tube tube-sheet Simple and cheap Limited to clean fluids (difficult cleaning) No provision for differential expansion (Dtmax=80 C)

7 Exchanger types: U tube Cheaper than floating head Reduced number of joints (reduced capital and maintenance costs in high-pressure contructions) Limited to clean fluids (difficult cleaning)

8 Exchanger types: Internal floating head Removable tube bundle Provision for differential expansion Low tube-shell clearance (split ring assembly) Possible leakages

9 Heat-exchanger exchanger standards The mechanical design features, fabrication, materials of construction and testing of tube and shell heat exchangers are covered by international standrds: Tubular heat exchanger manufacturer association (TEMA) British standards

10 TEMA designations for shell-and tube exchangers

11 Tubes Tube diameters: 6-50 mm Most often: mm Small diameters (up to 25 mm) give more compact (cheaper) exchangers Larger diameters used for fouling fluids (easier to clean) Tube thickness: Internal and external pressure Corrosion allowance Preferred lengths : 1, 2, 3, 6 m Size often determined by plant maintenance department standards 19 mm good first trial diameter for design calculations

12 Tube arrangements Triangular and rotated square patterns Higher heat transfer rate Higher pressure drop Square and rotated square patterns: P t = 1.25 d e Fouling fluids (mimimun clearance between tubes: 6 mm)

13 Shells Diameters BS: up to 1070 mm TEMA: up to 1520 mm Minimum clearance with tube bundle (reduced bypassing)

14 Tube count d b = d e N K t 1 1 n 1 d b : bundle diameter d e : tube outside diameter N t : number of tubes In U-tube exchangers, the spacing between the two central rows is determined by the minumum allowable radius for the the U-bend. The number of tubes in the central row is d b /p t.

15 Shell types One shell pass most commonly used. Two shell passes used for temperature crosses (more commonly two one shell pass exchangers in series) Divided flow and split flow arrangements used to reduce shell pressure drop (when pressure drop rather than heat exchange is the controlling factor)

16 Baffles Baffles are used to improve the rate of heat transfer by: directing the fluid stream across the tubes; Increasing the fluid velocity. Segmental baffles (a) most commonly used. Baffle cut: percentage of height of the segment removed to form the baffle to diameter of the baffle disc Baffle cuts: % Optimum cut: % (good heat transfer rate without excessive pressure drop) Support plates: similar to baffles, closer tolerances (0.4 vs 0.8 mm). With gases: trimmed baffles (bottom) for condensate flow With liquids: trimmed baffles (top) for noncondensable flow Baffle spacing: d s /5 (minimum 50 mm) d s Optimum spacing: 0.3d s -0.5 d s Support plate spacing: 1 m (d e =19 mm); 2m (d e =25mm)

17 Temperature correction factor

18 Tube-side heat transfer coefficient For water: t: temperature, C u t : velocity, m/s d i : tube inside diameter, mm

19 Tube-side pressure drop P t : tube-side pressure drop, Pa N P : number of tube side passes

20 Shell-side heat transfer coefficient A u d d s s eq eq Re = = s = ( p d ) W ρa 2 π 3pt d 2 = π 2 de 2 ρusdeq = µ t s s p e t e d s l d 2 π 4 pt d 4 2 πd 2 e 2 e square pitch triangular pitch A s : cross flow area, m 2 u s : velocity, m s-1 d eq : equivalent diameter, m Re s : Reynolds number p t : tube pitch, m d e : tube outside diameter, m d s : shell diameter, m l d : baffle spacing, m W: mass flow rate, kg s -1 ρ: density, kg m -3

21 Shell-side heat transfer coefficient

22 Shell-side pressure drop

23 Equipment sketches

24 Data sheets

25 TEMA designations

26 Finned tubes Longitudinal fins Transverse fins

27 Transverse fin efficiency

28 Transverse fin heat transfer and pressure drop

29 Transverse fin heat transfer and pressure drop D D e ' ev = = 2 ( A + A ) A f f πp 4V + A o o A f : fin surface area (both sides) A o : bare outside tube surface p: projected perimeter V: net free volume (volume between the center lines of two vertical banks of tubes less the volume of the alf tubes and fins within the central lines)

30 Crossflow arrangements

31 Crossflow temperature difference correction

32 Crossflow temperature difference correction

33 Jacketed vessels Spirally baffled Dimple Half pipe

34 Coiled vessels Single helix Vertical pipes Helix + pancake

35 Heat transfer coefficients from jackets and coils

36 Heat transfer coefficients from jackets and coils h j D k j = 0.36 L 2 2 Nρ µ 3 cµ k 1 3 µ µ w 0.14 jackets h c D k j = L Nρ µ 2 3 cµ k 1 3 µ µ w 0.14 coils D j : vessel inside diameter L: agitator paddle length N: agitator angular velocity

Thermal Design of Shell and tube heat Exchanger

Thermal Design of Shell and tube heat Exchanger King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Thermal Design of Shell and tube heat Exchanger March 2018 1 Contents 1-Introduction 2-Basic components Shell types

More information

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction HEAT TRANSFER Mechanisms of Heat Transfer: (1) Conduction where Q is the amount of heat, Btu, transferred in time t, h k is the thermal conductivity, Btu/[h ft 2 ( o F/ft)] A is the area of heat transfer

More information

Design of Heat Transfer Equipment

Design of Heat Transfer Equipment Design of Heat Transfer Equipment Types of heat transfer equipment Type service Double pipe exchanger Heating and cooling Shell and tube exchanger All applications Plate heat exchanger Plate-fin exchanger

More information

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER DESIGN OF A SHELL AND TUBE HEAT EXCHANGER Swarnotpal Kashyap Department of Chemical Engineering, IIT Guwahati, Assam, India 781039 ABSTRACT Often, in process industries the feed stream has to be preheated

More information

Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes

Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes Adesh Dhope 1, Omkar Desai 2, Prof. V. Verma 3 1 Student, Department of Mechanical Engineering,Smt. KashibaiNavale college of

More information

WTS Table of contents. Layout

WTS Table of contents. Layout Table of contents Thermal and hydraulic design of shell and tube heat exchangers... 2 Tube sheet data... 4 Properties of Water and Steam... 6 Properties of Water and Steam... 7 Heat transfer in pipe flow...

More information

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board HEAT TRANSFER Principles and Applications BINAY K. DUTTA West Bengal Pollution Control Board Kolkata PHI Learning PfcO too1 Delhi-110092 2014 Contents Preface Notations ix xiii 1. Introduction 1-8 1.1

More information

SHELL-AND-TUBE TEST PROBLEMS

SHELL-AND-TUBE TEST PROBLEMS SHELL-AND-TUBE TEST PROBLEMS The problems that have been used to validate some of the capabilities in INSTED for the analysis of shell-and-tube heat exchanger are discussed in this chapter. You should

More information

Design and rating of Shell and tube heat Exchangers Bell-Delaware method

Design and rating of Shell and tube heat Exchangers Bell-Delaware method King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Design and rating of Shell and tube heat Exchangers Bell-Delaware method 1 April 2018 Bell Delaware method for

More information

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS Md. Khairul Islam Lecturer Department of Applied Chemistry and Chemical Engineering. University of Rajshahi. What is design? Design includes all the

More information

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works? HEAT EXCHANGERS 1 INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants How it works? 2 WHAT ARE THEY USED FOR? Classification according to service. Heat

More information

COMPARATIVE THERMAL ANALYSIS OF CONVENTIONAL TUBULAR HEAT EXCHANGER WITH HELIXCHANGER USING BELL-DELAWARE METHOD

COMPARATIVE THERMAL ANALYSIS OF CONVENTIONAL TUBULAR HEAT EXCHANGER WITH HELIXCHANGER USING BELL-DELAWARE METHOD COMPARATIVE THERMAL ANALYSIS OF CONVENTIONAL TUBULAR HEAT EXCHANGER WITH HELIXCHANGER USING BELL-DELAWARE METHOD Prof.S.S.SHINDE 1*, P.V.HADGEKAR 2, Dr.S.PAVITRAN 3 1 Department of Mechanical Engineering

More information

A computer program for designing of shell-and-tube heat exchangers

A computer program for designing of shell-and-tube heat exchangers Applied Thermal Engineering 24(2004) 1797 1805 www.elsevier.com/locate/apthermeng A computer program for designing of shell-and-tube heat exchangers Yusuf Ali Kara *, Ozbilen G uraras Department of Mechanical

More information

8.1 Technically Feasible Design of a Heat Exchanger

8.1 Technically Feasible Design of a Heat Exchanger 328 Technically Feasible Design Case Studies T 2 q 2 ρ 2 C p2 T F q ρ C p T q ρ C p T 2F q 2 ρ 2 C p2 Figure 3.5. Countercurrent double-pipe exchanger. 8. Technically Feasible Design of a Heat Exchanger

More information

DESIGN AND EXPERIMENTAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER (U-TUBE)

DESIGN AND EXPERIMENTAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER (U-TUBE) DESIGN AND EXPERIMENTAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER (U-TUBE) Divyesh B. Patel 1, Jayesh R. Parekh 2 Assistant professor, Mechanical Department, SNPIT&RC, Umrakh, Gujarat, India 1 Assistant

More information

HEAT TRANSFER AND EXCHANGERS

HEAT TRANSFER AND EXCHANGERS HEAT TRANSFER AND EXCHANGERS Although heat-transfer rates can be computed with reasonable accuracy for clean or new pipe, the effect of dirty or corroded pipe surfaces cannot he satisfactorily estimated.

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EXPERIENTIAL INVESTIGATION OF SHELL AND TUBE HEAT EXCHANGER USING KERN METHOD K

More information

Effect of tube pitch on heat transfer in shell-and-tube heat exchangers new simulation software

Effect of tube pitch on heat transfer in shell-and-tube heat exchangers new simulation software Heat Mass Transfer (2006) 42: 263 270 DOI 0.007/s0023-005-0002-9 ORIGINAL A. Karno Æ S. Ajib Effect of tube pitch on heat transfer in shell-and-tube heat exchangers new simulation software Received: 9

More information

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 1 CHAPTER FOUR The Detailed Model In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 3, one would have to build several heat exchanger prototypes, and then

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 10- Shell and Tube Heat Exchanger Design Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Steps in Shell and tube heat exchanger Example Review Shell and tube

More information

Effect of the Mass Flow Rate on the Heat Transfer Phenomena in a Shell and Tube Heat Exchanger

Effect of the Mass Flow Rate on the Heat Transfer Phenomena in a Shell and Tube Heat Exchanger Effect of the Mass Flow Rate on the Heat Transfer Phenomena in a Shell and Tube Heat Exchanger Leonardo Delgado Ruiz 1, Carlos Acevedo Peñaloza 2, Guillermo Valencia Ochoa 3 1 Universidad Francisco de

More information

CONCENTRIC EXCHANGER TEST PROBLEMS

CONCENTRIC EXCHANGER TEST PROBLEMS CONCENTRIC EXCHANGER TEST PROBLEMS Introduction The tests used to validate INSTED analysis of concentric exchanger module are presented here. You may need to consult the original sources of the various

More information

SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW

SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW THERMAL SCIENCE: Year 2012, Vol. 16, No. 4, pp. 1165-1174 1165 SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW by Rajagapal

More information

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced.

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced. 1 Heat Transfer F12-ENG-135 - Lab #4 Forced convection School of Engineering, UC Merced. October 23, 2012 1 General purpose of the Laboratory To gain a physical understanding of the behavior of the average

More information

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 7: External Forced Convection Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Distinguish between

More information

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE COURSE TITLE : HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Conduction,Fourier law,variation

More information

Enhance the Efficiency of Heat Exchanger with Helical Baffle

Enhance the Efficiency of Heat Exchanger with Helical Baffle Enhance the Efficiency of Heat Exchanger with Helical Baffle 1 Sagar Kadu, 2 Monash Mhatre, 3 Aadhityasagar, 4 Augussilvastar, 5 Siddhart Nagi 1 Professor, Mechanical Engineering Department, SIES Graduate

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): 2321-0613 Performance of Rectangular Baffle Plate Shell and Tube Heat Exchanger using Computational

More information

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. External Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Drag and Heat Transfer in External flow Fluid flow over solid bodies is responsible

More information

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Vol. 2, No. 4 Modern Applied Science Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Dr. Kaliannan Saravanan Professor & Head, Department of Chemical Engineering Kongu Engineering

More information

Introduction to Heat and Mass Transfer

Introduction to Heat and Mass Transfer Introduction to Heat and Mass Transfer Week 16 Merry X mas! Happy New Year 2019! Final Exam When? Thursday, January 10th What time? 3:10-5 pm Where? 91203 What? Lecture materials from Week 1 to 16 (before

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 11: Heat Exchangers Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Thermal Analysis Validation for Different Design Tubes in a Heat Exchanger

Thermal Analysis Validation for Different Design Tubes in a Heat Exchanger Thermal Analysis Validation for Different Design Tubes in a Heat Exchanger Roshan. V. Marode 1 and Ashok. J.Keche 2 1 Mechanical Engineering Department, MIT, Aurangabad (M.S), India 2 Associate Professor,

More information

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 20 CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 3.1 INTRODUCTION A Shell and Tube Heat Exchanger is usually used for higher pressure applications, which consists of a series of tubes, through which one of the

More information

6340(Print), ISSN (Online) Volume 3, Issue 3, Sep- Dec (2012) IAEME AND TECHNOLOGY (IJMET)

6340(Print), ISSN (Online) Volume 3, Issue 3, Sep- Dec (2012) IAEME AND TECHNOLOGY (IJMET) INTERNATIONAL International Journal of Mechanical JOURNAL Engineering OF MECHANICAL and Technology (IJMET), ENGINEERING ISSN 0976 AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

Heat Exchanger Design

Heat Exchanger Design Heat Exchanger Design Heat Exchanger Design Methodology Design is an activity aimed at providing complete descriptions of an engineering system, part of a system, or just a single system component. These

More information

Transfer processes: direct contact or indirect contact. Geometry of construction: tubes, plates, and extended surfaces

Transfer processes: direct contact or indirect contact. Geometry of construction: tubes, plates, and extended surfaces Chapter 5 Heat Exchangers 5.1 Introduction Heat exchangers are devices used to transfer heat between two or more fluid streams at different temperatures. Heat exchangers find widespread use in power generation,

More information

1/54 Circulation pump, safety valve, expansion vessel

1/54 Circulation pump, safety valve, expansion vessel 1/54 Circulation pump, safety valve, expansion vessel pressure loss efficiency of pump secured heat output safety valve sizing expansion vessel sizing Circulation pump 2/54 similar principle as for heating

More information

THERMAL DESIGN OF FALLING FILM EVAPORATOR

THERMAL DESIGN OF FALLING FILM EVAPORATOR YMCA Institute of Engineering, Faridabad, Haryana.., Dec 9-10, 006. THERMAL DESIGN OF FALLING FILM EVAPORATOR Ashik Patel 1, Manish purohit, C. R. Sonawane 3 1, Department of Mechanical Engineering Students,

More information

Analyzing Mass and Heat Transfer Equipment

Analyzing Mass and Heat Transfer Equipment Analyzing Mass and Heat Transfer Equipment (MHE) Analyzing Mass and Heat Transfer Equipment Scaling up to solving problems using process equipment requires both continuum and macroscopic knowledge of transport,

More information

MODULE 3: MASS TRANSFER COEFFICIENTS

MODULE 3: MASS TRANSFER COEFFICIENTS MODULE 3: MASS TRANSFER COEFFICIENTS LECTURE NO. 4 3.4.3 Correlation of mass transfer coefficients for single cylinder Bedingfield and Drew (1950) studied the sublimation from a solid cylinder into air

More information

Research Article Numerical Investigation on Double Shell-Pass Shell-and-Tube Heat Exchanger with Continuous Helical Baffles

Research Article Numerical Investigation on Double Shell-Pass Shell-and-Tube Heat Exchanger with Continuous Helical Baffles Thermodynamics Volume 211, Article ID 83968, 7 pages doi:1.11/211/83968 Research Article Numerical Investigation on Double Shell-Pass Shell-and-Tube Heat Exchanger with Continuous Helical Baffles Shui

More information

Welcome to the course in Heat Transfer (MMV031) L1. Martin Andersson & Zan Wu

Welcome to the course in Heat Transfer (MMV031) L1. Martin Andersson & Zan Wu Welcome to the course in Heat Transfer (MMV031) L1 Martin Andersson & Zan Wu Agenda Organisation Introduction to Heat Transfer Heat Exchangers (Ex 108) Course improvement compared to last years 2017: Amount

More information

Design and study of pressure drop and temperature distribution characteristics in a shell and tube heat exchanger using Computational Fluid Dynamics.

Design and study of pressure drop and temperature distribution characteristics in a shell and tube heat exchanger using Computational Fluid Dynamics. Design and study of pressure drop and temperature distribution characteristics in a shell and tube heat exchanger using Computational Fluid Dynamics. Sunilakumar. Biradar. B.L.D.E.A s V.P.Dr.P.G.H College

More information

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004)

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004) Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p. 765 770 (July 2004) TECHNICAL REPORT Experimental and Operational Verification of the HTR-10 Once-Through Steam Generator (SG) Heat-transfer

More information

Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser Jan Havlík 1,*, Tomáš Dlouhý 1 1 Czech Technical University in Prague, Faculty of Mechanical Engineering, Department

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON PHEN 612 SPRING 28 WEEK 12 LAURENT SIMON Mixing in Reactors Agitation, Mixing of Fluids and Power requirements Agitation and mixing are two of the most common operations in the processing industries Agitation:

More information

Innovation in. Motionless Mixers

Innovation in. Motionless Mixers Innovation in Motionless Mixers Ross Motionless Mixers PIONEERING TECHNOLOGY. INCOMPARABLE QUALITY. WORLDWIDE LEADERSHIP. Serving all the process industries in virtually every industrialized country around

More information

ANALYSIS AND EXPERIMENTATION OF SHELL AND TUBE HEAT EXCHANGER WITH DIFFERENT ORIENTATION OF BAFFLES

ANALYSIS AND EXPERIMENTATION OF SHELL AND TUBE HEAT EXCHANGER WITH DIFFERENT ORIENTATION OF BAFFLES ANALYSIS AND EXPERIMENTATION OF SHELL AND TUBE HEAT EXCHANGER WITH DIFFERENT ORIENTATION OF BAFFLES 1 SayaliR.Bhandurge, 2 Prof.A.M.Wankhade, 3 Prof.P.K.Jadhao, 1, 2, 3 Mechanical Engineering Department,

More information

Journal of Heat and Mass Transfer Research

Journal of Heat and Mass Transfer Research Journal of Heat and Mass Transfer Research 4 (016) 83-90 Journal of Heat and Mass Transfer Research Journal homepage: http://jhmtr.journals.semnan.ac.ir Effect of baffle on shell-and-tube heat exchanger

More information

Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10

Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10 Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10 Wu Xinxin 1), Xu Zhao ) 1) Professor, INET, Tsinghua University, Beijing, P.R.China (xinxin@mail.tsinghua.edu.cn)

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

Performance Tests for an All-welded Plate Heat Exchanger Liang Huang1,a, Bingcheng Liu1,b and Qingling Li1,c

Performance Tests for an All-welded Plate Heat Exchanger Liang Huang1,a, Bingcheng Liu1,b and Qingling Li1,c 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 216) Performance Tests for an All-welded Plate Heat Exchanger Liang Huang1,a, Bingcheng Liu1,b and Qingling Li1,c 1

More information

Shell and Tube Heat Exchange Fundamentals, Design and Case Studies

Shell and Tube Heat Exchange Fundamentals, Design and Case Studies Shell and Tube Heat Exchange Fundamentals, Design and Case Studies by Kirk R. Novak, Krishnan Ramanathan, Tom Steen, and Nick Ziembo, Enerquip, LLC ABSTRACT: As companies examine their total cost of operations,

More information

CH2407 Process Equipment Design II Reboiler Design. Dr. M. Subramanian

CH2407 Process Equipment Design II  Reboiler Design.  Dr. M. Subramanian CH2407 Process Equipment Design II Reboiler Design Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram

More information

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max Heat Exchangers: Rating & Performance Parameters Dr. Md. Zahurul Haq HTX Rating is concerned with the determination of the heat transfer rate, fluid outlet temperatures, and the pressure drop for an existing

More information

(Refer Slide Time: 00:00:59 min)

(Refer Slide Time: 00:00:59 min) Refrigeration & Air Conditioning Prof. M. Ramgopal Department Of Mechanical Engineering Indian Institute Of Technology, Kharagpur Lecture No. # 27 Refrigeration Systems Component: Condensers Welcome back

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

TUBE BANKS TEST PROBLEMS

TUBE BANKS TEST PROBLEMS TUBE BANKS TEST PROBLEMS The non-proprietary tests used to validate INSTED analysis of flow and heat transfer over tube banks are presented in this section. You may need to consult the original sources

More information

Performance Optimization of Air Cooled Heat Exchanger Applying Analytical Approach

Performance Optimization of Air Cooled Heat Exchanger Applying Analytical Approach e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 355 359 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Optimization of Air Cooled Heat Exchanger Applying Analytical Approach

More information

Chapter 7: External Forced Convection

Chapter 7: External Forced Convection Chapter 7: External Forced Convection Yoav Peles Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Copyright The McGraw-Hill Companies, Inc. Permission required

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

JOINTS FOR SUPERCONDUCTING MAGNETS

JOINTS FOR SUPERCONDUCTING MAGNETS JOINTS FOR SUPERCONDUCTING MAGNETS Patrick DECOOL Association EURATOM-CEA, CEA/DSM/IRFM 0 Large machines for fusion deals with Cable In Conduit Conductors (CICC) ITER Each conductor is composed of 1000

More information

NUMERICAL STUDIES OF COMBIED MULTIPLE SHELL-PASS SHELL-AND-TUBE HEAT EXCHANGERS WITH HELICAL BAFFLES

NUMERICAL STUDIES OF COMBIED MULTIPLE SHELL-PASS SHELL-AND-TUBE HEAT EXCHANGERS WITH HELICAL BAFFLES HEFAT2008 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 30 June to 2 July 2008 Pretoria, South Africa Paper number: CG2 NUMERICAL STUDIES OF COMBIED MULTIPLE SHELL-PASS

More information

Distilla l tion n C olum u n

Distilla l tion n C olum u n Distillation Column Distillation: Process in which a liquid or vapour mixture of two or more substances is separated into its component fractions of desired purity, by the application and removal of heat

More information

Keywords: air-cooled condensers, heat transfer enhancement, oval tubes, vortex generators

Keywords: air-cooled condensers, heat transfer enhancement, oval tubes, vortex generators Geothermal Resources Council Transactions, Vol. 25, August 26-29,2001 IMPROVING AIR-COOLED CONDENSER PERFORMANCE USING WINGLETS AND OVAL TUBES IN A GEOTHERMAL POWER PLANT M. S. Sohal and J. E. O Brien

More information

TankExampleNov2016. Table of contents. Layout

TankExampleNov2016. Table of contents. Layout Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

More information

23 1 TYPES OF HEAT EXCHANGERS

23 1 TYPES OF HEAT EXCHANGERS cen5426_ch23.qxd /26/04 9:42 AM Page 032 032 FUNDAMENTALS OF THERMAL-FLUID SCIENCES 23 TYPES OF HEAT EXCHANGERS Different heat transfer applications require different types of hardware different configurations

More information

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Acta Polytechnica Vol. 52 No. 3/202 Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Petr Kracík,JiříPospíšil, Ladislav Šnajdárek Brno University of

More information

Designing Steps for a Heat Exchanger ABSTRACT

Designing Steps for a Heat Exchanger ABSTRACT Designing Steps for a Heat Exchanger Reetika Saxena M.Tech. Student in I.F.T.M. University, Moradabad Sanjay Yadav 2 Asst. Prof. in I.F.T.M. University, Moradabad ABSTRACT Distillation is a common method

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666 Heat Exchanger: Rating & Sizing Heat Exchangers: Rating & Sizing - I Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000,

More information

CHAPTER-4 EVALUATION OF NANOFLUIDS PROPERTIES

CHAPTER-4 EVALUATION OF NANOFLUIDS PROPERTIES CHAPTER-4 EVALUATION OF NANOFLUIDS PROPERTIES Nanofluids are prepared in different percentages of volume fractions (0.2, 0.4, 0.6, 0.8 and 1) of Al 2 O 3 nanoparticles in water to obtain the properties

More information

Shell and Tube Heat Exchangers. Basic Calculations

Shell and Tube Heat Exchangers. Basic Calculations Shell and Tube Heat Exchangers Basic Calculations Instructor: Jurandir Primo, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (1)

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (1) Research Paper: Thombare et al., 2012: Pp. 10-14 FLOW INDUCED VIBRATION ANALYSIS OF TEMA J-TYPE U-TUBE SHELL AND TUBE HEAT EXCHANGER Thombare, T.R., Kapatkar, V.N*., Utge, C.G., Raut A.M and H.M. Durgawale

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR

More information

NUMERICAL INVESTIGATION OF SHELL- AND-TUBE HEAT EXCHANGER WITH PARABOLIC SEGMENTAL BAFFLE CUT

NUMERICAL INVESTIGATION OF SHELL- AND-TUBE HEAT EXCHANGER WITH PARABOLIC SEGMENTAL BAFFLE CUT International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 01, January 2019, pp. 1221-1234, Article ID: IJMET_10_01_124 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=1

More information

Scientific Journal Impact Factor: (ISRA), Impact Factor: IJESRT

Scientific Journal Impact Factor: (ISRA), Impact Factor: IJESRT IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ANALYSIS OF HELICAL BAFFLE HEAT EXCHANGER FOR OPTIMUM HELIX ANGLE THROUGH NUMERICAL SIMULATIONS Roktutpal Borah 1, R.K Chitharthan

More information

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID Tisekar Salman W 1, Mukadam Shakeeb A 2, Vedpathak Harshad S 3, Rasal Priyanka K 4, Khandekar S. B 5 1 Student of B.E.,

More information

Gas-dynamic acceleration of bodies till the hyper sonic velocity

Gas-dynamic acceleration of bodies till the hyper sonic velocity Gas-dynamic acceleration of bodies till the hyper sonic velocity S. N. Dolya Joint Institute for Nuclear Research, Joliot - Curie str. 6, Dubna, Russia, 141980 Abstract The article considers an opportunity

More information

FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS

FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS Markus Eck 1, Holger Schmidt 2, Martin Eickhoff 3, Tobias Hirsch 1 1 German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring

More information

mixing of fluids MIXING AND AGITATION OF FLUIDS

mixing of fluids MIXING AND AGITATION OF FLUIDS Levenspiel [2] considered when two fluids are mixed together, the molecular behavior of the dispersed fluid falls between two extremes. If molecules are completely free to move about, the dispersed fluid

More information

International Forum on Energy, Environment Science and Materials (IFEESM 2015)

International Forum on Energy, Environment Science and Materials (IFEESM 2015) International Forum on Energy, Environment Science and Materials (IFEESM 215) CFD Analysis of Heat Transfer and Flow sistance on Shell Side of the Spiral Elliptical Tube Heat Exchanger Sheng Yang1,a*,

More information

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters ANSI/AHRI Standard 470-2006 (Formerly ARI Standard 470-2006) 2006 Standard for Performance Rating of Desuperheater/Water Heaters IMPORTANT SAFETY DISCLAIMER AHRI does not set safety standards and does

More information

LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS

LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS CH-1211 Geneva 23 Switzerland EDMS No. ST/CV - Cooling of Electronics & Detectors GUIDE LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS Objectives Guide to Leakless Cooling System

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys A v.hari Haran,*, B g.ravindra Reddy and C b.sreehari a) PG Student Mechanical Engineering Department Siddharth Institute Of Engineering

More information

[Pandita*, 4.(6): June, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Pandita*, 4.(6): June, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CFD ANALYSIS OF A SINGLE SHELL AND SINGLE TUBE HEAT EXCHANGER AND DETERMINING THE EFFECT OF BAFFLE ANGLE ON HEAT TRANSFER Manoj

More information

Fluid flow consideration in fin-tube heat exchanger optimization

Fluid flow consideration in fin-tube heat exchanger optimization archives of thermodynamics Vol. 31(2010), No. 3, 87 104 DOI: 10.2478/v10173-010-0016-7 Fluid flow consideration in fin-tube heat exchanger optimization PIOTR WAIS Cracow University of Technology, Department

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online): 2321-0613 Review Paper on Analysis of Heat Transfer in Spiral Plate Heat Exchanger Using Experimental

More information

Numerical Simulation of the Shell-and-Tube Heat Exchanger: Influence of the Lower Flows and the Baffles on a Fluid Dynamics

Numerical Simulation of the Shell-and-Tube Heat Exchanger: Influence of the Lower Flows and the Baffles on a Fluid Dynamics Advances in Chemical Engineering and cience, 017, 7, 349-361 http://www.scirp.org/journal/aces IN Online: 160-0406 IN Print: 160-039 Numerical imulation of the hell-and-tube Heat Exchanger: Influence of

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information

Validation of MARS-LMR Code for Heat Transfer Models in the DHRS of the PGSFR

Validation of MARS-LMR Code for Heat Transfer Models in the DHRS of the PGSFR Validation of MARS-LMR Code for Heat Transfer Models in the DHRS of the PGSFR Chiwoong CHOI, Taekeong Jeong, JongGan Hong, Sujin Yeom, Jong-Man Kim, Ji-Yeong Jeong, YongBum Lee and Kwiseok Ha Korea Atomic

More information