ELEC system identification workshop. Behavioral approach

Size: px
Start display at page:

Download "ELEC system identification workshop. Behavioral approach"

Transcription

1 1 / 33 ELEC system identification workshop Behavioral approach Ivan Markovsky

2 2 / 33 The course consists of lectures and exercises Session 1: behavioral approach to data modeling Session 2: subspace identification methods Session 3: optimization-based identification methods "I hear, I forget; I see, I remember; I do, I understand." session = lecture (you hear and see) + exercises (you do)

3 3 / 33 Plan 1. Behavioral approach 2. Subspace methods 3. Optimization methods

4 4 / 33 Outline From Ax = B to low-rank approximation Linear static model representations Linear time-invariant model representations

5 5 / 33 Outline From Ax = B to low-rank approximation Linear static model representations Linear time-invariant model representations

6 6 / 33 A classic line fitting method is solving Ax B problem: fit points d 1,...,d N R 2 by line going through 0 approach: find approximate solution x R of a 1 b 1. x =., where d i = a N b N the fitting line is B := {[ b a] R2 ax = b } (x is model parameter) [ ai b i ]

7 7 / 33 The choice of a and b is arbitrary another approach: find approximate solution x R of b 1 a 1. x =. b N a N the fitting line is B := {[ b a] R2 a = bx } (x is model parameter) exceptions: vertical line x = x = 0 horizontal line x = 0 x =

8 8 / 33 In general, the two solutions differ: B B solving Ax = B and Bx = A leads to different solutions the fitting criterion depends on how we choose a and b the mode representation affects the fitting criterion

9 9 / 33 Ax = B imposes input/output model structure functional relations Ax = B defined a function a b Bx = A defined a function b a in the model B := {[ a b ] R2 ax = b } a is input, b is output (a causes b) in the model B := {[ a b ] R2 bx = a} b is input, a is output (b causes a)

10 10 / 33 Model class set of all candidate models in the example, the model class is M := {lines through 0} separately, ax = b and bx = a don t represent all B M any B M is representable as B = {Π[ a b ] ax = b } with Π a permutation matrix

11 11 / 33 Definition of least-squares line fitting problem given points D = {d 1,...,d N } R 2 and model class M minimize over B M error(d, B) where notes: error(d, B) := min D B N d i d i 2 2 i=1 D B means that B fits { d1,..., d N } exactly di is the projection of d i on the line B di d i 2 is the orthogonal distance from d i to B

12 12 / 33 Any B M can be represented as kernel any B M can be represented as B = ker(r) := {d R 2 Rd = 0} (R R 1 2, R 0 is a model parameter) Rd = 0 defines a relation (implicit fucntion) between a and b exact modeling condition {d 1,...,d N } ker(r) ] R [d 1 d N = 0 } {{ } D

13 13 / 33 Any B M can be represented as image any B M can be represented as B = image(p) := {d = Pl l R} (P R 2 1 is a model parameter) d = Pl also defines a relation between a and b exact modeling condition D image(p) [d 1 d N ] = PL (L R 1 N is a latent variable)

14 For exact data, rank ([ d 1 d N ] ) 1 14 / 33 common feature of the representations considered [ ] x R,Π permut. x 1 ΠD = 0 R R 1 2,R 0 RD = 0 P R 2 1,L R 1 N D = PL rank(d) 1 representation free characterization of exact data D B M rank(d) = 1

15 Approximate modeling of data is equivalent to low-rank approximation minimize over D error(d, D) subject to exact model for D exists minimize over D error(d, D) subject to D is rank deficient 15 / 33

16 16 / 33 Low-rank approximation is a general concept 1. multivariable data fitting U = R q linear static model subspace model complexity subspace dimension rank(d) upper bound on the model complexity 2. nonlinear static modeling D D nonlinear function nonlinearly structured low-rank approximation 3. linear time-invariant dynamical models D Hankel matrix D Hankel structured low-rank approximation

17 The matrix structure corresponds to the model class 17 / 33 structure S unstructured Hankel q 1 Hankel q N Hankel mosaic Hankel [ ] Hankel unstructured model class M linear static scalar LTI q-variate LTI N equal length traj. N general trajectory finite impulse response block-hankel Hankel-block 2D linear shift-invariant

18 18 / 33 EIV, PCA, and factor analysis are related errors-in-variables modeling all variables are perturbed by noise maximum likelihood estimation LRA principal component analysis another statistical setting for LRA factor analysis factors latent variables in an image representation

19 19 / 33 Outline From Ax = B to low-rank approximation Linear static model representations Linear time-invariant model representations

20 A linear static model is a subspace linear static model with q variables = subspace of R q model complexity subspace dimension Lm,0 linear static models with complexity at most m B L m,0 admits kernel, image, and I/O representations 20 / 33

21 A linear static model admits kernel, image, and input/output representations 21 / 33 kernel representation with parameter R R p q ker(r) := {d Rd = 0} image representation with parameter P R q m image(p) := {d = Pl l R m } input/output representation with parameters X R m p, Π B i/o (X,Π) := {d = Π [ ] u y u R m, y = X u }

22 22 / 33 The parameters R and P are not unique addition of linearly dependent rows of R columns of P minimal representations the smallest number of generators is m := dim(b) the max. number of annihilators is p := q dim(b) change of basis transformation ker(r) = ker(ur), U R p p,det(u) 0 image(p) = image(pv ), V R m m,det(v ) 0

23 23 / 33 Inputs and outputs can be deduced from B definition input is a "free" variable Π [ ] u y B and u input u R m output is bound by input and model fact: m := dim(b) number of inputs p := q m number of outputs choosing an I/O partition amounts to choosing full rank p p submatrix of R full rank m m submatrix of P

24 It is possible to convert a given representation into an equivalent one 24 / 33 B = ker(r) RP=0 B = image(p) X= (Ro 1 R i ) X=(P o P 1 i ) R=[X I]Π P =[I X]Π B = B i/o (X,Π) Π P =: [ P i P o ] m p m p ] and RΠ =: [R i R o

25 25 / 33 Outline From Ax = B to low-rank approximation Linear static model representations Linear time-invariant model representations

26 26 / 33 Dynamical models are sets of functions observations are trajectories w (R q ) N set of functions from N to R q shift operator: (σ τ w)(t) := w(t + τ), for all t N discrete-time dynamic model B is a subset of (R q ) N properties linearity: w,v B = αw + βv B, for all α,β time-invariance: σ τ B = B, for all τ N

27 Controllability can be defined in a representation free manner 27 / 33 w w c w f w p l T 1 T 2 t for all w p, w f B, there is w c, such that w p w c w f B (" " denotes "concatenation" of trajectories)

28 An LTI model admits kernel and input/state/output representations kernel representation with parameter R(z) R g q [z] ker(r) = {w R(σ)w = R 0 w + R 1 σw + + R l σ l w = 0} image representation with parameter P(z) R q g [z] image(p) = {w = P(σ)v for some v } input/state/output representation B(A,B,C,D,Π) := {w = Π [ u y ] exists x, such that σx = Ax + Bu and y = Cx + Du } 28 / 33

29 Minimal kernel and image representations have full rank R and P parameters 29 / 33 minimal row dim(r) = number of outputs minimal col dim(p) = number of inputs lag of B minimal l, for which kernel repr. exists

30 The I/S/O representation is not unique choice of an input/output partition redundant states (nonminimality of the representation) minimal representation n = order of B change of state space basis B(A,B,C,D) = B(T 1 AT,T 1 B,CT,D), for any nonsingular matrix T R n n 30 / 33

31 31 / 33 The complexity of an LTI model is determined by the number of inputs and the order restriction of B on an interval [1,T ] B T = {w = ( w(1),...,w(t ) ) there are w p,w f, for sufficiently large T such that w p w w f B } dim(b T ) = (# of inputs) T + (order) [ ] m # of inputs complexity(b) = l order or lag L q m,l LTI models with q variables and complexity bounded by (m, l)

32 Transition among different representations is a powerful problem solving tool 32 / 33 a problem is easier, when suitable representation is used examples: decoupling of a MIMO system diagonalization in linear algebra pole placement using canonical forms the problem becomes to transform the representation

33 33 / 33 data identification model B i/s/o (A,B,C,D) w = (u,y) B ( ) B i/o H(z) B i/o (H) 7 8 realization 1. H(z) = C(Iz A) 1 B + D 2. realization of a transfer function 3. Z or Laplace transform of H(t) 4. inverse transform of H(z) 5. convolution y d = H u d 6. exact identification 7. H(0) = D, H(t) = CA t 1 B (discrete-time), H(t) = Ce At B (continuous-time), for t > 0 8. realization of an impulse response 9. simulation with input u d and x(0) = exact identification 11. simulation with input u d and x(0) = x ini 12. exact identification

Dynamical system. The set of functions (signals) w : T W from T to W is denoted by W T. W variable space. T R time axis. W T trajectory space

Dynamical system. The set of functions (signals) w : T W from T to W is denoted by W T. W variable space. T R time axis. W T trajectory space Dynamical system The set of functions (signals) w : T W from T to W is denoted by W T. W variable space T R time axis W T trajectory space A dynamical system B W T is a set of trajectories (a behaviour).

More information

Low-rank approximation and its applications for data fitting

Low-rank approximation and its applications for data fitting Low-rank approximation and its applications for data fitting Ivan Markovsky K.U.Leuven, ESAT-SISTA A line fitting example b 6 4 2 0 data points Classical problem: Fit the points d 1 = [ 0 6 ], d2 = [ 1

More information

ELEC system identification workshop. Subspace methods

ELEC system identification workshop. Subspace methods 1 / 33 ELEC system identification workshop Subspace methods Ivan Markovsky 2 / 33 Plan 1. Behavioral approach 2. Subspace methods 3. Optimization methods 3 / 33 Outline Exact modeling Algorithms 4 / 33

More information

A software package for system identification in the behavioral setting

A software package for system identification in the behavioral setting 1 / 20 A software package for system identification in the behavioral setting Ivan Markovsky Vrije Universiteit Brussel 2 / 20 Outline Introduction: system identification in the behavioral setting Solution

More information

Data-driven signal processing

Data-driven signal processing 1 / 35 Data-driven signal processing Ivan Markovsky 2 / 35 Modern signal processing is model-based 1. system identification prior information model structure 2. model-based design identification data parameter

More information

A structured low-rank approximation approach to system identification. Ivan Markovsky

A structured low-rank approximation approach to system identification. Ivan Markovsky 1 / 35 A structured low-rank approximation approach to system identification Ivan Markovsky Main message: system identification SLRA minimize over B dist(a,b) subject to rank(b) r and B structured (SLRA)

More information

Signal theory: Part 1

Signal theory: Part 1 Signal theory: Part 1 Ivan Markovsky\ Vrije Universiteit Brussel Contents 1 Introduction 2 2 The behavioral approach 3 2.1 Definition of a system....................................... 3 2.2 Dynamical

More information

A missing data approach to data-driven filtering and control

A missing data approach to data-driven filtering and control 1 A missing data approach to data-driven filtering and control Ivan Markovsky Abstract In filtering, control, and other mathematical engineering areas it is common to use a model-based approach, which

More information

Sparsity in system identification and data-driven control

Sparsity in system identification and data-driven control 1 / 40 Sparsity in system identification and data-driven control Ivan Markovsky This signal is not sparse in the "time domain" 2 / 40 But it is sparse in the "frequency domain" (it is weighted sum of six

More information

Improved initial approximation for errors-in-variables system identification

Improved initial approximation for errors-in-variables system identification Improved initial approximation for errors-in-variables system identification Konstantin Usevich Abstract Errors-in-variables system identification can be posed and solved as a Hankel structured low-rank

More information

Two well known examples. Applications of structured low-rank approximation. Approximate realisation = Model reduction. System realisation

Two well known examples. Applications of structured low-rank approximation. Approximate realisation = Model reduction. System realisation Two well known examples Applications of structured low-rank approximation Ivan Markovsky System realisation Discrete deconvolution School of Electronics and Computer Science University of Southampton The

More information

Chap 4. State-Space Solutions and

Chap 4. State-Space Solutions and Chap 4. State-Space Solutions and Realizations Outlines 1. Introduction 2. Solution of LTI State Equation 3. Equivalent State Equations 4. Realizations 5. Solution of Linear Time-Varying (LTV) Equations

More information

The Behavioral Approach to Systems Theory

The Behavioral Approach to Systems Theory The Behavioral Approach to Systems Theory Paolo Rapisarda, Un. of Southampton, U.K. & Jan C. Willems, K.U. Leuven, Belgium MTNS 2006 Kyoto, Japan, July 24 28, 2006 Lecture 2: Representations and annihilators

More information

Using Hankel structured low-rank approximation for sparse signal recovery

Using Hankel structured low-rank approximation for sparse signal recovery Using Hankel structured low-rank approximation for sparse signal recovery Ivan Markovsky 1 and Pier Luigi Dragotti 2 Department ELEC Vrije Universiteit Brussel (VUB) Pleinlaan 2, Building K, B-1050 Brussels,

More information

A Behavioral Approach to GNSS Positioning and DOP Determination

A Behavioral Approach to GNSS Positioning and DOP Determination A Behavioral Approach to GNSS Positioning and DOP Determination Department of Communications and Guidance Engineering National Taiwan Ocean University, Keelung, TAIWAN Phone: +886-96654, FAX: +886--463349

More information

Optimization on the Grassmann manifold: a case study

Optimization on the Grassmann manifold: a case study Optimization on the Grassmann manifold: a case study Konstantin Usevich and Ivan Markovsky Department ELEC, Vrije Universiteit Brussel 28 March 2013 32nd Benelux Meeting on Systems and Control, Houffalize,

More information

Low-Rank Approximation

Low-Rank Approximation Ivan Markovsky Low-Rank Approximation Algorithms, Implementation, Applications September 2, 2014 Springer Preface Mathematical models are obtained from first principles (natural laws, interconnection,

More information

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky

ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky ELEC 3035, Lecture 3: Autonomous systems Ivan Markovsky Equilibrium points and linearization Eigenvalue decomposition and modal form State transition matrix and matrix exponential Stability ELEC 3035 (Part

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

Control Systems. Frequency domain analysis. L. Lanari

Control Systems. Frequency domain analysis. L. Lanari Control Systems m i l e r p r a in r e v y n is o Frequency domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic

More information

Linear transformations

Linear transformations Linear transformations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. Linear transformations

More information

The Behavioral Approach to Systems Theory

The Behavioral Approach to Systems Theory The Behavioral Approach to Systems Theory... and DAEs Patrick Kürschner July 21, 2010 1/31 Patrick Kürschner The Behavioral Approach to Systems Theory Outline 1 Introduction 2 Mathematical Models 3 Linear

More information

3 Gramians and Balanced Realizations

3 Gramians and Balanced Realizations 3 Gramians and Balanced Realizations In this lecture, we use an optimization approach to find suitable realizations for truncation and singular perturbation of G. It turns out that the recommended realizations

More information

Linear Algebra. Session 8

Linear Algebra. Session 8 Linear Algebra. Session 8 Dr. Marco A Roque Sol 08/01/2017 Abstract Linear Algebra Range and kernel Let V, W be vector spaces and L : V W, be a linear mapping. Definition. The range (or image of L is the

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 11/2/214 Outline Solving State Equations Variation

More information

MULTIVARIABLE ZEROS OF STATE-SPACE SYSTEMS

MULTIVARIABLE ZEROS OF STATE-SPACE SYSTEMS Copyright F.L. Lewis All rights reserved Updated: Monday, September 9, 8 MULIVARIABLE ZEROS OF SAE-SPACE SYSEMS If a system has more than one input or output, it is called multi-input/multi-output (MIMO)

More information

Econ Slides from Lecture 8

Econ Slides from Lecture 8 Econ 205 Sobel Econ 205 - Slides from Lecture 8 Joel Sobel September 1, 2010 Computational Facts 1. det AB = det BA = det A det B 2. If D is a diagonal matrix, then det D is equal to the product of its

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

Autonomous system = system without inputs

Autonomous system = system without inputs Autonomous system = system without inputs State space representation B(A,C) = {y there is x, such that σx = Ax, y = Cx } x is the state, n := dim(x) is the state dimension, y is the output Polynomial representation

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

ICS 6N Computational Linear Algebra Vector Space

ICS 6N Computational Linear Algebra Vector Space ICS 6N Computational Linear Algebra Vector Space Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 24 Vector Space Definition: A vector space is a non empty set V of

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Math 121 Homework 4: Notes on Selected Problems

Math 121 Homework 4: Notes on Selected Problems Math 121 Homework 4: Notes on Selected Problems 11.2.9. If W is a subspace of the vector space V stable under the linear transformation (i.e., (W ) W ), show that induces linear transformations W on W

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 GENE H GOLUB Issues with Floating-point Arithmetic We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently

More information

Zeros and zero dynamics

Zeros and zero dynamics CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

More information

Robust Control 2 Controllability, Observability & Transfer Functions

Robust Control 2 Controllability, Observability & Transfer Functions Robust Control 2 Controllability, Observability & Transfer Functions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /26/24 Outline Reachable Controllability Distinguishable

More information

Math 110: Worksheet 3

Math 110: Worksheet 3 Math 110: Worksheet 3 September 13 Thursday Sept. 7: 2.1 1. Fix A M n n (F ) and define T : M n n (F ) M n n (F ) by T (B) = AB BA. (a) Show that T is a linear transformation. Let B, C M n n (F ) and a

More information

Suppose that we have a real phenomenon. The phenomenon produces events (synonym: outcomes ).

Suppose that we have a real phenomenon. The phenomenon produces events (synonym: outcomes ). p. 5/44 Modeling Suppose that we have a real phenomenon. The phenomenon produces events (synonym: outcomes ). Phenomenon Event, outcome We view a (deterministic) model for the phenomenon as a prescription

More information

EE Control Systems LECTURE 9

EE Control Systems LECTURE 9 Updated: Sunday, February, 999 EE - Control Systems LECTURE 9 Copyright FL Lewis 998 All rights reserved STABILITY OF LINEAR SYSTEMS We discuss the stability of input/output systems and of state-space

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Review of Matrices and Block Structures

Review of Matrices and Block Structures CHAPTER 2 Review of Matrices and Block Structures Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today it is not uncommon to perform numerical computations

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u)

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u) Observability Dynamic Systems Lecture 2 Observability Continuous time model: Discrete time model: ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)) x(t + 1) = f (x(t), u(t)), y(t) = h(x(t)) Reglerteknik, ISY,

More information

Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control

Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control Module 09 From s-domain to time-domain From ODEs, TFs to State-Space Modern Control Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/

More information

10. Rank-nullity Definition Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns.

10. Rank-nullity Definition Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns. 10. Rank-nullity Definition 10.1. Let A M m,n (F ). The row space of A is the span of the rows. The column space of A is the span of the columns. The nullity ν(a) of A is the dimension of the kernel. The

More information

Lecture 3: QR-Factorization

Lecture 3: QR-Factorization Lecture 3: QR-Factorization This lecture introduces the Gram Schmidt orthonormalization process and the associated QR-factorization of matrices It also outlines some applications of this factorization

More information

ECE 275A Homework #3 Solutions

ECE 275A Homework #3 Solutions ECE 75A Homework #3 Solutions. Proof of (a). Obviously Ax = 0 y, Ax = 0 for all y. To show sufficiency, note that if y, Ax = 0 for all y, then it must certainly be true for the particular value of y =

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Lifted approach to ILC/Repetitive Control

Lifted approach to ILC/Repetitive Control Lifted approach to ILC/Repetitive Control Okko H. Bosgra Maarten Steinbuch TUD Delft Centre for Systems and Control TU/e Control System Technology Dutch Institute of Systems and Control DISC winter semester

More information

Controllability, Observability, Full State Feedback, Observer Based Control

Controllability, Observability, Full State Feedback, Observer Based Control Multivariable Control Lecture 4 Controllability, Observability, Full State Feedback, Observer Based Control John T. Wen September 13, 24 Ref: 3.2-3.4 of Text Controllability ẋ = Ax + Bu; x() = x. At time

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

Model reduction for linear systems by balancing

Model reduction for linear systems by balancing Model reduction for linear systems by balancing Bart Besselink Jan C. Willems Center for Systems and Control Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen, Groningen,

More information

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC4026 SC4026 Fall 2009, dr. A. Abate, DCSC, TU Delft Lecture 4 Controllability (a.k.a. Reachability) vs Observability Algebraic Tests (Kalman rank condition & Hautus test) A few

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

RECURSIVE SUBSPACE IDENTIFICATION IN THE LEAST SQUARES FRAMEWORK

RECURSIVE SUBSPACE IDENTIFICATION IN THE LEAST SQUARES FRAMEWORK RECURSIVE SUBSPACE IDENTIFICATION IN THE LEAST SQUARES FRAMEWORK TRNKA PAVEL AND HAVLENA VLADIMÍR Dept of Control Engineering, Czech Technical University, Technická 2, 166 27 Praha, Czech Republic mail:

More information

The Essentials of Linear State-Space Systems

The Essentials of Linear State-Space Systems :or-' The Essentials of Linear State-Space Systems J. Dwight Aplevich GIFT OF THE ASIA FOUNDATION NOT FOR RE-SALE John Wiley & Sons, Inc New York Chichester Weinheim OAI HOC OUOC GIA HA N^l TRUNGTAMTHANCTINTHUVIIN

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Q-Parameterization 1 This lecture introduces the so-called

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

Solution to Homework 8, Math 2568

Solution to Homework 8, Math 2568 Solution to Homework 8, Math 568 S 5.4: No. 0. Use property of heorem 5 to test for linear independence in P 3 for the following set of cubic polynomials S = { x 3 x, x x, x, x 3 }. Solution: If we use

More information

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts (in

More information

Linear Algebra (Math-324) Lecture Notes

Linear Algebra (Math-324) Lecture Notes Linear Algebra (Math-324) Lecture Notes Dr. Ali Koam and Dr. Azeem Haider September 24, 2017 c 2017,, Jazan All Rights Reserved 1 Contents 1 Real Vector Spaces 6 2 Subspaces 11 3 Linear Combination and

More information

Linear Algebra, Vectors and Matrices

Linear Algebra, Vectors and Matrices Linear Algebra, Vectors and Matrices Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Outline of the Course Lectures 1 and 2 (3 hours, in class): Linear and non-linear functions on

More information

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

Linear System Theory

Linear System Theory Linear System Theory Wonhee Kim Chapter 6: Controllability & Observability Chapter 7: Minimal Realizations May 2, 217 1 / 31 Recap State space equation Linear Algebra Solutions of LTI and LTV system Stability

More information

Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section

Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section Objective: Introduction of vector spaces, subspaces, and bases. Vector space Vector space Examples: R n, subsets of R n, the set of polynomials (up to degree n), the set of (continuous, differentiable)

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Linear Dimensionality Reduction

Linear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Principal Component Analysis 3 Factor Analysis

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence

Linear Algebra Review: Linear Independence. IE418 Integer Programming. Linear Algebra Review: Subspaces. Linear Algebra Review: Affine Independence Linear Algebra Review: Linear Independence IE418: Integer Programming Department of Industrial and Systems Engineering Lehigh University 21st March 2005 A finite collection of vectors x 1,..., x k R n

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

State will have dimension 5. One possible choice is given by y and its derivatives up to y (4)

State will have dimension 5. One possible choice is given by y and its derivatives up to y (4) A Exercise State will have dimension 5. One possible choice is given by y and its derivatives up to y (4 x T (t [ y(t y ( (t y (2 (t y (3 (t y (4 (t ] T With this choice we obtain A B C [ ] D 2 3 4 To

More information

Problem 1. CS205 Homework #2 Solutions. Solution

Problem 1. CS205 Homework #2 Solutions. Solution CS205 Homework #2 s Problem 1 [Heath 3.29, page 152] Let v be a nonzero n-vector. The hyperplane normal to v is the (n-1)-dimensional subspace of all vectors z such that v T z = 0. A reflector is a linear

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

ELE/MCE 503 Linear Algebra Facts Fall 2018

ELE/MCE 503 Linear Algebra Facts Fall 2018 ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 16: Change of Basis Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Rank The rank of A is the dimension of the column space

More information

Identification of MIMO linear models: introduction to subspace methods

Identification of MIMO linear models: introduction to subspace methods Identification of MIMO linear models: introduction to subspace methods Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali Politecnico di Milano marco.lovera@polimi.it State space identification

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

The disturbance decoupling problem (DDP)

The disturbance decoupling problem (DDP) CHAPTER 3 The disturbance decoupling problem (DDP) Consider the system 3.1. Geometric formulation { ẋ = Ax + Bu + Ew y = Cx. Problem 3.1 (Disturbance decoupling). Find a state feedback u = Fx+ v such that

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as Reading [SB], Ch. 16.1-16.3, p. 375-393 1 Quadratic Forms A quadratic function f : R R has the form f(x) = a x. Generalization of this notion to two variables is the quadratic form Q(x 1, x ) = a 11 x

More information

Lecture 2. LINEAR DIFFERENTIAL SYSTEMS p.1/22

Lecture 2. LINEAR DIFFERENTIAL SYSTEMS p.1/22 LINEAR DIFFERENTIAL SYSTEMS Harry Trentelman University of Groningen, The Netherlands Minicourse ECC 2003 Cambridge, UK, September 2, 2003 LINEAR DIFFERENTIAL SYSTEMS p1/22 Part 1: Generalities LINEAR

More information

1 Systems of equations

1 Systems of equations Highlights from linear algebra David Milovich, Math 2 TA for sections -6 November, 28 Systems of equations A leading entry in a matrix is the first (leftmost) nonzero entry of a row. For example, the leading

More information

Stability, Pole Placement, Observers and Stabilization

Stability, Pole Placement, Observers and Stabilization Stability, Pole Placement, Observers and Stabilization 1 1, The Netherlands DISC Course Mathematical Models of Systems Outline 1 Stability of autonomous systems 2 The pole placement problem 3 Stabilization

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. #07 Jordan Canonical Form Cayley Hamilton Theorem (Refer Slide Time:

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information