INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

Size: px
Start display at page:

Download "INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?"

Transcription

1 HEAT EXCHANGERS 1

2 INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants How it works? 2

3 WHAT ARE THEY USED FOR? Classification according to service. Heat Exchanger Both sides single phase and process stream Cooler One stream process fluid and the other cooling water or air Heater One stream process fluid and heating utility as steam Condenser One stream condensing vapor and the other cooling water or air Reboiler One stream bottom stream from a distillation column and the other a hot utility or process stream 3

4 DESIGN CODES: Code Is recommended method of doing something ASME BPV TEMA Standard is the degree of excellence required API 660-ASME B16.5 ASME B36.10M ASME B36.19-ASME B16.9 ASME B16.11 Specifications Is a detailed description of construction, materials, etc Contractor or Owner specifications 4

5 MAIN COMPONENTS 1- Channel Cover 2- Channel 3- Channel Flange 4- Pass Partition 5- Stationary Tubesheet 6- Shell Flange 7- Tube 8- Shell 9- Baffles 10- Floating Head backing Device 11- Floating Tubesheet 12- Floating Head 13- Floating Head Flange 14 Shell Cover 5

6 TEMA HEAT EXCHANGER 6

7 TEMA HEAT EXCHANGER Front Head Type A - Type B - Type C - Type 7

8 TEMA HEAT EXCHANGER Shell Type E - Type F - Type J - Type K - Type 8

9 TEMA HEAT EXCHANGER Rear End Head Types M - Type S - Type T - Type Fixed Tubesheet Floating Head Pull-Through Floating Head 9

10 CLASSIFICATION: U-Tube Heat Exchanger Fixed Tubesheet Heat Exchanger Floating Tubesheet Heat exchanger 10

11 EXAMPLE AES 11

12 EXAMPLE AKT 12

13 HEAT EXCHANGERS MECHANICAL DESIGN Terminology Design data Material selection Codes overview Sample calculations Hydrostatic test Sample drawing 13

14 DESIGN DATA Heat Exchanger Data Sheet : TEMA type Design pressure Design temperature Dimensions / passes Tubes ( dimensions, pattern) Nozzles & Connections Baffles (No. & Type) 14

15 MATERIAL SELECTION Strength Cost & Availabilit y Material Selection Corrosion Resistance Fabricability 15

16 HEAT EXCHANGERS: DESIGN CONSIDERATIONS

17 TYPES Heat Exchanger Types Heat exchangers are used to energy conversion and utilization. They involve heat exchange between two fluids separated by a solid and encompass a wide range of flow configurations. Concentric-Tube Heat Exchangers Parallel Flow Counterflow Simplest configuration. Superior performance associated with counter flow.

18 TYPES (CONT.) Cross-flow Heat Exchangers Finned-Both Fluids Unmixed Unfinned-One Fluid Mixed the Other Unmixed For cross-flow over the tubes, fluid motion, and hence mixing, in the transverse direction (y) is prevented for the finned tubes, but occurs for the un-finned condition. Heat exchanger performance is influenced by mixing.

19 TYPES (CONT.) Shell-and-Tube Heat Exchangers One Shell Pass and One Tube Pass Baffles are used to establish a cross-flow and to induce turbulent mixing of the shell-side fluid, both of which enhance convection. The number of tube and shell passes may be varied, e.g.: One Shell Pass, Two Tube Passes Two Shell Passes, Four Tube Passes

20 TYPES (CONT.) Compact Heat Exchangers Widely used to achieve large heat rates per unit volume, particularly when one or both fluids is a gas. Characterized by large heat transfer surface areas per unit volume, small flow passages, and laminar flow. (a) Fin-tube (flat tubes, continuous plate fins) (b) Fin-tube (circular tubes, continuous plate fins) (c) Fin-tube (circular tubes, circular fins) (d) Plate-fin (single pass) (e) Plate-fin (multipass)

21 OVERALL COEFFICIENT Overall Heat Transfer Coefficient An essential requirement for heat exchanger design or performance calculations. Contributing factors include convection and conduction associated with the two fluids and the intermediate solid, as well as the potential use of fins on both sides and the effects of time-dependent surface fouling. With subscripts c and h used to designate the hot and cold fluids, respectively, the most general expression for the overall coefficient is: UA UA UA c h R R R 1 f, c f, h 1 w ha A A ha o c o c o h o h

22 OVERALL COEFFICIENT R f 2 Fouling factor for a unit surface area (m K/ W) Table 11.1 Rw Wall conduction resistance (K/W) o o, c or h Overall surface efficiency of fin array (Section 3.6.5) Af 1 1f A c or h A At A f total surface area (fins and exposed base) surface area of fins only Assuming an adiabatic tip, the fin efficiency is f, c or h tanh ml ml m 2 U / k t U c or h p w c or h c or h h, partial overall coefficient 1 hr f p c or h c or h

23 A Methodology for Heat Exchanger Design Calculations - The Log Mean Temperature Difference (LMTD) Method - LMTD METHOD A form of Newton s Law of Cooling may be applied to heat exchangers by using a log-mean value of the temperature difference between the two fluids: q U A T 1m T 1m T1 T2 1n T / T 1 2 Evaluation of T and T 1 2 depends on the heat exchanger type. Counter-Flow Heat Exchanger: T T T T T 1 h,1 c,1 h, i c, o T T T T T 2 h,2 c,2 h, o c, i

24 LMTD METHOD (CONT.) Parallel-Flow Heat Exchanger: T T T T T 1 h,1 c,1 h, i c, i T T T T T 2 h,2 c,2 h, o c, o Note that T c,o can not exceed T h,o for a PF HX, but can do so for a CF HX. For equivalent values of UA and inlet temperatures, T T 1 m, CF 1 m, PF Shell-and-Tube and Cross-Flow Heat Exchangers: T F T 1m 1 m, CF F Figures

25 ENERGY BALANCE Overall Energy Balance Application to the hot (h) and cold (c) fluids: Assume negligible heat transfer between the exchanger and its surroundings and negligible potential and kinetic energy changes for each fluid. q m i i h h, i h, o c c, o c, i q m i i i fluid enthalpy Assuming no l/v phase change and constant specific heats, h p, h h, i h, o Ch Th, i Th, o c p, c c, o c, i Cc Tc, o Tc, i q m c T T q m c T T CC h, c Heat capacity rates

26 SPECIAL CONDITIONS Special Operating Conditions Case (a): C h >>C c or h is a condensing vapor Ch. Negligible or no change in Th Th o Th i,,. Case (b): C c >>C h or c is an evaporating liquid Cc. Negligible or no change in Tc Tc o Tc i Case (c): C h =C c. T T T 1 2 1m,,.

27 PROBLEM: OCEAN THERMAL ENERGY CONVERSION Problem : Design of a two-pass, shell-and-tube heat exchanger to supply vapor for the turbine of an ocean thermal energy conversion system based on a standard (Rankine) power cycle. The power cycle is to generate 2 MW e at an efficiency of 3%. Ocean water enters the tubes of the exchanger at 300K, and its desired outlet temperature is 292K. The working fluid of the power cycle is evaporated in the tubes of the exchanger at its phase change temperature of 290K, and the overall heat transfer coefficient is known. FIND: (a) Evaporator area, (b) Water flow rate. SCHEMATIC:

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR

More information

Introduction to Heat and Mass Transfer

Introduction to Heat and Mass Transfer Introduction to Heat and Mass Transfer Week 16 Merry X mas! Happy New Year 2019! Final Exam When? Thursday, January 10th What time? 3:10-5 pm Where? 91203 What? Lecture materials from Week 1 to 16 (before

More information

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 11: Heat Exchangers Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of

More information

Overall Heat Transfer Coefficient

Overall Heat Transfer Coefficient Overall Heat Transfer Coefficient A heat exchanger typically involves two flowing fluids separated by a solid wall. Heat is first transferred from the hot fluid to the wall by convection, through the wall

More information

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793 HX: Energy Balance and LMTD Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000, Bangladesh http://zahurul.buet.ac.bd/

More information

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666 Heat Exchanger: Rating & Sizing Heat Exchangers: Rating & Sizing - I Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000,

More information

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS Md. Khairul Islam Lecturer Department of Applied Chemistry and Chemical Engineering. University of Rajshahi. What is design? Design includes all the

More information

23 1 TYPES OF HEAT EXCHANGERS

23 1 TYPES OF HEAT EXCHANGERS cen5426_ch23.qxd /26/04 9:42 AM Page 032 032 FUNDAMENTALS OF THERMAL-FLUID SCIENCES 23 TYPES OF HEAT EXCHANGERS Different heat transfer applications require different types of hardware different configurations

More information

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction HEAT TRANSFER Mechanisms of Heat Transfer: (1) Conduction where Q is the amount of heat, Btu, transferred in time t, h k is the thermal conductivity, Btu/[h ft 2 ( o F/ft)] A is the area of heat transfer

More information

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board HEAT TRANSFER Principles and Applications BINAY K. DUTTA West Bengal Pollution Control Board Kolkata PHI Learning PfcO too1 Delhi-110092 2014 Contents Preface Notations ix xiii 1. Introduction 1-8 1.1

More information

HEAT TRANSFER AND EXCHANGERS

HEAT TRANSFER AND EXCHANGERS HEAT TRANSFER AND EXCHANGERS Although heat-transfer rates can be computed with reasonable accuracy for clean or new pipe, the effect of dirty or corroded pipe surfaces cannot he satisfactorily estimated.

More information

PROBLEM The heat rate, q, can be evaluated from an energy balance on the cold fluid, 225 kg/h J. 3600s/h

PROBLEM The heat rate, q, can be evaluated from an energy balance on the cold fluid, 225 kg/h J. 3600s/h PROBLEM 11.41 KNOWN: Concentric tube heat exchanger. FIND: Length of the exchanger. SCHEMATIC: ASSUMPTIONS: (1) Negligible heat loss to surroundings, () Negligible kinetic and potential energy changes,

More information

Heat Exchanger Design

Heat Exchanger Design Heat Exchanger Design Heat Exchanger Design Methodology Design is an activity aimed at providing complete descriptions of an engineering system, part of a system, or just a single system component. These

More information

WTS Table of contents. Layout

WTS Table of contents. Layout Table of contents Thermal and hydraulic design of shell and tube heat exchangers... 2 Tube sheet data... 4 Properties of Water and Steam... 6 Properties of Water and Steam... 7 Heat transfer in pipe flow...

More information

Multiple pass and cross flow heat exchangers

Multiple pass and cross flow heat exchangers Multiple pass and cross flow heat exchangers Parag Chaware Department of Mechanical Engineering of Engineering, Pune Multiple pass and cross flow heat exchangers Parag Chaware 1 / 13 Introduction In order

More information

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE COURSE TITLE : HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Conduction,Fourier law,variation

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS طراحی مبدل های حرارتی مهدي کریمی ترم بهار 96-97 HEAT TRANSFER CALCULATIONS ١ TEMPERATURE DIFFERENCE For any transfer the driving force is needed General heat transfer equation : Q = U.A. T What T should

More information

Design of Heat Transfer Equipment

Design of Heat Transfer Equipment Design of Heat Transfer Equipment Types of heat transfer equipment Type service Double pipe exchanger Heating and cooling Shell and tube exchanger All applications Plate heat exchanger Plate-fin exchanger

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers?

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers? Lectures 7+8 04 CM30 /30/05 CM30 Transport I Part II: Heat Transfer Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Department of Chemical Engineering Michigan

More information

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER DESIGN OF A SHELL AND TUBE HEAT EXCHANGER Swarnotpal Kashyap Department of Chemical Engineering, IIT Guwahati, Assam, India 781039 ABSTRACT Often, in process industries the feed stream has to be preheated

More information

Designing Steps for a Heat Exchanger ABSTRACT

Designing Steps for a Heat Exchanger ABSTRACT Designing Steps for a Heat Exchanger Reetika Saxena M.Tech. Student in I.F.T.M. University, Moradabad Sanjay Yadav 2 Asst. Prof. in I.F.T.M. University, Moradabad ABSTRACT Distillation is a common method

More information

Memorial University of Newfoundland Faculty of Engineering and Applied Science

Memorial University of Newfoundland Faculty of Engineering and Applied Science Memorial University of Newfoundl Faculty of Engineering Applied Science ENGI-7903, Mechanical Equipment, Spring 20 Assignment 2 Vad Talimi Attempt all questions. The assignment may be done individually

More information

Welcome to the course in Heat Transfer (MMV031) L1. Martin Andersson & Zan Wu

Welcome to the course in Heat Transfer (MMV031) L1. Martin Andersson & Zan Wu Welcome to the course in Heat Transfer (MMV031) L1 Martin Andersson & Zan Wu Agenda Organisation Introduction to Heat Transfer Heat Exchangers (Ex 108) Course improvement compared to last years 2017: Amount

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Applied Heat Transfer:

Applied Heat Transfer: Lectures 7+8 CM30 /6/06 CM30 Transport I Part II: Heat Transfer Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Department of Chemical Engineering Michigan Technological

More information

Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration

Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration H. Dardour, S. Mazouz, and A. Bellagi Abstract For many industrial applications plate heat exchangers are demonstrating

More information

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max Heat Exchangers: Rating & Performance Parameters Dr. Md. Zahurul Haq HTX Rating is concerned with the determination of the heat transfer rate, fluid outlet temperatures, and the pressure drop for an existing

More information

Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes

Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes Design and Temperature Analysis on Heat Exchanger with TEMA Standard Codes Adesh Dhope 1, Omkar Desai 2, Prof. V. Verma 3 1 Student, Department of Mechanical Engineering,Smt. KashibaiNavale college of

More information

HEAT EXCHANGER. Objectives

HEAT EXCHANGER. Objectives HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers

More information

Thermal Design of Shell and tube heat Exchanger

Thermal Design of Shell and tube heat Exchanger King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Thermal Design of Shell and tube heat Exchanger March 2018 1 Contents 1-Introduction 2-Basic components Shell types

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser Jan Havlík 1,*, Tomáš Dlouhý 1 1 Czech Technical University in Prague, Faculty of Mechanical Engineering, Department

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Experimental Analysis of Double Pipe Heat Exchanger

Experimental Analysis of Double Pipe Heat Exchanger 206 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Experimental Analysis of Double Pipe Heat Exchanger Urvin R. Patel, 2 Manish S. Maisuria, 3 Dhaval R. Patel, 4 Krunal P. Parmar,2,3,4 Assistant Professor,2,3,4

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

Design and rating of Shell and tube heat Exchangers Bell-Delaware method

Design and rating of Shell and tube heat Exchangers Bell-Delaware method King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Design and rating of Shell and tube heat Exchangers Bell-Delaware method 1 April 2018 Bell Delaware method for

More information

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys A v.hari Haran,*, B g.ravindra Reddy and C b.sreehari a) PG Student Mechanical Engineering Department Siddharth Institute Of Engineering

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

PLATE & FRAME HEAT EXCHANGER

PLATE & FRAME HEAT EXCHANGER PLATE & FRAME HEAT EXCHANGER By Farhan Ahmad Department of Chemical Engineering, University of Engineering & Technology Lahore Introduction The plate heat exchanger (PHE) was first introduced by Dr Richard

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study

FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study FLOW MALDISTRIBUTION IN A SIMPLIFIED PLATE HEAT EXCHANGER MODEL - A Numerical Study Nityanand Pawar Mechanical Engineering, Sardar Patel College of Engineering, Mumbai, Maharashtra, India nitya.pawar@gmail.com

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 3- Examples on problems having different heat transfer modes Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Examples Multimode heat transfer Heat exchanger

More information

Analysis of Shell & Tube Type Heat Exchangers

Analysis of Shell & Tube Type Heat Exchangers Analysis of Shell & Tube Type Heat Exchangers Ajay Kumar Giri, Navesh Kumar Roul, Tarini Prakash Mishra, Mr. Debabrata panda, Mr. Ajit Prasad Dash Department of mechanical engineering, GIET GUNUPUR Email:

More information

Analyzing Mass and Heat Transfer Equipment

Analyzing Mass and Heat Transfer Equipment Analyzing Mass and Heat Transfer Equipment (MHE) Analyzing Mass and Heat Transfer Equipment Scaling up to solving problems using process equipment requires both continuum and macroscopic knowledge of transport,

More information

Chapter 7 The Energy Equation

Chapter 7 The Energy Equation Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

More information

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters ANSI/AHRI Standard 470-2006 (Formerly ARI Standard 470-2006) 2006 Standard for Performance Rating of Desuperheater/Water Heaters IMPORTANT SAFETY DISCLAIMER AHRI does not set safety standards and does

More information

Heat Transfer Equipment

Heat Transfer Equipment Università di Pisa Facoltà di Ingegneria Heat Transfer Equipment Unit Operation I Prof. Cristiano Nicolella Typical overall heat transfer coefficients Fouling factors Frank nomograph Fouling factors Exchanger

More information

Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10

Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10 Study on the improved recuperator design used in the direct helium-turbine power conversion cycle of HTR-10 Wu Xinxin 1), Xu Zhao ) 1) Professor, INET, Tsinghua University, Beijing, P.R.China (xinxin@mail.tsinghua.edu.cn)

More information

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4. Energy Equation Entropy equation in Chapter 4: control mass approach The second law of thermodynamics Availability (exergy) The exergy of asystemis the maximum useful work possible during a process that

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

Optimization of Shell And -Tube Intercooler in Multistage Compressor System Using CFD Analysis

Optimization of Shell And -Tube Intercooler in Multistage Compressor System Using CFD Analysis Impact Factor (SJIF): 5.301 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 Volume 5, Issue 7, July-2018 Optimization of Shell And -Tube

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers

Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers Advanced Computational Methods in Heat Transfer IX 33 Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers 3 4 S. K. Bhatti,

More information

Shell and Tube Heat Exchange Fundamentals, Design and Case Studies

Shell and Tube Heat Exchange Fundamentals, Design and Case Studies Shell and Tube Heat Exchange Fundamentals, Design and Case Studies by Kirk R. Novak, Krishnan Ramanathan, Tom Steen, and Nick Ziembo, Enerquip, LLC ABSTRACT: As companies examine their total cost of operations,

More information

10 minutes reading time is allowed for this paper.

10 minutes reading time is allowed for this paper. EGT1 ENGINEERING TRIPOS PART IB Tuesday 31 May 2016 2 to 4 Paper 4 THERMOFLUID MECHANICS Answer not more than four questions. Answer not more than two questions from each section. All questions carry the

More information

The Effect of Mass Flow Rate on the Effectiveness of Plate Heat Exchanger

The Effect of Mass Flow Rate on the Effectiveness of Plate Heat Exchanger The Effect of Mass Flow Rate on the of Plate Heat Exchanger Wasi ur rahman Department of Chemical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 222,

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No - 03 First Law of Thermodynamics (Open System) Good afternoon,

More information

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. External Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Drag and Heat Transfer in External flow Fluid flow over solid bodies is responsible

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube Jayant Deshmukh Department of Mechanical Engineering Sagar Institute of Research and Technology, Bhopal, M.P., India D.K. Mudaiya

More information

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE Chapter 6 Using Entropy 1 2 Chapter Objective Means are introduced for analyzing systems from the 2 nd law perspective as they undergo processes that are not necessarily cycles. Objective: introduce entropy

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

Thermal Analysis of Cross Flow Heat Exchangers

Thermal Analysis of Cross Flow Heat Exchangers Website: www.ijetae.com (ISSN 225-2459, ISO 9:28 Certified Journal, Volume 4, Special Issue 9, September 24) hermal Analysis of Cross Flow Heat Exchangers Shreyas Muralidharan & B. Gokul Maharaj School

More information

Comparative Analysis of Different Fluids in One Shell Pass And Two Tube Heat Exchanger

Comparative Analysis of Different Fluids in One Shell Pass And Two Tube Heat Exchanger American Journal of Engineering Research (AJER) 2016 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-8, pp-81-87 wwwajerorg Research Paper Open Access

More information

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 7: External Forced Convection Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Distinguish between

More information

Plant Design LECTURE 8: REBOILER CIRCUIT DESIGN. Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel

Plant Design LECTURE 8: REBOILER CIRCUIT DESIGN. Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel 054410 Plant Design LECTURE 8: REBOILER CIRCUIT DESIGN Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel Ref: Kern, R. Thermosyphon Reboiler Piping Simplified, Hydrocarbon Processing,

More information

SUMMER-18 EXAMINATION Model Answer. Subject: Heat Transfer Operation Subject code: Page 1 of 23

SUMMER-18 EXAMINATION Model Answer. Subject: Heat Transfer Operation Subject code: Page 1 of 23 (ISO/IEC - 700-005 Certified) SUMMER-8 EXAMINATION Subject: Heat Transfer Operation Subject code: 7560 Page of 3 Important Instructions to examiners: ) The answers should be examined by key words and not

More information

CHAPTER FOUR HEAT TRANSFER

CHAPTER FOUR HEAT TRANSFER CHAPTER FOUR HEAT TRANSFER 4.1. Determination of Overall Heat Transfer Coefficient in a Tubular Heat Exchanger 4.2. Determination of Overall Heat Transfer Coefficient in a Plate Type Heat Exchanger 4.3.

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

Transfer processes: direct contact or indirect contact. Geometry of construction: tubes, plates, and extended surfaces

Transfer processes: direct contact or indirect contact. Geometry of construction: tubes, plates, and extended surfaces Chapter 5 Heat Exchangers 5.1 Introduction Heat exchangers are devices used to transfer heat between two or more fluid streams at different temperatures. Heat exchangers find widespread use in power generation,

More information

PTC 12.1 Calculations Using PEPSE Beta Testing. by Gene Minner Curtiss Wright Jerry Weber Midwest Generation, EME

PTC 12.1 Calculations Using PEPSE Beta Testing. by Gene Minner Curtiss Wright Jerry Weber Midwest Generation, EME PTC 12.1 Calculations Using PEPSE Beta Testing by Gene Minner Curtiss Wright Jerry Weber Midwest Generation, EME Edison Mission Energy Coal Fired Capacity 6 sites in Illinois Midwest Generation 1 siteinin

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 5 Distillation Lecture - 5 Fractional Distillation Welcome to the

More information

The Research of Heat Transfer Area for 55/19 Steam Generator

The Research of Heat Transfer Area for 55/19 Steam Generator Journal of Power and Energy Engineering, 205, 3, 47-422 Published Online April 205 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/0.4236/jpee.205.34056 The Research of Heat Transfer Area

More information

Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger INL/EXT-13-30047 Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger Su-Jong Yoon Piyush Sabharwall Eung-Soo Kim September 2013 The INL is a U.S. Department of Energy National

More information

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Tamkang Journal of Science and Engineering, Vol. 13, No. 4, pp. 405 412 (2010) 405 Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Ho-Ming Yeh Energy and Opto-Electronic

More information

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES Chapter 10 THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES It is not the sun to overtake the moon, nor doth the night outstrip theday.theyfloateachinanorbit. The Holy Qur-ān In many engineering applications,

More information

NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER

NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER 1 Ajay Pagare, 2 Kamalnayan Tripathi, 3 Nitin Choudhary 1 Asst.Profesor at Indore institute of science and technology Indore, 2 Student at Indore institute

More information

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation One-Dimensional, Steady-State State Conduction without Thermal Energy Generation Methodology of a Conduction Analysis Specify appropriate form of the heat equation. Solve for the temperature distribution.

More information

PROBLEM and from Eq. 3.28, The convection coefficients can be estimated from appropriate correlations. Continued...

PROBLEM and from Eq. 3.28, The convection coefficients can be estimated from appropriate correlations. Continued... PROBLEM 11. KNOWN: Type-30 stainless tube with prescribed inner and outer diameters used in a cross-flow heat exchanger. Prescribed fouling factors and internal water flow conditions. FIND: (a) Overall

More information

Chapter 7: External Forced Convection

Chapter 7: External Forced Convection Chapter 7: External Forced Convection Yoav Peles Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Copyright The McGraw-Hill Companies, Inc. Permission required

More information

The First Law of Thermodynamics. By: Yidnekachew Messele

The First Law of Thermodynamics. By: Yidnekachew Messele The First Law of Thermodynamics By: Yidnekachew Messele It is the law that relates the various forms of energies for system of different types. It is simply the expression of the conservation of energy

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 Arun Kumar Tiwari 1 Department of Mechanical Engineering, Institute of Engineering & Technology, GLA University, Mathura, 281004,

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

FLOW DISTRIBUTION ANALYSIS IN A HEAT EXCHANGER WITH DIFFERENT HEADER CONFIGURATIONS

FLOW DISTRIBUTION ANALYSIS IN A HEAT EXCHANGER WITH DIFFERENT HEADER CONFIGURATIONS FLOW DISTRIBUTION ANALYSIS IN A HEAT EXCHANGER WITH DIFFERENT HEADER CONFIGURATIONS M. M. Matheswaran 1, S. Karthikeyan 2 and N. Rajiv Kumar 2 1 Department of Mechanical Engineering, Jansons Institute

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17410 15116 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Assume

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information