Wall treatment in Large Eddy Simulation

Size: px
Start display at page:

Download "Wall treatment in Large Eddy Simulation"

Transcription

1 Wall treatment in arge Edd Simlation David Monfort Sofiane Benhamadoche (ED R&D) Pierre Sagat (Université Pierre et Marie Crie) 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

2 Overview. Context. Qick review of existing approaches 3. Extending the classical wall-model 4. Reslts on a heated channel flow 5. Conclsion and perspectives 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

3 Context : Trblence and arge-edd Simlation 3 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

4 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions arge Edd Simlation Ideal to solve nstead flows Usefl for areas like lid Strctre Interaction, thermal fatige Resolve large scales while modelling smallest ones Bt, need for a ver fine mesh for trblent flows to resolve small scales next to the walls Spalart (000): compters not efficient enogh before novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

5 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Wh a model for the wall bondar laer Estimation of the nmber of points needed for a comptation in the different laers Oter laer, nb of nodes ~ Re 0.5 Inner laer, nb of nodes ~ Re novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

6 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Code_Satrne and its wall treatment Code developped in ED and originall designed for nclear vessels comptation inite volme method on polhedron nstrctred meshes Collocated cell-centered variables Incompressible or weakl compressible Navier-Stokes eqations Two kind of wall-bondar conditions for the velocit ocal coordinates defined b cell-centered velocit Comptation of the diffsive terms at the wall * Shear stress τ ( ) w ρ Comptation of edd viscosit Cell-centered velocit gradient I, nmerical I, theoretial n I novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

7 rom Schmann s law to zonal models : a qick review of classical methods 7 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

8 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Differents available approaches Classical «instantaneos» methods Taking into accont the «driving» terms (pressre gradient, time derivative, ) 8 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

9 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation 9 Some classical wall-fnctions Werner & Wengle power law (shear stress directl available) lim, A B n I ν τ τ Reichardt law (blended law) ( ) ( ) b D D C n I, exp exp ln κ κ τ lim, ln B n I ν κ τ τ Instantaneos logarithmic law. Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions

10 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Thin Bondar aer Approach (TBE) ramework Keep a coarse mesh for the ES Solve a simplified set of eqations on a D-mesh in the first cell next to the wall Balaras et al, Wang, Moin Drawbacks Rather difficlt to implement on nstrctred meshes rom Piomelli et al 0 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

11 3 An extension of the classical wall model 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

12 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Dimensionless bondar laer eqations All the terms are made dimensionless b the friction velocit. τ τ w ρ We se classical hpothesis b neglecting the following terms (in a first attempt): Diffsion along streamwise and spanwise directions Convection Time derivative This leads to the following eqation where stands for the pressre gradient, time derivative, ν t ( ) Which model for the edd viscosit? 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

13 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation 3 Mixing-lenght hpothesis A exp κ U U t ν with ( ) t ν and ( ) ν t ( ) w τ Ths we can now obtain an eqation on the velocit in the first cell off-wall.. Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions

14 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Velocit profiles The std of the eqation (on the right) gives the following profiles for the velocit in the first cell off-wall. ( ) ( X X X τ ) 0 w ( ) ( f, τ ) 0, w d Don t forget that : The velocit is positive in local coordinates The redced shear stress is /- 4 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

15 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation 5 Soltions of the nd order eqation X X ( ) ( ) 0 X X ( ) ( )( ) 4 X ( ) ( )( ) ) ( 4 a d b a. irst, X X ( ) ( ) 0 X X ( ) ( )( ) 4 X ( ) ( )( ) ) ( 4 a d b a. Second,. Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions

16 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation 6 Velocit profiles, following the datas Impossible, de to the constraint that the velocit mst be positive at the first-cell off wall 0 < 0 0 < w τ 0 > w τ ( ) ( )( ) * 0 4 d ( ) ( )( ) * 0 4 d ( ) ( )( ) d 0 4 ( ) ( )( ) d * 4 ) ( * ( ) ( )( ) d * 4 ) ( *. Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions

17 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Getting the velocit friction After having obtained the dimensionless velocit profiles, one compte the velocit friction b a Newton-Raphson method. rom the velocit profile ( ) f ( ) one can obtain an eqation on the friction velocit n I * f * h ν * f h ν * n I 0 or h f ( h ) Re 0 loc 7 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

18 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Some velocit profiles.. for positive shear stress and a given local Renolds nmber 8 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

19 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Nmerical sensitivit The algorithm depends onl on the nmber of intervals and reaches an asmptote 9 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

20 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Extension to a generic scalar case et s consider a convection-diffsion eqation for a scalar : φ ( α αt ) φ where stands for the nstead, convective and sorce terms. The same approach leads to compte a friction scalar at the wall φ sch as : ρ * φ * φ α novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

21 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Prandtl nmber sensitivit Rather good agreement between the predicted profiles for the extended wall-fnction in the generic scalar case (e.g. the temperatre) and the Kader correlations. 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

22 4 A test case : The heated channel flow 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

23 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Test case: Heated channel flow Periodic channel: π x x π Mesh: 3x6x3 cells Uniform in all directions h 30 at the wall dx 80, dz 40 Case parameters: Re* 640 Pr 0.7 DNS from Kawamra et al 3 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

24 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Reslts for a heated channel flow () 4 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

25 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Reslts for a heated channel flow () 5 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

26 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Extended law response Distance to the center of the first cell off-wall: h 0, 40 and 00 Scalabilit against the Renolds nmber: Smbols: Re*000 (DNS from Jimenez) Plain: Re*4000 Dashed: Re* novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

27 5 Conclsions 7 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

28 . Context. Wall fnctions 3. Extended law 4. Channel flow 5. Conclsions Conclsions and perspectives Conclsions Qite accrate in the core of the flow and in the prediction of the shear stress near the wall Meshless approach: no need to solve a sstem of D eqations Pressre gradient and nstead term can be proposed b defalt Perspectives Appl this approach to RANS and nstead RANS models (kepsilon, )? Extend to boanc-driven flows Extensive testing for the scalar case 8 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information

Boundary layer develops in the flow direction, δ = δ (x) τ

Boundary layer develops in the flow direction, δ = δ (x) τ 58:68 Trblent Flos Handot: Bondar Laers Differences to Trblent Channel Flo Bondar laer develops in the flo direction, not knon a priori Oter part of the flo consists of interittent trblent/non-trblent

More information

5.1 Heat removal by coolant flow

5.1 Heat removal by coolant flow 5. Convective Heat Transfer 5.1 Heat removal by coolant flow Fel pellet Bond layer Cladding tbe Heat is transferred from the srfaces of the fel rods to the coolant. T Temperatre at center of fc fel pellet

More information

THE EFFECTS OF RADIATION ON UNSTEADY MHD CONVECTIVE HEAT TRANSFER PAST A SEMI-INFINITE VERTICAL POROUS MOVING SURFACE WITH VARIABLE SUCTION

THE EFFECTS OF RADIATION ON UNSTEADY MHD CONVECTIVE HEAT TRANSFER PAST A SEMI-INFINITE VERTICAL POROUS MOVING SURFACE WITH VARIABLE SUCTION Latin merican pplied Research 8:7-4 (8 THE EFFECTS OF RDITION ON UNSTEDY MHD CONVECTIVE HET TRNSFER PST SEMI-INFINITE VERTICL POROUS MOVING SURFCE WITH VRIBLE SUCTION. MHDY Math. Department Science, Soth

More information

CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW

CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW 8.1 Introdction Common phsical phenomenon, bt comple Still relies on empirical data and rdimentar conceptal drawings Tremendos growth in research over last

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

NATURAL CONVECTION No mechanical force to push the fluid pump, fan etc. No predefined fluid flowrate and velocity can t prescribe Reynolds

NATURAL CONVECTION No mechanical force to push the fluid pump, fan etc. No predefined fluid flowrate and velocity can t prescribe Reynolds NATURA CONVECTION No mechanical force to psh the flid pmp, fan etc. No predefined flid flowrate and velocit can t prescribe Renolds nmber Flid moves as a reslt of densit difference Flid velocit established

More information

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction International Jornal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volme-3, Isse-8, Agst 2015 Elastico-Viscos MHD Free Convective Flow Past an Inclined Permeable Plate

More information

STATIC, STAGNATION, AND DYNAMIC PRESSURES

STATIC, STAGNATION, AND DYNAMIC PRESSURES STATIC, STAGNATION, AND DYNAMIC PRESSURES Bernolli eqation is g constant In this eqation is called static ressre, becase it is the ressre that wold be measred by an instrment that is static with resect

More information

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R.

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R. On the importance of horizontal trblent transport in high resoltion mesoscale simlations over cities. A. Martilli (CIEMAT, Spain), B. R. Rotnno, P. Sllivan, E. G. Patton, M. LeMone (NCAR, USA) In an rban

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion CFD-Simlation thermoakstischer Resonanzeffekte zr Bestimmng der Flammentransferfnktion Ator: Dennis Paschke Technische Universität Berlin Institt für Strömngsmechanik nd Technische Akstik FG Experimentelle

More information

Incompressible Viscoelastic Flow of a Generalised Oldroyed-B Fluid through Porous Medium between Two Infinite Parallel Plates in a Rotating System

Incompressible Viscoelastic Flow of a Generalised Oldroyed-B Fluid through Porous Medium between Two Infinite Parallel Plates in a Rotating System International Jornal of Compter Applications (97 8887) Volme 79 No., October Incompressible Viscoelastic Flow of a Generalised Oldroed-B Flid throgh Poros Medim between Two Infinite Parallel Plates in

More information

Study of the diffusion operator by the SPH method

Study of the diffusion operator by the SPH method IOSR Jornal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-684,p-ISSN: 2320-334X, Volme, Isse 5 Ver. I (Sep- Oct. 204), PP 96-0 Stdy of the diffsion operator by the SPH method Abdelabbar.Nait

More information

Computer Animation. Rick Parent

Computer Animation. Rick Parent Algorithms and Techniqes Flids Sperficial models. Deep models comes p throghot graphics, bt particlarl releant here OR Directl model isible properties Water waes Wrinkles in skin and cloth Hi Hair Clods

More information

Study of Thermal Radiation and Ohmic Heating for Steady Magnetohydrodynamic Natural Convection Boundary Layer Flow in a Saturated Porous Regime

Study of Thermal Radiation and Ohmic Heating for Steady Magnetohydrodynamic Natural Convection Boundary Layer Flow in a Saturated Porous Regime International Jornal on Recent and Innovation Trends in Compting and Commnication ISSN: -869 Volme: Isse: 9 796 8 Std of Thermal Radiation and Ohmic Heating for Stead Magnetohdrodnamic Natral Convection

More information

A NEW APPROACH TO TREAT THE RANS-LES

A NEW APPROACH TO TREAT THE RANS-LES ETMM: th International ERCOFTAC Smposium on Engineering, Marbella, 7-9 September 4 A NEW APPROACH TO TREAT THE RANS-LES INTERFACE IN PANS Lars Davidson Div. of Fluid Dnamics, Dept. of Applied Mechanics

More information

SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS

SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS THERMAL SCIENCE, Year 011, Vol. 15, No. 1, pp. 45-55 45 SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS b Khdheer S. MUSHATET Mechanical Engineering Department,

More information

Large Eddy Simulation Of Flow Past A Two-dimensional Hill

Large Eddy Simulation Of Flow Past A Two-dimensional Hill Large Eddy Simlation Of Flow Past A Two-dimensional Hill Sankara N.Vengadesan ) and Akihiko Nakayama ) ) Research Associate, Email: vengades@kobe-.ac.jp, ) Professor, Email: nakayama@kobe-.ac.jp Gradate

More information

Assessment against DNS data of a coupled CFD-stochastic model for particle dispersion in turbulent channel flows. A. Dehbi

Assessment against DNS data of a coupled CFD-stochastic model for particle dispersion in turbulent channel flows. A. Dehbi Assessment against DNS data of a copled CFD-stochastic model for particle dispersion in trblent channel flows A. Dehbi Pal Scherrer Institt Department of Nclear Energ and Safet aborator for Thermal-hdralics

More information

Application of COMSOL Multiphysics Software in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics Software in Transport Phenomena Educational Processes October 8, 015 COMSOL Conference 015 Boston Session: Optimiation and Simlation Methods Session Chair: Jeffre Fong, National Institte of Standards & echnolog Application of COMSOL Mltiphsics Software in

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC AMS B Pertrbation Methods Lectre 5 Copright b Hongn Wang, UCSC Recap: we discssed bondar laer of ODE Oter epansion Inner epansion Matching: ) Prandtl s matching ) Matching b an intermediate variable (Skip

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY APPLIED PHYSICS MEDICAL WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY L. CÃPITANU, A. IAROVICI, J. ONIªORU Institte of Solid Mechanics, Romanian Academy, Constantin Mille 5, Bcharest Received

More information

Entropy ISSN

Entropy ISSN Entrop 3, 5, 56-518 56 Entrop ISSN 199-43 www.mdpi.org/entrop/ Entrop Generation Dring Flid Flow Between wo Parallel Plates With Moving Bottom Plate Latife Berrin Erba 1, Mehmet Ş. Ercan, Birsen Sülüş

More information

1 Extended integral wall-model for large-eddy simulations of compressible wall-bounded

1 Extended integral wall-model for large-eddy simulations of compressible wall-bounded Extended integral wall-model for large-eddy simulations of compressible wall-bounded 2 turbulent flows 3 4 5 6 7 8 9 0 2 3 M. Catchirayer,, 2, a) J.-F. Boussuge,, b) P. Sagaut, 3, c) M. Montagnac, D. Papadogiannis,

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Finite Element Analysis of Heat and Mass Transfer of a MHD / Micropolar fluid over a Vertical Channel

Finite Element Analysis of Heat and Mass Transfer of a MHD / Micropolar fluid over a Vertical Channel International Jornal of Scientific and Innovative Mathematical Research (IJSIMR) Volme 2, Isse 5, Ma 214, PP 515-52 ISSN 2347-37X (Print) & ISSN 2347-3142 (Online) www.arcjornals.org Finite Element Analsis

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

Lewis number and curvature effects on sound generation by premixed flame annihilation

Lewis number and curvature effects on sound generation by premixed flame annihilation Center for Trblence Research Proceedings of the Smmer Program 2 28 Lewis nmber and crvatre effects on sond generation by premixed flame annihilation By M. Talei, M. J. Brear AND E. R. Hawkes A nmerical

More information

TRANSIENT FREE CONVECTION MHD FLOW BETWEEN TWO LONG VERTICAL PARALLEL PLATES WITH VARIABLE TEMPERATURE AND UNIFORM MASS DIFFUSION IN A POROUS MEDIUM

TRANSIENT FREE CONVECTION MHD FLOW BETWEEN TWO LONG VERTICAL PARALLEL PLATES WITH VARIABLE TEMPERATURE AND UNIFORM MASS DIFFUSION IN A POROUS MEDIUM VOL. 6, O. 8, AUGUST ISS 89-668 ARP Jornal of Engineering an Applie Sciences 6- Asian Research Pblishing etork (ARP). All rights reserve. TRASIET FREE COVECTIO MD FLOW BETWEE TWO LOG VERTICAL PARALLEL

More information

International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 4, Jul - Aug pp ISSN:

International Journal of Modern Engineering Research (IJMER)   Vol. 3, Issue. 4, Jul - Aug pp ISSN: Vol. 3, sse. 4, Jl - Ag. 3 pp-89-97 SSN: 49-6645 Effect of Chemical Reaction and Radiation Absorption on Unstead Convective Heat and Mass Transfer Flow in a Vertical Channel with Oscillator Wall Temperatre

More information

Boundary Layer Flow and Heat Transfer over a. Continuous Surface in the Presence of. Hydromagnetic Field

Boundary Layer Flow and Heat Transfer over a. Continuous Surface in the Presence of. Hydromagnetic Field International Jornal of Mathematical Analsis Vol. 8, 4, no. 38, 859-87 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.4.4789 Bondar Laer Flow and Heat Transfer over a Continos Srface in the Presence

More information

Radiation Effects on Heat and Mass Transfer over an Exponentially Accelerated Infinite Vertical Plate with Chemical Reaction

Radiation Effects on Heat and Mass Transfer over an Exponentially Accelerated Infinite Vertical Plate with Chemical Reaction Radiation Effects on Heat and Mass Transfer over an Exponentially Accelerated Infinite Vertical Plate with Chemical Reaction A. Ahmed, M. N.Sarki, M. Ahmad Abstract In this paper the stdy of nsteady flow

More information

Pressure limit of hydrogen spontaneous ignition in a T-shaped channel

Pressure limit of hydrogen spontaneous ignition in a T-shaped channel 4 th International Conference on Hydrogen Safety, 12-14 September 2011, San Francisco, USA Pressre limit of hydrogen spontaneos ignition in a T-shaped channel Maim Bragin, Dmitriy Makarov, Vladimir Molkov

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

called the potential flow, and function φ is called the velocity potential.

called the potential flow, and function φ is called the velocity potential. J. Szantr Lectre No. 3 Potential flows 1 If the flid flow is irrotational, i.e. everwhere or almost everwhere in the field of flow there is rot 0 it means that there eists a scalar fnction ϕ,, z), sch

More information

Active Flux Schemes for Advection Diffusion

Active Flux Schemes for Advection Diffusion AIAA Aviation - Jne, Dallas, TX nd AIAA Comptational Flid Dynamics Conference AIAA - Active Fl Schemes for Advection Diffsion Hiroaki Nishikawa National Institte of Aerospace, Hampton, VA 3, USA Downloaded

More information

Chapter 2 Difficulties associated with corners

Chapter 2 Difficulties associated with corners Chapter Difficlties associated with corners This chapter is aimed at resolving the problems revealed in Chapter, which are cased b corners and/or discontinos bondar conditions. The first section introdces

More information

Experimental Study of an Impinging Round Jet

Experimental Study of an Impinging Round Jet Marie Crie ay Final Report : Experimental dy of an Impinging Rond Jet BOURDETTE Vincent Ph.D stdent at the Rovira i Virgili University (URV), Mechanical Engineering Department. Work carried ot dring a

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63

Kragujevac J. Sci. 34 (2012) UDC 532.5: :537.63 5 Kragjevac J. Sci. 34 () 5-. UDC 53.5: 536.4:537.63 UNSTEADY MHD FLOW AND HEAT TRANSFER BETWEEN PARALLEL POROUS PLATES WITH EXPONENTIAL DECAYING PRESSURE GRADIENT Hazem A. Attia and Mostafa A. M. Abdeen

More information

Chapter 2 Basic Conservation Equations for Laminar Convection

Chapter 2 Basic Conservation Equations for Laminar Convection Chapter Basic Conservation Equations for Laminar Convection Abstract In this chapter, the basic conservation equations related to laminar fluid flow conservation equations are introduced. On this basis,

More information

Prandl established a universal velocity profile for flow parallel to the bed given by

Prandl established a universal velocity profile for flow parallel to the bed given by EM 0--00 (Part VI) (g) The nderlayers shold be at least three thicknesses of the W 50 stone, bt never less than 0.3 m (Ahrens 98b). The thickness can be calclated sing Eqation VI-5-9 with a coefficient

More information

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB

Applying Laminar and Turbulent Flow and measuring Velocity Profile Using MATLAB IOS Jornal of Mathematics (IOS-JM) e-issn: 78-578, p-issn: 319-765X. Volme 13, Isse 6 Ver. II (Nov. - Dec. 17), PP 5-59 www.iosrjornals.org Applying Laminar and Trblent Flow and measring Velocity Profile

More information

arxiv: v1 [physics.flu-dyn] 4 Sep 2013

arxiv: v1 [physics.flu-dyn] 4 Sep 2013 THE THREE-DIMENSIONAL JUMP CONDITIONS FOR THE STOKES EQUATIONS WITH DISCONTINUOUS VISCOSITY, SINGULAR FORCES, AND AN INCOMPRESSIBLE INTERFACE PRERNA GERA AND DAVID SALAC arxiv:1309.1728v1 physics.fl-dyn]

More information

Course Outline. Boundary Layer Flashback Core Flow Flashback and Combustion Induced Vortex Breakdown

Course Outline. Boundary Layer Flashback Core Flow Flashback and Combustion Induced Vortex Breakdown Corse Otline A) Introdction and Otlook B) Flame Aerodynamics and Flashback C) Flame Stretch, Edge Flames, and Flame Stabilization Concepts D) Distrbance Propagation and Generation in Reacting Flows E)

More information

Burning Rate, Kinetic Coupling, and Mechanism Reduction

Burning Rate, Kinetic Coupling, and Mechanism Reduction Brning Rate, Kinetic Copling, and Mechanism Redction Yigang J Mechanical and Aerospace Engineering Princeton University 27 AFOSR MURI Kick-Off Meeting Generation of Comprehensive Srrogate Kinetic Models

More information

Fluidmechanical Damping Analysis of Resonant Micromirrors with Out-of-plane Comb Drive

Fluidmechanical Damping Analysis of Resonant Micromirrors with Out-of-plane Comb Drive Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Flidmechanical Damping Analsis of Resonant Micromirrors with Ot-of-plane Comb Drive Thomas Klose 1, Holger Conrad 2, Thilo Sandner,1,

More information

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows Center for Turbulence Research Annual Research Briefs 1998 267 On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows By Jeffrey S. Baggett 1. Motivation and objectives

More information

FRÉCHET KERNELS AND THE ADJOINT METHOD

FRÉCHET KERNELS AND THE ADJOINT METHOD PART II FRÉCHET KERNES AND THE ADJOINT METHOD 1. Setp of the tomographic problem: Why gradients? 2. The adjoint method 3. Practical 4. Special topics (sorce imaging and time reversal) Setp of the tomographic

More information

STUDY OF THE NON-DIMENSIONAL SOLUTION OF DYNAMIC EQUATION OF MOVEMENT ON THE PLANE PLAQUE WITH CONSIDERATION OF TWO-ORDER SLIDING PHENOMENON

STUDY OF THE NON-DIMENSIONAL SOLUTION OF DYNAMIC EQUATION OF MOVEMENT ON THE PLANE PLAQUE WITH CONSIDERATION OF TWO-ORDER SLIDING PHENOMENON ANNALS OF THE FACULTY OF ENGINEERING HUNEDOARA 006, Tome IV, Fascicole, (ISSN 1584 665) FACULTY OF ENGINEERING HUNEDOARA, 5, REVOLUTIEI, 33118, HUNEDOARA STUDY OF THE NON-DIMENSIONAL SOLUTION OF DYNAMIC

More information

Turbulence and boundary layers

Turbulence and boundary layers Trblence and bondary layers Weather and trblence Big whorls hae little whorls which feed on the elocity; and little whorls hae lesser whorls and so on to iscosity Lewis Fry Richardson Momentm eqations

More information

The JHU Turbulence Databases (JHTDB)

The JHU Turbulence Databases (JHTDB) The JHU Turbulence Databases (JHTDB) TURBULENT CHANNEL FLOW DATA SET Data provenance: J. Graham 1, M. Lee 2, N. Malaya 2, R.D. Moser 2, G. Eyink 1 & C. Meneveau 1 Database ingest and Web Services: K. Kanov

More information

Interrogative Simulation and Uncertainty Quantification of Multi-Disciplinary Systems

Interrogative Simulation and Uncertainty Quantification of Multi-Disciplinary Systems Interrogative Simlation and Uncertainty Qantification of Mlti-Disciplinary Systems Ali H. Nayfeh and Mhammad R. Hajj Department of Engineering Science and Mechanics Virginia Polytechnic Institte and State

More information

Computational Biomechanics Lecture 3: Intro to FEA. Ulli Simon, Frank Niemeyer, Martin Pietsch

Computational Biomechanics Lecture 3: Intro to FEA. Ulli Simon, Frank Niemeyer, Martin Pietsch Comptational iomechanics 06 ectre : Intro to Ulli Simon, rank Niemeyer, Martin Pietsch Scientific Compting Centre Ulm, UZWR Ulm University Contents E Eplanation in one sentence inite Element Methode =

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

Theoretical Fluid Mechanics Turbulent Flow Velocity Profile By James C.Y. Guo, Professor and P.E. Civil Engineering, U. of Colorado at Denver

Theoretical Fluid Mechanics Turbulent Flow Velocity Profile By James C.Y. Guo, Professor and P.E. Civil Engineering, U. of Colorado at Denver Theoretical Flid Mechanics Trblent Flow Velocit Proile B Jaes C.Y. Go, Proessor and P.E. Civil Engineering, U. o Colorado at Denver 1. Concept o Mixing Process in Trblent Flow Far awa ro the solid wall,

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Appendix A: The Fully Developed Velocity Profile for Turbulent Duct Flows

Appendix A: The Fully Developed Velocity Profile for Turbulent Duct Flows Appendix A: The lly Developed Velocity Profile for Trblent Dct lows This appendix discsses the hydrodynamically flly developed velocity profile for pipe and channel flows. The geometry nder consideration

More information

A combined application of the integral wall model and the rough wall rescaling-recycling method

A combined application of the integral wall model and the rough wall rescaling-recycling method AIAA 25-299 A combined application of the integral wall model and the rough wall rescaling-recycling method X.I.A. Yang J. Sadique R. Mittal C. Meneveau Johns Hopkins University, Baltimore, MD, 228, USA

More information

The Numerical Simulation of Enhanced Heat Transfer Tubes

The Numerical Simulation of Enhanced Heat Transfer Tubes Aailable online at.sciencedirect.com Phsics Procedia 4 (01 70 79 01 International Conference on Applied Phsics and Indstrial Engineering The Nmerical Simlation of Enhanced Heat Transfer Tbes Li Xiaoan,

More information

On the Optimization of Numerical Dispersion and Dissipation of Finite Difference Scheme for Linear Advection Equation

On the Optimization of Numerical Dispersion and Dissipation of Finite Difference Scheme for Linear Advection Equation Applied Mathematical Sciences, Vol. 0, 206, no. 48, 238-2389 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.206.6463 On the Optimization of Nmerical Dispersion and Dissipation of Finite Difference

More information

UNIT V BOUNDARY LAYER INTRODUCTION

UNIT V BOUNDARY LAYER INTRODUCTION UNIT V BOUNDARY LAYER INTRODUCTION The variation of velocity from zero to free-stream velocity in the direction normal to the bondary takes place in a narrow region in the vicinity of solid bondary. This

More information

Linear System Theory (Fall 2011): Homework 1. Solutions

Linear System Theory (Fall 2011): Homework 1. Solutions Linear System Theory (Fall 20): Homework Soltions De Sep. 29, 20 Exercise (C.T. Chen: Ex.3-8). Consider a linear system with inpt and otpt y. Three experiments are performed on this system sing the inpts

More information

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V.

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V. International Jornal of Atomotive and Mechanical Engineering (IJAME) ISSN: 9-8649 (int); ISSN: 18-166 (Online); Volme pp. 31-38 Jly-December 1 niversiti Malaysia Pahang DOI: http://dx.doi.org/1.158/ijame..11.11.19

More information

RESEARCH ARTICLE. Zonal PANS: evaluation of different treatments of the RANS-LES interface

RESEARCH ARTICLE. Zonal PANS: evaluation of different treatments of the RANS-LES interface March 3, 26 Journal of Turbulence paper Journal of Turbulence Vol., No., 2, 32 Volume 7, Issue 3, pp. 274-37, 26 RESEARCH ARTICLE 2 3 4 6 7 8 9 Zonal PANS: evaluation of different treatments of the RANS-LES

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

MODELLING AND COMPUTATION OF IRREGULAR NON- SPHERICAL PARTICLES TRANSPORT IN CONFINED TURBULENT FLOW

MODELLING AND COMPUTATION OF IRREGULAR NON- SPHERICAL PARTICLES TRANSPORT IN CONFINED TURBULENT FLOW Martin-Lther-Universität Halle-Wittenberg 13 th Int. onf. Mltihase low in Indstrial Plants, MIP014 Setember 17-19, 014, Sestri-Levante, Italy MODELLING AND OMPUTATION O IRREGULAR NON- SPHERIAL PARTILES

More information

ON THE WALL BOUNDARY CONDITION FOR COMPUTING TURBULENT HEAT TRANSFER WITH K ω MODELS

ON THE WALL BOUNDARY CONDITION FOR COMPUTING TURBULENT HEAT TRANSFER WITH K ω MODELS Proceedings of the ASME Heat Transfer Division - 2 HTD-Vol. 366-5 Nov 5-1, 2, Orlando, Florida, USA ON THE WALL BOUNDARY CONDITION FOR COMPUTING TURBULENT HEAT TRANSFER WITH K ω MODELS J. Bredberg Dept.

More information

NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT FLOWS IN AN INCLINED IMPINGING JET WITH MODERATE RE-NUMBER

NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT FLOWS IN AN INCLINED IMPINGING JET WITH MODERATE RE-NUMBER 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK NEAR-WALL MODELING OF LES FOR NON-EQUILIBRIUM TURBULENT

More information

MODELLING OF TURBULENT ENERGY FLUX IN CANONICAL SHOCK-TURBULENCE INTERACTION

MODELLING OF TURBULENT ENERGY FLUX IN CANONICAL SHOCK-TURBULENCE INTERACTION MODELLING OF TURBULENT ENERGY FLUX IN CANONICAL SHOCK-TURBULENCE INTERACTION Rssell Qadros, Krishnend Sinha Department of Aerospace Engineering Indian Institte of Technology Bombay Mmbai, India 476 Johan

More information

Numerical Analysis of Heat Transfer in the Unsteady Flow of a non- Newtonian Fluid over a Rotating cylinder

Numerical Analysis of Heat Transfer in the Unsteady Flow of a non- Newtonian Fluid over a Rotating cylinder Bulletin of Environment, Pharmacolog and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 215: 318-323 214 Academ for Environment and Life Sciences, India Online ISSN 2277-188 Journal

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

Modelling with Partial Differential Equations in Metrology

Modelling with Partial Differential Equations in Metrology Modelling with Partial Differential Eqations in Metrology S. Alonso, M. Bär, H. Groß, M. Henn, G. Lindner, R. Model Modelling & Simlation Grop, Physikalisch-Technische Bndesanstalt (PTB), Berlin 255th

More information

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad Linear Strain Triangle and other tpes o D elements B S. Ziaei Rad Linear Strain Triangle (LST or T6 This element is also called qadratic trianglar element. Qadratic Trianglar Element Linear Strain Triangle

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

The JHU Turbulence Databases (JHTDB)

The JHU Turbulence Databases (JHTDB) The JHU Turbulence Databases (JHTDB) TURBULENT CHANNEL FLOW AT Re τ = 5200 DATA SET Data provenance: M. Lee 1 & R. D. Moser 1 Database ingest and Web Services: Z. Wu 2, G. Lemson 2, R. Burns 2, A. Szalay

More information

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation Chapter 7 Eternal Forced Convection N f ( *,, Pr) N f (, Pr) he Empirical Method he empirical correlation N C he vale of C, m, n are often independent of natre of the flid m Pr n he vale of C, m, n var

More information

The Effect of Physical Parameters on Flow Variables of an Electrically Conducting Viscoelastic Fluid

The Effect of Physical Parameters on Flow Variables of an Electrically Conducting Viscoelastic Fluid American Jornal of Applied Mathematics 07; 5(): 78-90 http://www.sciencepblishinggrop.com/j/ajam doi: 0.648/j.ajam.07050. ISSN: 0-004 (Print); ISSN: 0-006X (Online) The Effect of Phsical Parameters on

More information

Dimensional analysis. Scaling and similitude

Dimensional analysis. Scaling and similitude Dimensional analsis Scaling - a powerfl idea Similitde Bckingham Pi theorem Eamples of the power of dimensional analsis Usefl dimensionless qantities and their interpretation Scaling and similitde Scaling

More information

A Survey of the Implementation of Numerical Schemes for Linear Advection Equation

A Survey of the Implementation of Numerical Schemes for Linear Advection Equation Advances in Pre Mathematics, 4, 4, 467-479 Pblished Online Agst 4 in SciRes. http://www.scirp.org/jornal/apm http://dx.doi.org/.436/apm.4.485 A Srvey of the Implementation of Nmerical Schemes for Linear

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

arxiv:physics/ v2 [physics.flu-dyn] 3 Jul 2007

arxiv:physics/ v2 [physics.flu-dyn] 3 Jul 2007 Leray-α model and transition to turbulence in rough-wall boundary layers Alexey Cheskidov Department of Mathematics, University of Michigan, Ann Arbor, Michigan 4819 arxiv:physics/6111v2 [physics.flu-dyn]

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics o Flids and Transport Processes Chapter 9 Proessor Fred Stern Fall 01 1 Chapter 9 Flow over Immersed Bodies Flid lows are broadly categorized: 1. Internal lows sch as dcts/pipes, trbomachinery,

More information

Visco-Elastic Effects On Mhd Free Convective Flow Past An Oscillating Porous Plate Through Porous Medium With Heat source

Visco-Elastic Effects On Mhd Free Convective Flow Past An Oscillating Porous Plate Through Porous Medium With Heat source Visco-Elastic Effects On Mhd Free Convective Flow Past An Oscillating Poros Plate Throgh Poros Medim With Heat sorce Rita chodhr, Bandita das Professor & Head, Department of Mathematics, Gahati Universit,

More information

International Journal of Mathematical Archive-3(7), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(7), 2012, Available online through  ISSN International Jornal of Mathematical Archive-3(7) 49- Available online throgh www.ijma.info ISSN 9 46 CONVECTIVE FLOW AND HEAT TRANSFER BETWEEN WAVY WALL AND A PARALLEL FLAT WALL DIVIDED BY A PERFECTLY

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae Copyright c 27 ICCES ICCES, vol.4, no.1, pp.19-24, 27 Nmerical Simlation of Three Dimensional Flo in Water Tank of Marine Fish Larvae Shigeaki Shiotani 1, Atsshi Hagiara 2 and Yoshitaka Sakakra 3 Smmary

More information

Spring Semester 2011 April 5, 2011

Spring Semester 2011 April 5, 2011 METR 130: Lectre 4 - Reynolds Averaged Conservation Eqations - Trblent Flxes (Definition and typical ABL profiles, CBL and SBL) - Trblence Closre Problem & Parameterization Spring Semester 011 April 5,

More information

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector Chapter 4: Flids Kinematics 4. Velocit and Description Methods Primar dependent ariable is flid elocit ector V V ( r ); where r is the position ector If V is known then pressre and forces can be determined

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA Modeling Effort on Chamber Clearing for IFE Liqid Chambers at UCLA Presented by: P. Calderoni own Meeting on IFE Liqid Wall Chamber Dynamics Livermore CA May 5-6 3 Otline his presentation will address

More information

Transient Approach to Radiative Heat Transfer Free Convection Flow with Ramped Wall Temperature

Transient Approach to Radiative Heat Transfer Free Convection Flow with Ramped Wall Temperature Jornal of Applied Flid Mechanics, Vol. 5, No., pp. 9-1, 1. Available online at www.jafmonline.net, ISSN 175-57, EISSN 175-645. Transient Approach to Radiative Heat Transfer Free Convection Flow with Ramped

More information

Approximate Solution of Convection- Diffusion Equation by the Homotopy Perturbation Method

Approximate Solution of Convection- Diffusion Equation by the Homotopy Perturbation Method Gen. Math. Notes, Vol. 1, No., December 1, pp. 18-114 ISSN 19-7184; Copyright ICSRS Pblication, 1 www.i-csrs.org Available free online at http://www.geman.in Approximate Soltion of Convection- Diffsion

More information

EFFECT OF HEAT AND MASS TRANSFER ON MHD OSCILLATORY FLOW WITH CHEMICAL REACTION AND SLIP CONDITIONS IN ASYMMETRIC WAVY CHANNEL

EFFECT OF HEAT AND MASS TRANSFER ON MHD OSCILLATORY FLOW WITH CHEMICAL REACTION AND SLIP CONDITIONS IN ASYMMETRIC WAVY CHANNEL EFFECT OF HEAT AND MASS TRANSFER ON MHD OSCILLATOR FLOW WITH CHEMICAL REACTION AND SLIP CONDITIONS IN ASMMETRIC WAV CHANNEL J. Sasikmar and A. Govindarjan Department of Mathematics, SRM Universit, Kattanklathr,

More information

Fundamentals of magnetohydrodynamics

Fundamentals of magnetohydrodynamics Fndamentals of magnetohydrodynamics Part II Daniel Gómez 1, Email: dgomez@df.ba.ar Webpage: astro.df.ba.ar (1 Institto de Astronomía y Física del Espacio, CONICET, Argentina ( Departamento de Física, Universidad

More information

Numerical simulations of heat transfer in plane channel flow

Numerical simulations of heat transfer in plane channel flow Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a, Rafik ABSI 2, b and Ahmed BENZAOUI 3, c 1 Renewable Energy Development Center, BP 62 Bouzareah 163 Algiers, Algeria

More information