Boundary layer develops in the flow direction, δ = δ (x) τ

Size: px
Start display at page:

Download "Boundary layer develops in the flow direction, δ = δ (x) τ"

Transcription

1 58:68 Trblent Flos Handot: Bondar Laers Differences to Trblent Channel Flo Bondar laer develops in the flo direction, not knon a priori Oter part of the flo consists of interittent trblent/non-trblent otion Bt behavior of the flo in the inner laer. < is ver siilar to channel flo In the defect laer. >, the departres fro the log la are ore significant Definition Assptions: Fig. Sketch of a flat-plate bondar laer - Statistics independent of z: <W> - As the bondar laer continosl develops in the direction, statistics depend on both and. - Bernolli eqation for free strea: p const p Ths, accelerating flo corresponds to a negative or favorable pressre gradient.

2 Decelerating flo ields a positive or adverse pressre gradient Bondar laer thickness defined as the vale at hich,.99 This qantit depends on sall velocit differences. More reliable as to characterize the thickness of bondar laer are: Displaceent thickness Moent thickness * d θ d Relevant Renolds nbers: Re, Re, Re * *, Re θ θ Critical Renolds nber for zero-pressre gradient bondar laer: Flo is lainar fro to a location hich defines the start of transition hich corresponds to Re, crit bt this vale is also dependent on level of distrbances in the free strea. The bondar laer tpicall becoes fll trblent over soe distance ~3% of the distance fro the leading edge to the start of transition Mean Moent Eqations - Flo develops in the direction - Aial stress gradients are sall copared to cross-strea gradients The lateral oent eqation redces to: 6

3 p v Integrate fro the all to freestrea here the velocit flctations are eqal to zero: Integrate fro to p p all pressre The Mean Aial Moent Eqation is: p v p p p v and sing p v v 3 here the shear stress is defined as: v 4 v and as neglected as ere all the other contribtions fro streaise gradients of Renolds stresses bondar laer approiation in the original for of the aial oent eqation. In contrast to channel flo, convective ters are non-zero and cannot be deterined easil! At the all se 3 and the fact that the convective ters are zero, to obtain dp d

4 If the freestrea pressre gradient is zero and sing the definition of the shear stress 4 and the fact that <v> increases fro zero at the all proportional to 3 : hich shos that the ean streaise velocit profile varies linearl ith near. Integration of oent eqation leads to von Karan integral oent eqation Derivation for p so is not a fnction of se continit eqation and rerite 3 for zero pressre gradient as: Integrate fro to ith : d d d Add/sbstract d and integrate second and last ters in the free strea <> and the shear stress { d d Continit : ] ] ] Recall definition of θ ] θ d 443 θ

5 Mean elocit Profiles Fig. Mean velocit profiles in all nits eperients and silations La of the all still holds in the log-la region, bffer laer and the viscos sblaer. Qestion: What for does the la of the all take in the bffer laer 5< <3-5? an Driest Daping fnction for bffer laer Miing length hpothesis: - < v > So fro 4: t < > l < > t l

6 ith l l / For inner laer Soltion, < > /, /, / v 4 l l l l 5 To integrate 5 all hat e have to do is to specif l l Bt e kno that in the Log Laer: l k l 6 hich can be sed to deterine in the log-laer. If sae specification of the iing length old be sed in the viscos sb-laer: v t k ~ hereas it is ell knon that 3 <v>~ incorrect or dependence shold be 3 : So the specification l k shold be redced, or daped, near the all. an Driest daping fnction assres proper transition to viscos sblaer l ep ] ith A 6 7 A This is a prel epirical forla, bt it orks reasonabl ell and it is sed in an all odels, especiall in LES. For large, the daping fnction tends to nit and the log la is recovered.

7 Eqation 7 can be sed to integrate eqation 5 over both the viscos sblaer and the log laer to deterine and ths the ean velocit profile <>. elocit Defect La In the defect laer />., sa the ean velocit deviates fro the log la as can be seen fro Fig. 3. Fig. 3 Mean velocit profile in a trblent bondar laer Fro an etensive eaination of bondar-laer data, Coles 956 shoed that the ean velocit profile over the hole bondar laer is ell predicted b the s of to fnctions: f 443 La of the all 443 La of the ake

8 The ake fnction / is assed to be niversal sae for all bondar laers, and is defined to satisf the noralization conditions and The ake strength paraeter Π is flo dependent A convenient approiation for / is: π sin Approiate f b the log la ln B 8 For ln B 9 lnre B For given Re this eqation can be solved for / Skin friction coefficient is / c f elocit defect la sbtract 8 fro 9 ] ln

9 Edd iscosit in Defect Laer Edd viscosit definition t / Edd viscosit odel iing length t l Defect laer: the shear stress is less than and the velocit gradient than the vale / given b the log la. is larger This eans that the vale of t is less than the one given b the log-la forla t and, conseqentl, the iing length l is saller than in the defect later. This is confired b reslts fro DNS in Fig. 4 Fig. 4 Trblent viscosit and iing length variation in a trblent bondar laer. Ths l has to be adjsted. One siple a to do that is l in,.9

Theoretical Fluid Mechanics Turbulent Flow Velocity Profile By James C.Y. Guo, Professor and P.E. Civil Engineering, U. of Colorado at Denver

Theoretical Fluid Mechanics Turbulent Flow Velocity Profile By James C.Y. Guo, Professor and P.E. Civil Engineering, U. of Colorado at Denver Theoretical Flid Mechanics Trblent Flow Velocit Proile B Jaes C.Y. Go, Proessor and P.E. Civil Engineering, U. o Colorado at Denver 1. Concept o Mixing Process in Trblent Flow Far awa ro the solid wall,

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

An alternative approach to evaluate the average Nusselt number for mixed boundary layer conditions in parallel flow over an isothermal flat plate

An alternative approach to evaluate the average Nusselt number for mixed boundary layer conditions in parallel flow over an isothermal flat plate An alternative approach to evalate the average Nsselt nber for ied bondary layer conditions in parallel flo over an isotheral flat plate Viacheslav Stetsyk, Krzysztof J. Kbiak, ande i and John C Chai Abstract

More information

Wall treatment in Large Eddy Simulation

Wall treatment in Large Eddy Simulation Wall treatment in arge Edd Simlation David Monfort Sofiane Benhamadoche (ED R&D) Pierre Sagat (Université Pierre et Marie Crie) 9 novembre 007 Code_Satrne User Meeting Wall treatment in arge Edd Simlation

More information

CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW

CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW 8.1 Introdction Common phsical phenomenon, bt comple Still relies on empirical data and rdimentar conceptal drawings Tremendos growth in research over last

More information

The Reynolds analogy. 6.6 The Reynolds analogy. The Reynolds analogy. The Reynolds analogy. Turbulence. 6.7 Turbulent boundary layers.

The Reynolds analogy. 6.6 The Reynolds analogy. The Reynolds analogy. The Reynolds analogy. Turbulence. 6.7 Turbulent boundary layers. 6. ainar and trblent e Reynolds analogy 6.6 e Reynolds analogy Integral oent eq. o lat srace lo itot d d 1 y δ [ ( 1] d δ 6.6 e Reynolds analogy Integral energy eq. or te case o const d d φδ 1 ( y d( δ

More information

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation Lectre 5 Differential Analsis of Flid Flo Naier-Stockes eqation Differential analsis of Flid Flo The aim: to rodce differential eqation describing the motion of flid in detail Flid Element Kinematics An

More information

Verification Analysis of the Gravity Wall

Verification Analysis of the Gravity Wall Verification Manal no. Update 0/06 Verification Analysis of the Gravity Wall Progra File Gravity Wall Deo_v_en_0.gtz In this verification anal yo will find hand-ade verification analysis calclations of

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector Chapter 4: Flids Kinematics 4. Velocit and Description Methods Primar dependent ariable is flid elocit ector V V ( r ); where r is the position ector If V is known then pressre and forces can be determined

More information

Thermal Characteristics of Offset-Halves Bearing With Offset Factor

Thermal Characteristics of Offset-Halves Bearing With Offset Factor roceedings of te World ongress on Engineering 0 Vol III, WE 0, Jl - 5, 0, ondon,.. eral aracteristics of Offset-Halves Bearing Wit Offset Factor Ait aan, Meber, IAENG Abstract- e Renold s eqation and energ

More information

called the potential flow, and function φ is called the velocity potential.

called the potential flow, and function φ is called the velocity potential. J. Szantr Lectre No. 3 Potential flows 1 If the flid flow is irrotational, i.e. everwhere or almost everwhere in the field of flow there is rot 0 it means that there eists a scalar fnction ϕ,, z), sch

More information

1. Calculation of shear forces and bending moments

1. Calculation of shear forces and bending moments Lectre 16(18). CALCULATION OF SHEAR FORCE AND BENDING MOMENT FOR BIG ASPECT RATIO WING Plan: 1. Calclation of shear forces and bending oents. Diagra of redced oents. Featres of load calclations for sept

More information

NATURAL CONVECTION No mechanical force to push the fluid pump, fan etc. No predefined fluid flowrate and velocity can t prescribe Reynolds

NATURAL CONVECTION No mechanical force to push the fluid pump, fan etc. No predefined fluid flowrate and velocity can t prescribe Reynolds NATURA CONVECTION No mechanical force to psh the flid pmp, fan etc. No predefined flid flowrate and velocit can t prescribe Renolds nmber Flid moves as a reslt of densit difference Flid velocit established

More information

PHYS 1443 Section 003 Lecture #22

PHYS 1443 Section 003 Lecture #22 PHYS 443 Section 003 Lecture # Monda, Nov. 4, 003. Siple Bloc-Spring Sste. Energ of the Siple Haronic Oscillator 3. Pendulu Siple Pendulu Phsical Pendulu orsion Pendulu 4. Siple Haronic Motion and Unifor

More information

UNIT V BOUNDARY LAYER INTRODUCTION

UNIT V BOUNDARY LAYER INTRODUCTION UNIT V BOUNDARY LAYER INTRODUCTION The variation of velocity from zero to free-stream velocity in the direction normal to the bondary takes place in a narrow region in the vicinity of solid bondary. This

More information

Electromagnetics I Exam No. 3 December 1, 2003 Solution

Electromagnetics I Exam No. 3 December 1, 2003 Solution Electroagnetics Ea No. 3 Deceber 1, 2003 Solution Please read the ea carefull. Solve the folloing 4 probles. Each proble is 1/4 of the grade. To receive full credit, ou ust sho all ork. f cannot understand

More information

acceleration of 2.4 m/s. (b) Now, we have two rubber bands (force 2F) pulling two glued objects (mass 2m). Using F ma, 2.0 furlongs x 2.0 s 2 4.

acceleration of 2.4 m/s. (b) Now, we have two rubber bands (force 2F) pulling two glued objects (mass 2m). Using F ma, 2.0 furlongs x 2.0 s 2 4. 5.. 5.6. Model: An object s acceleration is linearl proportional to the net force. Solve: (a) One rubber band produces a force F, two rubber bands produce a force F, and so on. Because F a and two rubber

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

The Numerical Simulation of Enhanced Heat Transfer Tubes

The Numerical Simulation of Enhanced Heat Transfer Tubes Aailable online at.sciencedirect.com Phsics Procedia 4 (01 70 79 01 International Conference on Applied Phsics and Indstrial Engineering The Nmerical Simlation of Enhanced Heat Transfer Tbes Li Xiaoan,

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Chapter 1: Differential Form of Basic Equations

Chapter 1: Differential Form of Basic Equations MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period An Approxiate Model for the Theoretical Prediction of the Velocity... 77 Central European Journal of Energetic Materials, 205, 2(), 77-88 ISSN 2353-843 An Approxiate Model for the Theoretical Prediction

More information

DISTRIBUTION OF THE HYDRAULIC PARAMETERS AT RIVER BENDS

DISTRIBUTION OF THE HYDRAULIC PARAMETERS AT RIVER BENDS DISTRIBUTION OF THE HYDRAULIC PARAMETERS AT RIVER BENDS Isa Issa Oran *, Riyad Hassan Al-Anbari ** and Walaa Khalil Ali *** * Assist. Professor, Foundation of Technical Education ** Assist. Professor,

More information

ON THE LINIARIZATION OF EXPERIMENTAL HYSTERETIC LOOPS

ON THE LINIARIZATION OF EXPERIMENTAL HYSTERETIC LOOPS ON THE LINIARIZATION OF EXPERIMENTAL HYSTERETIC LOOPS TUDOR SIRETEANU 1, MARIUS GIUCLEA 1, OVIDIU SOLOMON In this paper is presented a linearization ethod developed on the basis of the experiental hysteresis

More information

Computer Animation. Rick Parent

Computer Animation. Rick Parent Algorithms and Techniqes Flids Sperficial models. Deep models comes p throghot graphics, bt particlarl releant here OR Directl model isible properties Water waes Wrinkles in skin and cloth Hi Hair Clods

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS

SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS THERMAL SCIENCE, Year 011, Vol. 15, No. 1, pp. 45-55 45 SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD-FACING STEP WITH RIBS TURBULATORS b Khdheer S. MUSHATET Mechanical Engineering Department,

More information

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2

which is the moment of inertia mm -- the center of mass is given by: m11 r m2r 2 Chapter 6: The Rigid Rotator * Energy Levels of the Rigid Rotator - this is the odel for icrowave/rotational spectroscopy - a rotating diatoic is odeled as a rigid rotator -- we have two atos with asses

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics o Flids and Transport Processes Chapter 9 Proessor Fred Stern Fall 01 1 Chapter 9 Flow over Immersed Bodies Flid lows are broadly categorized: 1. Internal lows sch as dcts/pipes, trbomachinery,

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

Heat Transfer Enhancement in channel with obstacles

Heat Transfer Enhancement in channel with obstacles Proceedings o the nd WSEAS Int. Conerence on Applied and Theoretical Mechanics, Venice, Italy, Noveber 0-, 006 81 eat Transer Enhanceent in channel with obstacles M. Nazari M.. Kayhani Departent o Mechanical

More information

ANALYSIS ON RESPONSE OF DYNAMIC SYSTEMS TO PULSE SEQUENCES EXCITATION

ANALYSIS ON RESPONSE OF DYNAMIC SYSTEMS TO PULSE SEQUENCES EXCITATION The 4 th World Conference on Earthquake Engineering October -7, 8, Beijing, China ANALYSIS ON RESPONSE OF DYNAMIC SYSTEMS TO PULSE SEQUENCES EXCITATION S. Li C.H. Zhai L.L. Xie Ph. D. Student, School of

More information

THE EFFECTS OF RADIATION ON UNSTEADY MHD CONVECTIVE HEAT TRANSFER PAST A SEMI-INFINITE VERTICAL POROUS MOVING SURFACE WITH VARIABLE SUCTION

THE EFFECTS OF RADIATION ON UNSTEADY MHD CONVECTIVE HEAT TRANSFER PAST A SEMI-INFINITE VERTICAL POROUS MOVING SURFACE WITH VARIABLE SUCTION Latin merican pplied Research 8:7-4 (8 THE EFFECTS OF RDITION ON UNSTEDY MHD CONVECTIVE HET TRNSFER PST SEMI-INFINITE VERTICL POROUS MOVING SURFCE WITH VRIBLE SUCTION. MHDY Math. Department Science, Soth

More information

Extended Intervened Geometric Distribution

Extended Intervened Geometric Distribution International Jornal of Statistical Distribtions Applications 6; (): 8- http://www.sciencepblishinggrop.co//isda Extended Intervened Geoetric Distribtion C. Satheesh Kar, S. Sreeaari Departent of Statistics,

More information

SIMPLE HARMONIC MOTION: NEWTON S LAW

SIMPLE HARMONIC MOTION: NEWTON S LAW SIMPLE HARMONIC MOTION: NEWTON S LAW siple not siple PRIOR READING: Main 1.1, 2.1 Taylor 5.1, 5.2 http://www.yoops.org/twocw/it/nr/rdonlyres/physics/8-012fall-2005/7cce46ac-405d-4652-a724-64f831e70388/0/chp_physi_pndul.jpg

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Oscillatory Hydromagnetic Couette Flow in a Rotating System with Induced Magnetic Field *

Oscillatory Hydromagnetic Couette Flow in a Rotating System with Induced Magnetic Field * CHAPTER-4 Oscillator Hdroagnetic Couette Flow in a Rotating Sste with Induced Magnetic Field * 4. Introduction Lainar flow within a channel or duct in the absence of agnetic field is a phenoenon which

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL LINEAR IMPULSE AND MOMENTUM On copletion of this ttorial yo shold be able to do the following. State Newton s laws of otion. Define linear

More information

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC AMS B Pertrbation Methods Lectre 5 Copright b Hongn Wang, UCSC Recap: we discssed bondar laer of ODE Oter epansion Inner epansion Matching: ) Prandtl s matching ) Matching b an intermediate variable (Skip

More information

Introducing Ideal Flow

Introducing Ideal Flow D f f f p D p D p D f T k p D e The Continit eqation The Naier Stokes eqations The iscos Flo Energ Eqation These form a closed set hen to thermodnamic relations are specified Introdcing Ideal Flo Getting

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

Transformation of Orbital Angular Momentum and Spin Angular Momentum

Transformation of Orbital Angular Momentum and Spin Angular Momentum Aerian Jornal of Matheatis and Statistis 6, 65: 3-6 DOI: 593/jajs6653 Transforation of Orbital Anglar Moent and Spin Anglar Moent Md Tarek Hossain *, Md Shah Ala Departent of Physis, Shahjalal Uniersity

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R.

On the importance of horizontal turbulent transport in high resolution mesoscale simulations over cities. A. Martilli (CIEMAT, Spain), B. R. On the importance of horizontal trblent transport in high resoltion mesoscale simlations over cities. A. Martilli (CIEMAT, Spain), B. R. Rotnno, P. Sllivan, E. G. Patton, M. LeMone (NCAR, USA) In an rban

More information

Unified Flow and Thermal Law-of-the-wall for Type-A and B Turbulent Boundary Layers

Unified Flow and Thermal Law-of-the-wall for Type-A and B Turbulent Boundary Layers Unified Flo and Thermal La-of-the-all for Type-A and B Turbulent Boundary Layers Hongyi Xu 1, Duo Wang 1, Heng Li 1 and Bochao Cao 1 1 Aeronautics and Astronautics Department, Fudan University, Shanghai,

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Synopsis : FRICTION. = μ s R where μ s is called the coefficient of static friction. It depends upon the nature

Synopsis : FRICTION. = μ s R where μ s is called the coefficient of static friction. It depends upon the nature FRICTION Synopsis : 1. When a body is in otion over another srace or when an object oves throgh a viscos edi like air or water or when a body rolls over another, there is a resistance to the otion becase

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration).

Derivation of the basic equations of fluid flows. No. Conservation of mass of a solute (applies to non-sinking particles at low concentration). Deriation of the basic eqations of flid flos. No article in the flid at this stage (net eek). Conseration of mass of the flid. Conseration of mass of a solte (alies to non-sinking articles at lo concentration).

More information

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics. Fall Semester Homework Problem Set Number 10 Solutions Chem 4501 Introdction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Nmber 10 Soltions 1. McQarrie and Simon, 10-4. Paraphrase: Apply Eler s theorem

More information

5. Charge Particle Motion in Fields

5. Charge Particle Motion in Fields 5 Charge Particle Motion in Fields 1 1 CHARG PARTICL MOTION IN FILDS OF FORCS uations of otion: F ( + ) d ( + ), : particle charge and ass;, : electric field and agnetic flu densit field; : particle velocit

More information

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad Linear Strain Triangle and other tpes o D elements B S. Ziaei Rad Linear Strain Triangle (LST or T6 This element is also called qadratic trianglar element. Qadratic Trianglar Element Linear Strain Triangle

More information

Stability And Unbalance Response Of Rotor Bearing System

Stability And Unbalance Response Of Rotor Bearing System Stability And Unbalance Response Of Rotor Bearing Syste T.V.V..N. Rao and. Athre Mechanical Engineering Grop Departent of Mechanical Engineering Birla Institte of Technology & Science Indian Institte of

More information

Q2. The velocity field in a fluid flow is given by

Q2. The velocity field in a fluid flow is given by Kinematics of Flid Q. Choose the correct anser (i) streamline is a line (a) hich is along the path of a particle (b) dran normal to the elocit ector at an point (c) sch that the streamlines diide the passage

More information

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation Chapter 7 Eternal Forced Convection N f ( *,Re,Pr) N f (Re,Pr) he Empirical Method he empirical correlation N C Re he vale of C, m, n are often independent of natre of the flid m Pr n he vale of C, m,

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade

In this lecture... Axial flow turbine Impulse and reaction turbine stages Work and stage dynamics Turbine blade cascade Lect- 0 1 Lect-0 In this lecture... Axial flow turbine Ipulse and reaction turbine stages Work and stage dynaics Turbine blade cascade Lect-0 Axial flow turbines Axial turbines like axial copressors usually

More information

Prandl established a universal velocity profile for flow parallel to the bed given by

Prandl established a universal velocity profile for flow parallel to the bed given by EM 0--00 (Part VI) (g) The nderlayers shold be at least three thicknesses of the W 50 stone, bt never less than 0.3 m (Ahrens 98b). The thickness can be calclated sing Eqation VI-5-9 with a coefficient

More information

Available online at ScienceDirect. Procedia Engineering 90 (2014 )

Available online at   ScienceDirect. Procedia Engineering 90 (2014 ) Available online at.sciencedirect.com ScienceDirect Procedia Engineering 9 (14 383 388 1th International Conference on Mechanical Engineering, ICME 13 Effects of volumetric heat source and temperature

More information

Numerical Simulation of Melting Process in Single Screw Extruder with Vibration Force Field

Numerical Simulation of Melting Process in Single Screw Extruder with Vibration Force Field Nerical Silation of Melting Process in Single Screw Extrder with Vibration Force Field Yanhong Feng Jinping Q National Eng. Research Center of Novel Eqipent for Polyer Processing, Soth China University

More information

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction International Jornal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volme-3, Isse-8, Agst 2015 Elastico-Viscos MHD Free Convective Flow Past an Inclined Permeable Plate

More information

Physics 201 Lecture 29

Physics 201 Lecture 29 Phsics 1 ecture 9 Goals ecture 9 v Describe oscillator otion in a siple pendulu v Describe oscillator otion with torques v Introduce daping in SHM v Discuss resonance v Final Ea Details l Sunda, Ma 13th

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information

DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS

DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS Forth International Conference on CFD in the Oil and Gas, Metallrgical & Process Indstries SINTEF / NTNU Trondheim, Noray 6-8 Jne 005 DILUTE GAS-LIQUID FLOWS WITH LIQUID FILMS ON WALLS John MORUD 1 1 SINTEF

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C Integration - By sbstittion PhysicsAndMathsTtor.com. Using the sbstittion cos +, or otherwise, show that e cos + sin d e(e ) (Total marks). (a) Using the sbstittion cos, or otherwise, find the eact vale

More information

CS 331: Artificial Intelligence Naïve Bayes. Naïve Bayes

CS 331: Artificial Intelligence Naïve Bayes. Naïve Bayes CS 33: Artificial Intelligence Naïe Bayes Thanks to Andrew Moore for soe corse aterial Naïe Bayes A special type of Bayesian network Makes a conditional independence assption Typically sed for classification

More information

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation

Fluid Dynamics. Type of Flows Continuity Equation Bernoulli Equation Steady Flow Energy Equation Applications of Bernoulli Equation Tye of Flows Continity Eqation Bernolli Eqation Steady Flow Energy Eqation Alications of Bernolli Eqation Flid Dynamics Streamlines Lines having the direction of the flid velocity Flids cannot cross a

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Differentiation of Eponential Fnctions The net derivative rles that o will learn involve eponential fnctions. An eponential fnction is a fnction in the form of a constant raised to a variable power. The

More information

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Seisic Analysis of Structures by K Dutta, Civil Departent, II Delhi, New Delhi. Module 5: Response Spectru Method of Analysis Exercise Probles : 5.8. or the stick odel of a building shear frae shown in

More information

Models to Estimate the Unicast and Multicast Resource Demand for a Bouquet of IP-Transported TV Channels

Models to Estimate the Unicast and Multicast Resource Demand for a Bouquet of IP-Transported TV Channels Models to stiate the Unicast and Mlticast Resorce Deand for a Boqet of IP-Transported TV Channels Z. Avraova, D. De Vleeschawer,, S. Wittevrongel, H. Brneel SMACS Research Grop, Departent of Teleconications

More information

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V.

CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE. R. Muthucumaraswamy and V. International Jornal of Atomotive and Mechanical Engineering (IJAME) ISSN: 9-8649 (int); ISSN: 18-166 (Online); Volme pp. 31-38 Jly-December 1 niversiti Malaysia Pahang DOI: http://dx.doi.org/1.158/ijame..11.11.19

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT

NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT NUMERICAL MODELLING OF THE TYRE/ROAD CONTACT PACS REFERENCE: 43.5.LJ Krister Larsson Departent of Applied Acoustics Chalers University of Technology SE-412 96 Sweden Tel: +46 ()31 772 22 Fax: +46 ()31

More information

Simple Harmonic Motion

Simple Harmonic Motion Siple Haronic Motion Physics Enhanceent Prograe for Gifted Students The Hong Kong Acadey for Gifted Education and Departent of Physics, HKBU Departent of Physics Siple haronic otion In echanical physics,

More information

Solutions to the problems in Chapter 6 and 7

Solutions to the problems in Chapter 6 and 7 Solutions to the probles in Chapter 6 and 7 6.3 Pressure of a Feri gas at zero teperature The nuber of electrons N and the internal energy U, inthevoluev,are N = V D(ε)f(ε)dε, U = V εd(ε)f(ε)dε, () The

More information

STATIC, STAGNATION, AND DYNAMIC PRESSURES

STATIC, STAGNATION, AND DYNAMIC PRESSURES STATIC, STAGNATION, AND DYNAMIC PRESSURES Bernolli eqation is g constant In this eqation is called static ressre, becase it is the ressre that wold be measred by an instrment that is static with resect

More information

16.333: Lecture # 7. Approximate Longitudinal Dynamics Models

16.333: Lecture # 7. Approximate Longitudinal Dynamics Models 16.333: Lecture # 7 Approxiate Longitudinal Dynaics Models A couple ore stability derivatives Given ode shapes found identify sipler odels that capture the ain responses Fall 24 16.333 6 1 More Stability

More information

MOMENT OF INERTIA AND SUPERFLUIDITY

MOMENT OF INERTIA AND SUPERFLUIDITY 1 Chaire Européenne du College de France (004/005) Sandro Stringari Lecture 6 1 Mar 05 MOMENT OF INERTIA AND SUPERFLUIDITY Previous lecture: BEC in low diensions - Theores on long range order. Algebraic

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. To Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation beteen Random Variables Standardied (or ero mean normalied) random variables.5

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrar.co Advances in Applied Science Research,, (5:85-96 ISSN: 976-86 CODEN (USA: AASRFC Hdroagnetic natural convection flow of an incopressible viscoelastic fluid

More information

Turbomachinery. Turbines

Turbomachinery. Turbines Turboachinery Turbines Turboachinery -40 Copyright 04,05 by Jerry M. Seitan. ll rights reserved. Turbine Overview Configurations (aial, radial, ied), analysis and other issues siilar to copressors Copared

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas.

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas. Two identical flat sqare plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHAE areas. F > F A. A B F > F B. B A C. FA = FB. It depends on whether the bondary

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

gravity force buoyancy force drag force where p density of particle density of fluid A cross section perpendicular to the direction of motion

gravity force buoyancy force drag force where p density of particle density of fluid A cross section perpendicular to the direction of motion orce acting on the ettling article SEDIMENTATION gravity force boyancy force drag force In cae of floating: their i zero. f k V g Vg f A where denity of article denity of flid A cro ection erendiclar to

More information

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation

External Forced Convection. The Empirical Method. Chapter 7. The empirical correlation Chapter 7 Eternal Forced Convection N f ( *,, Pr) N f (, Pr) he Empirical Method he empirical correlation N C he vale of C, m, n are often independent of natre of the flid m Pr n he vale of C, m, n var

More information

Physics 2107 Oscillations using Springs Experiment 2

Physics 2107 Oscillations using Springs Experiment 2 PY07 Oscillations using Springs Experient Physics 07 Oscillations using Springs Experient Prelab Read the following bacground/setup and ensure you are failiar with the concepts and theory required for

More information

Lecture 4 Normal Modes

Lecture 4 Normal Modes Lecture 4 Noral Modes Coupled driven oscillators Double pendulu The daped driven pendulu = g/l +k y+fcost y = y gy/l k y d dt + d dt + g + k l k k d dt + d dt + g + k l y = F 0 Re eit y =Re X Y eit CF

More information

Entropy ISSN

Entropy ISSN Entrop 3, 5, 56-518 56 Entrop ISSN 199-43 www.mdpi.org/entrop/ Entrop Generation Dring Flid Flow Between wo Parallel Plates With Moving Bottom Plate Latife Berrin Erba 1, Mehmet Ş. Ercan, Birsen Sülüş

More information

28 Innovative Solutions in the Field of Engineering Sciences

28 Innovative Solutions in the Field of Engineering Sciences Applied Mechanics and Materials ubitted: 14-5-1 IN: 166-748, Vol. 59, pp 7-1 Accepted: 14-5-1 doi:1.48/www.scientific.net/amm.59.7 Online: 14-6- 14 Trans Tech Publications, witerland The Vibration Based

More information