A bifurcation approach to the synchronization of coupled van der Pol oscillators

Size: px
Start display at page:

Download "A bifurcation approach to the synchronization of coupled van der Pol oscillators"

Transcription

1 A bifurcation approach to the synchronization of coupled van der Pol oscillators Departmento de Matemática Aplicada II & Instituto de Matemáticas de la Universidad de Sevilla (IMUS) Joint work with G. Paccosi and A. Figliola Universidad Nacional de General Sarmiento (Buenos Aires, Argentina) Puebla, February 2012

2 What is synchronization? Synchronization = Adjustment of rhythms of oscillating objects due to their weak interaction 1 1 Synchronization A universal concept in nonlinear sciences, A. Pikovsky, M. Rosenblum and J. Kurths

3 What is synchronization? Synchronization = Adjustment of rhythms of oscillating objects due to their weak interaction. Calendario Maya Tzolkin (divine) = 260 days. Haab (civil) = 365 days. La Rueda calendárica, Serie Inicial or Cuenta larga /5 = 18,980 days = 52 years. Three synchronized calendars (conmensurate) The length of the year for the mayas is 365, which is more accurate than the Gregorian calendar 365, st December 2012 is the end of a year cycle of the Cuenta Larga calendar that started in a.c.

4 Outline Message of the talk Simulation or Continuation IVP or BVP Motivation: broad band synchronization [1]. Structure of the synchronization tongues: isolas. The onset of 1: k synchronization; a BVP approach. The role of the tori. Conclusions [1] A. P. Kuznetsov, J. P. Roman. Physica D (2009) Properties of synchronization in the systems of non-identical coupled van der Pol-Duffing oscillators. Broadband synchronization.

5 Outline Message of the talk Simulation or Continuation IVP or BVP Motivation: broad band synchronization [1]. Structure of the synchronization tongues: isolas. The onset of 1: k synchronization; a BVP approach. The role of the tori. Conclusions [1] A. P. Kuznetsov, J. P. Roman. Physica D (2009) Properties of synchronization in the systems of non-identical coupled van der Pol-Duffing oscillators. Broadband synchronization.

6 Outline Message of the talk Simulation or Continuation IVP or BVP Motivation: broad band synchronization [1]. Structure of the synchronization tongues: isolas. The onset of 1: k synchronization; a BVP approach. The role of the tori. Conclusions [1] A. P. Kuznetsov, J. P. Roman. Physica D (2009) Properties of synchronization in the systems of non-identical coupled van der Pol-Duffing oscillators. Broadband synchronization.

7 Outline Message of the talk Simulation or Continuation IVP or BVP Motivation: broad band synchronization [1]. Structure of the synchronization tongues: isolas. The onset of 1: k synchronization; a BVP approach. The role of the tori. Conclusions [1] A. P. Kuznetsov, J. P. Roman. Physica D (2009) Properties of synchronization in the systems of non-identical coupled van der Pol-Duffing oscillators. Broadband synchronization.

8 The model: velocity coupled van der Pol oscillators Oscillator 1 Oscillator 2 X Ẋ λ 1 1 µ Y λ 2 Ẏ 1 + δ {ẍ ( λ1 x 2) ẋ + x = µ (ẏ ẋ) ÿ ( λ 2 y 2) ẏ + (1 + δ)y = µ (ẋ ẏ) The λ s control the Hopf bifurcation and are taken as λ 1 = 1 + λ and λ 2 = 1. δ is the frequency mismatch. µ parametrizes the dissipative coupling.

9 Measuring synchrony in time simulation [1] ynamic regime chart for the system (1) for = 1 25, = 1, = 0 and phase plane po

10 Measuring synchrony II: Poincaré-like sections [1] 1: 1 1: 3 1: 5

11 Bifurcation set: λ = 0 [1] Fig. 1. (a) Dynamic regime chart and (b) its enlarged fragment for the system (1) for = = 1, = 0.

12 Bifurcation set: λ = 0,25 [1] ynamic regime chart for the system (1) for = 1 25, = 1, = 0 and phase plane portraits in characteristic areas of the paramet

13 Bifurcation set: λ = 1 [1]

14 Bifurcation set: λ = 0,25 Zoom[1]

15 Questions Are the change of colours bifurcations? Can we compute the separations curves? What is the structure of the synchronization tongues? What happens in the white regions? Do sync-people speak the same language as the dinsys-people?

16 Bifurcation approach: λ = 0,25 Start from the trivial unique equilibrium. Scan either in the µ or δ direction with a fixed value of λ. Locate a bifurcation point and follow it in two parameters. Repeat the process with the periodic orbits and tori (if possible) B Hopf Bifurcation Oscillator death area!

17 One param. bifurcation diagrams: λ = 0,25 δ = 10

18 Two param. bifurcation diagrams: λ = 0,25 µ B Hopf Bifurcation Oscillator death area! A Hopf Bifurcation Hopf Hopf Bifurcation Oscillator death area 1:1 1:3 1:

19 One param. bifurcation diagrams: λ = 0,25 δ = 9,5

20 One param. bifurcation diagrams: λ = 0,25 δ = 9,45

21 One param. bifurcation diagrams: λ = 0,25 δ = 9,45

22 Looking for the 1:3 sync.: degraded top λ = 0, x µ= = y y x 10 3

23 Looking for the 1:3 sync.: degraded top λ = 0, µ= = y y

24 Looking for the 1:3 sync.: degraded top λ = 0, µ= = y y

25 Looking for the 1:3 sync.: degraded top λ = 0, µ= = y y

26 Looking for the 1:3 sync.: degraded top λ = 0,25 The upper border of the degraded top is not a bifurcation. It is a geometrical feature (tangency). Can we trace in two parameters the locus of such events? Yes, by setting up an appropriate BVP dx dτ = Tx 1 dy dτ = Ty 1 dx 1 dτ = T [(λ 1 x 2 )x 1 x µ(x 1 y 1 )] dx 1 dτ = T [(1 y 2 )y 1 (1 + δ)y µ(y 1 x 1 )] with periodicity boundary conditions: x(0) = x(1), ẋ(0) = x 1 (0) = ẋ(1) = x 1 (1) y(0) = y(1), ẏ(0) = y 1 (0) = ẏ(1) = y 1 (1) phase condition: y (0) = y1(0) = 0 tangency condition: y1(0) = 0

27 Looking for the 1:3 sync.: degraded top λ = 0,25 The upper border of the degraded top is not a bifurcation. It is a geometrical feature (tangency). Can we trace in two parameters the locus of such events? Yes, by setting up an appropriate BVP dx dτ = Tx 1 dy dτ = Ty 1 dx 1 dτ = T [(λ 1 x 2 )x 1 x µ(x 1 y 1 )] dx 1 dτ = T [(1 y 2 )y 1 (1 + δ)y µ(y 1 x 1 )] with periodicity boundary conditions: x(0) = x(1), ẋ(0) = x 1 (0) = ẋ(1) = x 1 (1) y(0) = y(1), ẏ(0) = y 1 (0) = ẏ(1) = y 1 (1) phase condition: y (0) = y1(0) = 0 tangency condition: y1(0) = 0

28 Looking for the 1:3 sync.: degraded top λ = 0,25 The upper border of the degraded top is not a bifurcation. It is a geometrical feature (tangency). Can we trace in two parameters the locus of such events? Yes, by setting up an appropriate BVP dx dτ = Tx 1 dy dτ = Ty 1 dx 1 dτ = T [(λ 1 x 2 )x 1 x µ(x 1 y 1 )] dx 1 dτ = T [(1 y 2 )y 1 (1 + δ)y µ(y 1 x 1 )] with periodicity boundary conditions: x(0) = x(1), ẋ(0) = x 1 (0) = ẋ(1) = x 1 (1) y(0) = y(1), ẏ(0) = y 1 (0) = ẏ(1) = y 1 (1) phase condition: y (0) = y1(0) = 0 tangency condition: y1(0) = 0

29 Looking for the 1:3 sync.: degraded top λ = 0,25 The upper border of the degraded top is not a bifurcation. It is a geometrical feature (tangency). Can we trace in two parameters the locus of such events? Yes, by setting up an appropriate BVP dx dτ = Tx 1 dy dτ = Ty 1 dx 1 dτ = T [(λ 1 x 2 )x 1 x µ(x 1 y 1 )] dx 1 dτ = T [(1 y 2 )y 1 (1 + δ)y µ(y 1 x 1 )] with periodicity boundary conditions: x(0) = x(1), ẋ(0) = x 1 (0) = ẋ(1) = x 1 (1) y(0) = y(1), ẏ(0) = y 1 (0) = ẏ(1) = y 1 (1) phase condition: y (0) = y1(0) = 0 tangency condition: y1(0) = 0

30 Looking for the 1:3 sync.: tangencies λ = 0, A synchronization s boundary 1:3 synchronization s boundary 1:5 µ

31 The degraded top: λ = 0, µ

32 The complete picture: λ = 0, B 1:1 1:3 1:5 oscillator death area µ

33 The complete picture: λ = 0, A 1:1 1:3 1:5 oscillator death area µ

34 The complete picture: λ = C 1:1 1:3 1:5 oscillator death area!

35 Conclusions Message of the talk Simulation or Continuation IVP or BVP

36 Conclusions Message of the talk Simulation AND Continuation IVP AND BVP The interaction of the tori with the resonance tongues seems to be related to the isolas formation. The resonances along the tori bifurcation curve gives rises to periodic curves in the white region. The geometric mechanism and some of the results may be applicable to other systems.

Internal and external synchronization of self-oscillating oscillators with non-identical control parameters

Internal and external synchronization of self-oscillating oscillators with non-identical control parameters Internal and external synchronization of self-oscillating oscillators with non-identical control parameters Emelianova Yu.P., Kuznetsov A.P. Department of Nonlinear Processes, Saratov State University,

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system arxiv:1712.06011v1 [nlin.cd] 16 Dec 2017 The influence of noise on two- and three-frequency quasi-periodicity in a simple model system A.P. Kuznetsov, S.P. Kuznetsov and Yu.V. Sedova December 19, 2017

More information

Collective and Stochastic Effects in Arrays of Submicron Oscillators

Collective and Stochastic Effects in Arrays of Submicron Oscillators DYNAMICS DAYS: Long Beach, 2005 1 Collective and Stochastic Effects in Arrays of Submicron Oscillators Ron Lifshitz (Tel Aviv), Jeff Rogers (HRL, Malibu), Oleg Kogan (Caltech), Yaron Bromberg (Tel Aviv),

More information

DRIVEN and COUPLED OSCILLATORS. I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela

DRIVEN and COUPLED OSCILLATORS. I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela DRIVEN and COUPLED OSCILLATORS I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela II Coupled oscillators Resonance tongues Huygens s synchronisation III Coupled cell system with

More information

arxiv: v3 [physics.data-an] 3 Sep 2008

arxiv: v3 [physics.data-an] 3 Sep 2008 Electronic version of an article published as: International Journal of Bifurcation and Chaos, 7(), 27, 3493 3497. doi:.42/s282747925 c World Scientific Publishing Company http://www.worldscinet.com/ijbc/

More information

Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators

Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators Dynamics Days Asia-Pacific: Singapore, 2004 1 Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators Alexander Zumdieck (Max Planck, Dresden), Ron Lifshitz (Tel Aviv), Jeff Rogers (HRL,

More information

The Hopf-van der Pol System: Failure of a Homotopy Method

The Hopf-van der Pol System: Failure of a Homotopy Method DOI.7/s259--9-5 ORIGINAL RESEARCH The Hopf-van der Pol System: Failure of a Homotopy Method H. G. E. Meijer T. Kalmár-Nagy Foundation for Scientific Research and Technological Innovation 2 Abstract The

More information

Geometry of Resonance Tongues

Geometry of Resonance Tongues Geometry of Resonance Tongues Henk Broer with Martin Golubitsky, Sijbo Holtman, Mark Levi, Carles Simó & Gert Vegter Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Resonance p.1/36

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

BISTABLE PHASE SYNCHRONIZATION AND CHAOS IN A SYSTEM OF COUPLED VAN DER POL DUFFING OSCILLATORS

BISTABLE PHASE SYNCHRONIZATION AND CHAOS IN A SYSTEM OF COUPLED VAN DER POL DUFFING OSCILLATORS International Journal of Bifurcation and Chaos, Vol. 9, No. 12 (1999) 2271 2277 c World Scientific Publishing Company BISTABLE PHASE SYNCHRONIZATION AND CHAOS IN A SYSTEM OF COUPLED VAN DER POL DUFFING

More information

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

More information

Painting chaos: OFLI 2 TT

Painting chaos: OFLI 2 TT Monografías de la Real Academia de Ciencias de Zaragoza. 28: 85 94, (26). Painting chaos: OFLI 2 TT R. Barrio Grupo de Mecánica Espacial. Dpto. Matemática Aplicada Universidad de Zaragoza. 59 Zaragoza.

More information

Phase Model for the relaxed van der Pol oscillator and its application to synchronization analysis

Phase Model for the relaxed van der Pol oscillator and its application to synchronization analysis Phase Model for the relaxed van der Pol oscillator and its application to synchronization analysis Mimila Prost O. Collado J. Automatic Control Department, CINVESTAV IPN, A.P. 4 74 Mexico, D.F. ( e mail:

More information

Poincaré`s Map in a Van der Pol Equation

Poincaré`s Map in a Van der Pol Equation International Journal of Mathematical Analysis Vol. 8, 014, no. 59, 939-943 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.014.411338 Poincaré`s Map in a Van der Pol Equation Eduardo-Luis

More information

Method of Averaging for Differential Equations on an Infinite Interval

Method of Averaging for Differential Equations on an Infinite Interval Method of Averaging for Differential Equations on an Infinite Interval Theory and Applications SUB Gottingen 7 222 045 71X ;, ' Vladimir Burd Yaroslavl State University Yaroslavl, Russia 2 ' 08A14338 Contents

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

Intermittent lag synchronization in a nonautonomous system of coupled oscillators

Intermittent lag synchronization in a nonautonomous system of coupled oscillators Physics Letters A 338 (2005) 141 149 www.elsevier.com/locate/pla Intermittent lag synchronization in a nonautonomous system of coupled oscillators Alexander N. Pisarchik a,, Rider Jaimes-Reategui b a Centro

More information

The Big, Big Picture (Bifurcations II)

The Big, Big Picture (Bifurcations II) The Big, Big Picture (Bifurcations II) Reading for this lecture: NDAC, Chapter 8 and Sec. 10.0-10.4. 1 Beyond fixed points: Bifurcation: Qualitative change in behavior as a control parameter is (slowly)

More information

Lecture 3 : Bifurcation Analysis

Lecture 3 : Bifurcation Analysis Lecture 3 : Bifurcation Analysis D. Sumpter & S.C. Nicolis October - December 2008 D. Sumpter & S.C. Nicolis General settings 4 basic bifurcations (as long as there is only one unstable mode!) steady state

More information

Oscillation death in a coupled van der Pol Mathieu system

Oscillation death in a coupled van der Pol Mathieu system PRAMANA c Indian Academy of Sciences Vol. 81, No. 4 journal of October 2013 physics pp. 677 690 Oscillation death in a coupled van der Pol Mathieu system MADHURJYA P BORA and DIPAK SARMAH Physics Department,

More information

Problem Set Number 5, j/2.036j MIT (Fall 2014)

Problem Set Number 5, j/2.036j MIT (Fall 2014) Problem Set Number 5, 18.385j/2.036j MIT (Fall 2014) Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139) Due Fri., October 24, 2014. October 17, 2014 1 Large µ limit for Liénard system #03 Statement:

More information

Chapter 3. Gumowski-Mira Map. 3.1 Introduction

Chapter 3. Gumowski-Mira Map. 3.1 Introduction Chapter 3 Gumowski-Mira Map 3.1 Introduction Non linear recurrence relations model many real world systems and help in analysing their possible asymptotic behaviour as the parameters are varied [17]. Here

More information

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay Difference Resonances in a controlled van der Pol-Duffing oscillator involving time delay This paper was published in the journal Chaos, Solitions & Fractals, vol.4, no., pp.975-98, Oct 9 J.C. Ji, N. Zhang,

More information

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Adv. Studies Theor. Phys., Vol. 3, 29, no. 11, 429-437 Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Gh. Asadi Cordshooli Department of Physics, Shahr-e-Rey Branch,

More information

Quasiperiodic phenomena in the Van der Pol - Mathieu equation

Quasiperiodic phenomena in the Van der Pol - Mathieu equation Quasiperiodic penomena in te Van der Pol - Matieu equation F. Veerman and F. Verulst Department of Matematics, Utrect University P.O. Box 80.010, 3508 TA Utrect Te Neterlands April 8, 009 Abstract Te Van

More information

Analysis of Dynamical Systems

Analysis of Dynamical Systems 2 YFX1520 Nonlinear phase portrait Mathematical Modelling and Nonlinear Dynamics Coursework Assignments 1 ϕ (t) 0-1 -2-6 -4-2 0 2 4 6 ϕ(t) Dmitri Kartofelev, PhD 2018 Variant 1 Part 1: Liénard type equation

More information

Modelling biological oscillations

Modelling biological oscillations Modelling biological oscillations Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Outline Outline of Topics Van der Pol equation Van

More information

Math 4200, Problem set 3

Math 4200, Problem set 3 Math, Problem set 3 Solutions September, 13 Problem 1. ẍ = ω x. Solution. Following the general theory of conservative systems with one degree of freedom let us define the kinetic energy T and potential

More information

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators The Open Acoustics Journal 8 9-3 9 Open Access Hopf ifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators Jianping Cai *a and Jianhe Shen b a Department of

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 265 269 c International Academic Publishers Vol. 47, No. 2, February 15, 2007 Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

More information

Autoparametric Resonance of Relaxation Oscillations

Autoparametric Resonance of Relaxation Oscillations CHAPTER 4 Autoparametric Resonance of Relaation Oscillations A joint work with Ferdinand Verhulst. Has been submitted to journal. 4.. Introduction Autoparametric resonance plays an important part in nonlinear

More information

ZERO-HOPF BIFURCATION FOR A CLASS OF LORENZ-TYPE SYSTEMS

ZERO-HOPF BIFURCATION FOR A CLASS OF LORENZ-TYPE SYSTEMS This is a preprint of: Zero-Hopf bifurcation for a class of Lorenz-type systems, Jaume Llibre, Ernesto Pérez-Chavela, Discrete Contin. Dyn. Syst. Ser. B, vol. 19(6), 1731 1736, 214. DOI: [doi:1.3934/dcdsb.214.19.1731]

More information

Lecture 5. Outline: Limit Cycles. Definition and examples How to rule out limit cycles. Poincare-Bendixson theorem Hopf bifurcations Poincare maps

Lecture 5. Outline: Limit Cycles. Definition and examples How to rule out limit cycles. Poincare-Bendixson theorem Hopf bifurcations Poincare maps Lecture 5 Outline: Limit Cycles Definition and examples How to rule out limit cycles Gradient systems Liapunov functions Dulacs criterion Poincare-Bendixson theorem Hopf bifurcations Poincare maps Limit

More information

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 197-210 COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL

More information

Stability and bifurcation analysis of a Van der Pol Duffing oscillator with a nonlinear tuned vibration absorber

Stability and bifurcation analysis of a Van der Pol Duffing oscillator with a nonlinear tuned vibration absorber ENO 4, July 6-, 4, Vienna, Austria Stability and bifurcation analysis of a Van der Pol Duffing oscillator with a nonlinear tuned vibration absorber Giuseppe Habib and Gaetan Kerschen Department of Aerospace

More information

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Francisco Armando Carrillo Navarro, Fernando Verduzco G., Joaquín Delgado F. Programa de Doctorado en Ciencias (Matemáticas),

More information

SYNCHRONIZATION PROBLEM OF THE COUPLED MODIFIED VAN DER POL EQUATIONS IN A MODEL OF THE HEART ACTION

SYNCHRONIZATION PROBLEM OF THE COUPLED MODIFIED VAN DER POL EQUATIONS IN A MODEL OF THE HEART ACTION ISBN 978-83-942807-7-2 PORTAL CZM 2015 SYNCHRONIZATION PROBLEM OF THE COUPLED MODIFIED VAN DER POL EQUATIONS IN A MODEL OF THE HEART ACTION BEATA JACKOWSKA-ZDUNIAK ABSTRACT. In this paper, modified van

More information

arxiv: v1 [nlin.cd] 20 Jul 2010

arxiv: v1 [nlin.cd] 20 Jul 2010 Invariant manifolds of the Bonhoeffer-van der Pol oscillator arxiv:1007.3375v1 [nlin.cd] 20 Jul 2010 R. Benítez 1, V. J. Bolós 2 1 Departamento de Matemáticas, Centro Universitario de Plasencia, Universidad

More information

PROJECTS on. Multiple Bifurcations of Sample Dynamical Systems

PROJECTS on. Multiple Bifurcations of Sample Dynamical Systems Course on Bifurcation Theory, a.y. 2010/11 PROJECTS on Multiple Bifurcations of Sample Dynamical Systems Students of the Bifurcation Theory course can carry out an individual homework, to be discussed

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

5.2.2 Planar Andronov-Hopf bifurcation

5.2.2 Planar Andronov-Hopf bifurcation 138 CHAPTER 5. LOCAL BIFURCATION THEORY 5.. Planar Andronov-Hopf bifurcation What happens if a planar system has an equilibrium x = x 0 at some parameter value α = α 0 with eigenvalues λ 1, = ±iω 0, ω

More information

Bifurcation and Chaos in Coupled Periodically Forced Non-identical Duffing Oscillators

Bifurcation and Chaos in Coupled Periodically Forced Non-identical Duffing Oscillators APS/13-QED Bifurcation and Chaos in Coupled Periodically Forced Non-identical Duffing Oscillators U. E. Vincent 1 and A. Kenfack, 1 Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria.

More information

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3.

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3. June, : WSPC - Proceedings Trim Size: in x in SPT-broer Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l =,,. H.W. BROER and R. VAN DIJK Institute for mathematics

More information

Shilnikov bifurcations in the Hopf-zero singularity

Shilnikov bifurcations in the Hopf-zero singularity Shilnikov bifurcations in the Hopf-zero singularity Geometry and Dynamics in interaction Inma Baldomá, Oriol Castejón, Santiago Ibáñez, Tere M-Seara Observatoire de Paris, 15-17 December 2017, Paris Tere

More information

Nonlinear systems, chaos and control in Engineering

Nonlinear systems, chaos and control in Engineering Nonlinear systems, chaos and control in Engineering Module 1 block 3 One-dimensional nonlinear systems Cristina Masoller Cristina.masoller@upc.edu http://www.fisica.edu.uy/~cris/ Schedule Flows on the

More information

Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach

Contents Dynamical Systems Stability of Dynamical Systems: Linear Approach Contents 1 Dynamical Systems... 1 1.1 Introduction... 1 1.2 DynamicalSystems andmathematical Models... 1 1.3 Kinematic Interpretation of a System of Differential Equations... 3 1.4 Definition of a Dynamical

More information

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D. 4 Periodic Solutions We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phase-space. Autonomous two-dimensional systems with phase-space R

More information

An Introduction to Numerical Continuation Methods. with Applications. Eusebius Doedel IIMAS-UNAM

An Introduction to Numerical Continuation Methods. with Applications. Eusebius Doedel IIMAS-UNAM An Introduction to Numerical Continuation Methods with Applications Eusebius Doedel IIMAS-UNAM July 28 - August 1, 2014 1 Persistence of Solutions Newton s method for solving a nonlinear equation [B83]

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont tutorial ii: One-parameter bifurcation analysis of equilibria with matcont Yu.A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3508 TA, Utrecht February 13, 2018 1 This session

More information

SCHOOL PROGRAMME ADVANCED COMPUTATIONAL AND EXPERIMENTAL TECHNIQUES IN NONLINEAR DYNAMICS MAY 6-10, 2013, CUSCO, PERU

SCHOOL PROGRAMME ADVANCED COMPUTATIONAL AND EXPERIMENTAL TECHNIQUES IN NONLINEAR DYNAMICS MAY 6-10, 2013, CUSCO, PERU SUNDAY 5 SCHOOL PROGRAMME ADVANCED COMPUTATIONAL AND EXPERIMENTAL TECHNIQUES IN NONLINEAR DYNAMICS MAY 6-10, 2013, CUSCO, PERU ROOM Hotel San Agustin Internacional", Salón de Eventos 11:00-19:00 REGISTRATION

More information

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013 An Introduction to Numerical Continuation Methods with Application to some Problems from Physics Eusebius Doedel Cuzco, Peru, May 2013 Persistence of Solutions Newton s method for solving a nonlinear equation

More information

Numerical Continuation of Bifurcations - An Introduction, Part I

Numerical Continuation of Bifurcations - An Introduction, Part I Numerical Continuation of Bifurcations - An Introduction, Part I given at the London Dynamical Systems Group Graduate School 2005 Thomas Wagenknecht, Jan Sieber Bristol Centre for Applied Nonlinear Mathematics

More information

Report E-Project Henriette Laabsch Toni Luhdo Steffen Mitzscherling Jens Paasche Thomas Pache

Report E-Project Henriette Laabsch Toni Luhdo Steffen Mitzscherling Jens Paasche Thomas Pache Potsdam, August 006 Report E-Project Henriette Laabsch 7685 Toni Luhdo 7589 Steffen Mitzscherling 7540 Jens Paasche 7575 Thomas Pache 754 Introduction From 7 th February till 3 rd March, we had our laboratory

More information

Entrainment Alex Bowie April 7, 2004

Entrainment Alex Bowie April 7, 2004 Entrainment Alex Bowie April 7, 2004 Abstract The driven Van der Pol oscillator displays entrainment, quasiperiodicity, and chaos. The characteristics of these different modes are discussed as well as

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.377 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Thursday, March 8, 2018. Turn it in (by 3PM) at the Math.

More information

Additive resonances of a controlled van der Pol-Duffing oscillator

Additive resonances of a controlled van der Pol-Duffing oscillator Additive resonances of a controlled van der Pol-Duffing oscillator This paper has been published in Journal of Sound and Vibration vol. 5 issue - 8 pp.-. J.C. Ji N. Zhang Faculty of Engineering University

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Invariant manifolds of the Bonhoeffer-van der Pol oscillator

Invariant manifolds of the Bonhoeffer-van der Pol oscillator Invariant manifolds of the Bonhoeffer-van der Pol oscillator R. Benítez 1, V. J. Bolós 2 1 Dpto. Matemáticas, Centro Universitario de Plasencia, Universidad de Extremadura. Avda. Virgen del Puerto 2. 10600,

More information

Cusp-Bodanov-Takens Bifurcation in a Predator-Prey Type of Dynamical System with Time-Periodic Perturbation

Cusp-Bodanov-Takens Bifurcation in a Predator-Prey Type of Dynamical System with Time-Periodic Perturbation Cusp-Bodanov-Takens Bifurcation in a Predator-Prey Type of Dynamical System with Time- Kus Prihantoso Johan Matheus October 24 th, 2011 ITB-Bandung Indonesia Predator-Prey System Cusp-Bogdanov-Takens Bifurcation

More information

Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

More information

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017 A short introduction with a view toward examples Center of Research and Applications of Nonlinear (CRANS) Department of Mathematics University of Patras Greece sanastassiou@gmail.com Short presentation

More information

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) 8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) So far we have seen some different possibilities of what can happen in two-dimensional systems (local and global attractors and bifurcations)

More information

Problem Points Problem Points Problem Points

Problem Points Problem Points Problem Points Name Signature Student ID# ------------------------------------------------------------------ Left Neighbor Right Neighbor 1) Please do not turn this page until instructed to do so. 2) Your name and signature

More information

Self-Excited Vibration

Self-Excited Vibration Wenjing Ding Self-Excited Vibration Theory, Paradigms, and Research Methods With 228 figures Ö Springer Contents Chapter 1 Introduction 1 1.1 Main Features of Self-Excited Vibration 1 1.1.1 Natural Vibration

More information

APPM 2460 CHAOTIC DYNAMICS

APPM 2460 CHAOTIC DYNAMICS APPM 2460 CHAOTIC DYNAMICS 1. Introduction Today we ll continue our exploration of dynamical systems, focusing in particular upon systems who exhibit a type of strange behavior known as chaos. We will

More information

DIFFERENTIAL GEOMETRY APPLIED TO DYNAMICAL SYSTEMS

DIFFERENTIAL GEOMETRY APPLIED TO DYNAMICAL SYSTEMS WORLD SCIENTIFIC SERIES ON NONLINEAR SCIENCE Series Editor: Leon O. Chua Series A Vol. 66 DIFFERENTIAL GEOMETRY APPLIED TO DYNAMICAL SYSTEMS Jean-Marc Ginoux Université du Sud, France World Scientific

More information

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e.

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e. Bifurcations We have already seen how the loss of stiffness in a linear oscillator leads to instability. In a practical situation the stiffness may not degrade in a linear fashion, and instability may

More information

FROM EQUILIBRIUM TO CHAOS

FROM EQUILIBRIUM TO CHAOS FROM EQUILIBRIUM TO CHAOS Practica! Bifurcation and Stability Analysis RÜDIGER SEYDEL Institut für Angewandte Mathematik und Statistik University of Würzburg Würzburg, Federal Republic of Germany ELSEVIER

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Third Edition With 251 Illustrations Springer Introduction to Dynamical Systems 1 1.1 Definition of a dynamical system 1 1.1.1 State space 1 1.1.2

More information

Identification of one-parameter bifurcations giving rise to periodic orbits, from their period function

Identification of one-parameter bifurcations giving rise to periodic orbits, from their period function Identification of one-parameter bifurcations giving rise to periodic orbits, from their period function Armengol Gasull 1, Víctor Mañosa 2, and Jordi Villadelprat 3 1 Departament de Matemàtiques Universitat

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Research Article Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor

Research Article Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor Mathematical Problems in Engineering Volume 29, Article ID 149563, 26 pages doi:1.1155/29/149563 Research Article Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor Denis de Carvalho

More information

Computational Methods in Dynamical Systems and Advanced Examples

Computational Methods in Dynamical Systems and Advanced Examples and Advanced Examples Obverse and reverse of the same coin [head and tails] Jorge Galán Vioque and Emilio Freire Macías Universidad de Sevilla July 2015 Outline Lecture 1. Simulation vs Continuation. How

More information

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Sreelakshmi Manjunath Department of Electrical Engineering Indian Institute of Technology Madras (IITM), India JTG Summer

More information

Models Involving Interactions between Predator and Prey Populations

Models Involving Interactions between Predator and Prey Populations Models Involving Interactions between Predator and Prey Populations Matthew Mitchell Georgia College and State University December 30, 2015 Abstract Predator-prey models are used to show the intricate

More information

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators Zhongming Chen, Kim Batselier, Haotian Liu, Ngai Wong The University of

More information

TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY. P. Yu 1,2 and M. Han 1

TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY. P. Yu 1,2 and M. Han 1 COMMUNICATIONS ON Website: http://aimsciences.org PURE AND APPLIED ANALYSIS Volume 3, Number 3, September 2004 pp. 515 526 TWELVE LIMIT CYCLES IN A CUBIC ORDER PLANAR SYSTEM WITH Z 2 -SYMMETRY P. Yu 1,2

More information

PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH TWO REAL SADDLES. 1. Introduction

PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH TWO REAL SADDLES. 1. Introduction PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH TWO REAL SADDLES JOAN C. ARTÉS1, JAUME LLIBRE 1, JOAO C. MEDRADO 2 AND MARCO A. TEIXEIRA 3 Abstract. In this paper we study piecewise linear differential systems

More information

Period function for Perturbed Isochronous Centres

Period function for Perturbed Isochronous Centres QUALITATIE THEORY OF DYNAMICAL SYSTEMS 3, 275?? (22) ARTICLE NO. 39 Period function for Perturbed Isochronous Centres Emilio Freire * E. S. Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos

More information

A Study of the Van der Pol Equation

A Study of the Van der Pol Equation A Study of the Van der Pol Equation Kai Zhe Tan, s1465711 September 16, 2016 Abstract The Van der Pol equation is famous for modelling biological systems as well as being a good model to study its multiple

More information

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability

Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability Journal of Physics: Conference Series PAPER OPEN ACCESS Coherence of Noisy Oscillators with Delayed Feedback Inducing Multistability To cite this article: Anastasiya V Pimenova and Denis S Goldobin 2016

More information

arxiv:nlin/ v1 [nlin.cd] 25 Apr 2001

arxiv:nlin/ v1 [nlin.cd] 25 Apr 2001 Anticipated synchronization in coupled chaotic maps with delays arxiv:nlin/0104061v1 [nlin.cd] 25 Apr 2001 Cristina Masoller a, Damián H. Zanette b a Instituto de Física, Facultad de Ciencias, Universidad

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

Basic Theory of Dynamical Systems

Basic Theory of Dynamical Systems 1 Basic Theory of Dynamical Systems Page 1 1.1 Introduction and Basic Examples Dynamical systems is concerned with both quantitative and qualitative properties of evolution equations, which are often ordinary

More information

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber J.C. Ji, N. Zhang Faculty of Engineering, University of Technology, Sydney PO Box, Broadway,

More information

The complex non resonant double Hopf degeneracy: An alternative approach

The complex non resonant double Hopf degeneracy: An alternative approach The complex non resonant double Hopf degeneracy: An alternative approach Griselda R. Itovich Dept. of Mathematics, FaEA Universidad Nacional del Comahue Buenos Aires 1400, (8300) Neuquén, Argentina Email:

More information

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

More information

FIRST INTEGRAL METHOD FOR AN OSCILLATOR SYSTEM

FIRST INTEGRAL METHOD FOR AN OSCILLATOR SYSTEM Electronic Journal of Differential Equations, Vol. 013 013, No. 96, pp. 1 1. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu FIRST INTEGRAL METHOD

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Outline. Learning Objectives. References. Lecture 2: Second-order Systems

Outline. Learning Objectives. References. Lecture 2: Second-order Systems Outline Lecture 2: Second-order Systems! Techniques based on linear systems analysis! Phase-plane analysis! Example: Neanderthal / Early man competition! Hartman-Grobman theorem -- validity of linearizations!

More information

Co-existing hidden attractors in a radio-physical oscillator system

Co-existing hidden attractors in a radio-physical oscillator system Co-eisting hidden attractors in a radio-physical oscillator system A.P. Kuznetsov 1, S.P. Kuznetsov 1, E. Mosekilde, N.V. Stankevich 3 October 5, 14 1 Kotel nikov s Institute of Radio-Engineering and Electronics

More information

Introduction to bifurcations

Introduction to bifurcations Introduction to bifurcations Marc R. Roussel September 6, Introduction Most dynamical systems contain parameters in addition to variables. A general system of ordinary differential equations (ODEs) could

More information

Reconstruction Deconstruction:

Reconstruction Deconstruction: Reconstruction Deconstruction: A Brief History of Building Models of Nonlinear Dynamical Systems Jim Crutchfield Center for Computational Science & Engineering Physics Department University of California,

More information

Hysteresis. Lab 6. Recall that any ordinary differential equation can be written as a first order system of ODEs,

Hysteresis. Lab 6. Recall that any ordinary differential equation can be written as a first order system of ODEs, Lab 6 Hysteresis Recall that any ordinary differential equation can be written as a first order system of ODEs, ẋ = F (x), ẋ := d x(t). (6.1) dt Many interesting applications and physical phenomena can

More information

Feedback-mediated oscillatory coexistence in the chemostat

Feedback-mediated oscillatory coexistence in the chemostat Feedback-mediated oscillatory coexistence in the chemostat Patrick De Leenheer and Sergei S. Pilyugin Department of Mathematics, University of Florida deleenhe,pilyugin@math.ufl.edu 1 Introduction We study

More information

Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos

Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos (Max useful score: 100 - Available points: 125) 15-382: Collective Intelligence (Spring 2018)

More information