SPRING 2007 EXAM MLC SOLUTIONS

Size: px
Start display at page:

Download "SPRING 2007 EXAM MLC SOLUTIONS"

Transcription

1 SPRING 7 EXAM MLC SOLUTIONS Question # Key: E p p p μ 7 d p7 e e p Question # Key: B A μ/ μ+ δ μ/ μ μ.4 A μ.79 μ+ δ Var a T A A δ

2 Question # 3 Key: D [ 6] A[ 6] / d.359 /.6/ P[ 6] A[ 6] / [ 6] 359/ V[ 6] A65 P[ 6] && a Alternatively, A65 A[ 6] 5V [ 6] A [ 6]

3 Question # 4 Key: E Let K curtate future lifetime random variable σ Var L L K && K + L v Pa P K + P 5 + v d d P K + P Var ( L) Var 5 + v d d P 5, + d Var v because Var ( ax b) a Var ( ) K + + if a and b are constants P is a constant, a numeric value, not a random variable. P There are various ways to evaluate + d. One possibility is d P a + && d d d da && A P K Var ( L ) 5, + + Var ( v ) d ( 5,)(.699) ( A A ) ( 5,755, 4,)( ) 58, 478,9 Standard deviation 6,77

4 Question # 5 Key: C Number of claims in months is Poisson with λ n P(N n) Pr( N 3) Question # 6 Key: A Donations compound Poisson λ Withdrawals compound Poisson λ 7. 4 epected donations where 5 mean epected withdrawals where 4 mean epected net Variance of donations 56 ( ) 6, ,86 Variance of net change 6,8 + 9,86 46,66 Variance of withdrawals ( 6 8) Pr[ S > 6] Pr N(,) > Pr N(,) > ,66

5 Question # 7 Key: E All have the same benefits, so retrospectively the one with the highest accumulated value of premiums wil have the highest reserve. All have total premiums of, so the one with the premiums earliest will have the highest accumulated value. That is E. Alternatively, all have the same benefits, so all have the same actuarial present value of premiums. E has the highest APV of the first 5 premiums, so it has the lowest APV (at both time and time 5) of premiums for years 6 and later. Thus E has the highest prospective reserve. Question #8 Key: E Let t p probability Kevin still there p probability Kira still there t y t t y.7t.6t ( e ) e dt.6t.3t e dt e dt Kira s epected playing time ( p ) pdt Alternatively and equivalently ey ey Alternatively, Kira has 7 chance of surviving Kevin, 3 and (memoryless).667 future lifetime then if she does.6 7 (.667) o o

6 Question # 9 Key: E For decrement in its associated single decrement table: () t p 5. t () () ( ) Thus. p 5.98 ;.6 p 5.94 ;.4 p 5..94/ For decrement in its associated single decrement table: No one age 5 dies before age %. of the lives which reach 5. die at %. of the lives age 5 die at /.9.33 is the probability a life which reaches 5.6 will Thus die at 5.6. For a life age 5 in the double decrement table: ( ) Probability of surviving until t. is.98, because. p 5.98 and no one dies from cause () before.. Probability of dying at 5. from cause () is , since 9% of those who reach 5. die then. Probability of surviving beyond ( τ ) ( ) Probability of surviving to t.6. p5.4 p5., since no one dies from cause () between t. and t.6 ; probability Probability of dying at 5.6 from cause () is , since 3.3% of those who reach 5.6 die then. Total probability of dying from cause ()

7 Question # Key: C Let A be values at 6% all years. Let A* be values at % for one year, then 6%. * A vq vp A..988A A (.988)( A ). 67 A *. (.99)(.3) A Question # Key: A +.4 && : 4: 4: 4:9 4:9 G A Ga G Ga a && && 4: 4:.G+.5Ga 5+ 5a A4: + + 5a 4:9 G.9. 4: A E A E.9 E. ( ) ( ) ( ) + +.9( ( 3.668) )

8 Question # Key: D Possible outcomes: Result L Probability K(55), J L v K(55), J L v K(55), J L v (.8).764 L v a K(55), J 5&& (.6).573 K(55) > L (.93).896 F(-97.7).896 F(79.83) F(893.4) which is > 95% Question # 3 Key: C v. The shortest solution uses Hattendorf. Here s one Hattendorf solution. ( ) Var 3L K 55 3 since no coverage there. ( 55 ) ( 3 3 ) ( 3 ( 55) 3) Var L K v b V p q v p Var L K ( ) (.5)(.5) v (.5)( ) v + 6,6 ( ) ( ) Var L K 55 v b V p q + v p Var L K 55 (.833) (.6)(.4) ( v )(.6)( 6,6) v + 53,39 +, ,756 Without Hattendorf, you need to use the general formula for variance of any random variable, applied here to the contingent distribution: Var( ) ( ) L K E L K E L K Before we can evaluate L for any outcome, we must know the benefit premium P.

9 The shortest way is to calculate P from the benefit reserves. E.g.,.833.5v P; P Or (much more time consuming), you could calculate P as the actuarial present value of benefits divided by the actuarial present value of an annuity-due. t q p t p && :3 a v p t t t t :3 + t A v q t P :3 Whichever way you solved for P, you can now finish the variance (.6698) K L Conditional ( L ) Prob.4 33,6 P P.3 35, P.3 45, ( ) ( ) ,6.3 35, ,884 E L K (the benefit reserve) E L K ,947 ( ( 55) ) 64, Var L K 55,763

10 Question # 4 Key: E The intent of this problem, not the same as the wording used on the eam, is that the future lifetimes of (3) and (35) are independent and follow the same mortality table. p a 5 3 q3:35 b ω 35 [ ] t t p3 t p35 μ35 () t dt 5 p3 t p35 t p35 μ35 ( t) dt Pr 3 dies within 5 years after (35) () t t p35 μ35 t p3 5 p3 t p35 dt 3:35 35:35 q a q ( 3:35 ) q a (equally likely to die first since same age) ( b) a

11 Question # 5 Key: D Present Value of Future Benefits Year Benefit Paid Pattern Necessary Probability Yr.3 Yr (.6)(.4) Yr 3 (.6)(.4)(.) PVFB.3(.8)( ) +.4(.8) ( ) +.4(.8) 3 ( ) Present Value of Future Premiums Year Premium Paid Pattern Necessary Probability Yr P.6 P Yr Yr 3 (.6)(.4) P PVFP P +.8.6P +.8.4P.6336 P PVFB PVFP P P Question # 6 Key: B Find, then find (.6)(.3).8 Find, then find Find, then find.3.4. Total

12 Question # 7 Key: D K K Q Q Q K K K PV of option (i) ( v v v 3 ) PV of option (ii).8 vr.455r So R 8. / Question # 8 Key: C 3 q[ + ] q[ ] q[ + ] + q 5 + l69 77 l[ 67] p[ 67] p[ 67] ( [ ] ) p[ 67 ] p[ 67 ] p[ 67 ] + q[ 67 ] q q[ 67] + q q[ 67] q[ 66] + q p[ 67] l[ 67]

13 Question # 9 Key: D V V vp5 + v p5 + v 3 p vp5 + ( vp5) + ( vp5 ) 5 * + vp + ( vp ) ( vp5) Numerator is a geometric series, so 3 ( vp5 ) vp5 3 ( vp5 ) vp5 vp5 p *In a multiple choice test with numeric answers, you could have tried each of the answer choices and discovered.954 works. Alternatively, consider the recursive reserve formula: ( n V + π )( + i) q nv q The only difference in the recursion for V 4, V 4 and 3 V 4 is the initial reserve. If V 4 were larger than V 4, then V 4 would be even larger, and 3 V 4 even larger still. If V 4 were smaller than V 4, then V 4 would be even smaller, and 3 V 4 even smaller still. Therefore V 4 V 4 V 4 3 V vp + vp vp 5.9 p v

14 Question # Key: C Let μ be the force of all non-crash deaths. ( τ ) ( ) μ μ μ...8 In year, μ DA : In year, μ DA : p : e e.996 DA Question # Key: B For a model of the form l ( ω ) α o we have e ( ω ) /( α + ) This can be verified by integration. For the De Moivre model e ( ω )/. o Consequently [ ] ( ω 6 )/ ( 3/ ) ω 9 Hence ( ω 7 )/ 4/3 ω 3 / α + / ω 3 / / α + α.5

15 Question # Key: C.T In first years, Pr( Z > 7) Pr( e > 7) ( T ) ( T ) Pr. > ln.7 Pr < 3.57.T After years Pr( Z > 7) Pr( 5e > 7) ( T ) ( T ) Pr. > ln.8 Pr <.73 Pr Z > 7 q + q Question # 3 Key: B ( ) ( τ ) ( ) μ. p q e. e.7369 ( ) ln q ln μ + + ( τ ) q+ tp+ μ+ dt () μ+ + μ + e μ dt ( + ) t e.877dt t ( e ) ( e.4377 ) ( τ ) q p q+ (.7369)(.33).7

16 Question # 4 Key: A S S S e () μ tdt.( 75) 75 e ( 76) 76 e..643.( 77) S( 77) e : Alternatively, 76 μ() tdt 75 p e e 75..t 76 e (same as similarly for p 75) Question # 5 Key: B 5 t 5 m( 5) λ ( t) dt.5dt dt.dt + + t N is Poisson with mean p 4 e.75 /4! p 4.68

17 Question # 6 Key: A There are two ways to attack this problem. One approach focuses on the distribution of T. T is the sum of 89 independent eponential random variables, each with mean 4 and therefore variance 4. ET Var T Using normal approimation T Pr( T > 68) Pr > Φ.84 The other approach looks at the distribution of N, the number of cell divisions that occur in 68 days. N is Poisson with mean variance ( T > ) ( N < ) ( N < ) Pr 68 Pr 89 Pr 88.5 Φ (.46).84 N Pr < In evalutaing the normal approimation to N, we needed a continuity correction since N has a discrete distribution. We didn t need one in evaluating the normal approimation to T, a continuous distribution.

18 Question # 7 Key: A t δt μt t( μ δ ) E Z e e e μdt μe dt + + t μ+ δ+ μ μ μ e.3636 μ.4 μ+ δ + μ+ δ μ t δ μt μ.4 E( Z ) e e e μdt Var Z μ δ Question # 8 Key: C ,.5 AS CV CV CV 9.4 CV

19 Question # 9 Key: A For an annuity benefit of : Single Benefit Premium NSP + NSP A 3 3 3:3 E E + NSP A E E A (.54733)(.744)(.454) NSP.48 (.54733)(.744)(.3693) NSP.673 NSP For benefit of, Question # 3 Key: D a ( τ ) δ + μ () () ( ) δt () 3 μ + μ δt μ μ + μ μ A e e dt+ e e dt () 3μ μ ( τ) ( τ) ( τ) ( τ) δ + μ δ + μ δ + μ δ + μ P A. ( τ ) δ + μ. ( τ ) δ + μ

Fall 2003 Society of Actuaries Course 3 Solutions = (0.9)(0.8)(0.3) + (0.5)(0.4)(0.7) (0.9)(0.8)(0.5)(0.4) [1-(0.7)(0.3)] = (0.

Fall 2003 Society of Actuaries Course 3 Solutions = (0.9)(0.8)(0.3) + (0.5)(0.4)(0.7) (0.9)(0.8)(0.5)(0.4) [1-(0.7)(0.3)] = (0. Fall 3 Society of Actuaries Course 3 Solutions Question # Key: E q = p p 3:34 3:34 3 3:34 p p p 3 34 3:34 p 3:34 p p p p 3 3 3 34 3 3:34 3 3:34 =.9.8 =.7 =.5.4 =. =.7. =.44 =.7 +..44 =.776 =.7.7 =.54 =..3

More information

May 2013 MLC Solutions

May 2013 MLC Solutions May 3 MLC Solutions. Key: D Let k be the policy year, so that the mortality rate during that year is q 3 + k. The objective is to determine the smallest value of k such that k k v ( k p3) ( P3) < v ( k

More information

SPRING 2005 EXAM M SOLUTIONS. = When (as given in the problem), (x) dies in the second year from issue, the curtate future lifetime x + 1 is 0, so

SPRING 2005 EXAM M SOLUTIONS. = When (as given in the problem), (x) dies in the second year from issue, the curtate future lifetime x + 1 is 0, so SPRING 005 EXAM M SOLUTIONS Question # Key: B Let K be the curtate future lifetime of (x + k) K + k L 000v 000Px :3 ak + When (as given in the problem), (x) dies in the second year from issue, the curtate

More information

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE SOLUTIONS. Copyright 2016 by the Society of Actuaries

SOCIETY OF ACTUARIES. EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE SOLUTIONS. Copyright 2016 by the Society of Actuaries SOCIETY OF ACTUARIES EXAM MLC Models for Life Contingencies EXAM MLC SAMPLE SOLUTIONS Copyright 6 by the Society of Actuaries The solutions in this study note were previously presented in study note MLC-9-8

More information

SOCIETY OF ACTUARIES EXAM MLC ACTUARIAL MODELS EXAM MLC SAMPLE SOLUTIONS

SOCIETY OF ACTUARIES EXAM MLC ACTUARIAL MODELS EXAM MLC SAMPLE SOLUTIONS SOCIETY OF ACTUARIES EXAM MLC ACTUARIAL MODELS EXAM MLC SAMPLE SOLUTIONS Copyright 8 by the Society of Actuaries Some of the questions in this study note are taken from past SOA eaminations. MLC-9-8 PRINTED

More information

COURSE 3 MAY 2001 MULTIPLE-CHOICE ANSWER KEY

COURSE 3 MAY 2001 MULTIPLE-CHOICE ANSWER KEY COURSE 3 MAY 00 MULTIPLE-CHOICE ANSWER KEY E 6 B A 7 D 3 C 8 D 4 E 9 E 5 D 30 D 6 B 3 D 7 C 3 A 8 D 33 D 9 C 34 A 0 A 35 B B 36 E A 37 C 3 E 38 A 4 B 39 E 5 A 40 B 6 B 7 A 8 E 9 C 0 C E D 3 A 4 B 5 C COURSE

More information

Long-Term Actuarial Mathematics Solutions to Sample Multiple Choice Questions

Long-Term Actuarial Mathematics Solutions to Sample Multiple Choice Questions Long-Term Actuarial Mathematics Solutions to Sample Multiple Choice Questions October, 8 Versions: July, 8 Original Set of Questions Published July 4, 8 Correction to question 6.5 August, 8 Correction

More information

Spring 2012 Exam MLC Solutions

Spring 2012 Exam MLC Solutions Sring 0 Exam MLC Solutions Question # Key: D l [75] + = q[75] + = 0.95q75+ l[75] + l [75] + = l77 = 96,4 96,4 96,4 = 0.95 l [75] + 98,5 l = [75] + 98,050 Question # Key: A 0.5qx ( xx, + ) U.D.D. 0.5 x+

More information

MLC Fall Model Solutions. Written Answer Questions

MLC Fall Model Solutions. Written Answer Questions MLC Fall 216 Model Solutions Written Answer Questions 1 MLC Fall 216 Question 1 Model Solution Learning Outcome: 1(a), 1(b), 1(d) Chapter References: AMLCR Chapter 8 Notes: 1. Part (a) was done very well

More information

MLC Fall 2015 Written Answer Questions. Model Solutions

MLC Fall 2015 Written Answer Questions. Model Solutions MLC Fall 215 Written Answer Questions Model Solutions 1 MLC Fall 215 Question 1 Model Solution Learning Outcome: 1(a) Chapter References: AMLCR 2.2-2.5 Overall, this question was done reasonably well,

More information

Multiple Decrement Models

Multiple Decrement Models Multiple Decrement Models Lecture: Weeks 7-8 Lecture: Weeks 7-8 (Math 3631) Multiple Decrement Models Spring 2018 - Valdez 1 / 26 Multiple decrement models Lecture summary Multiple decrement model - epressed

More information

Practice Exam #1 CAS Exam 3L

Practice Exam #1 CAS Exam 3L Practice Exam #1 CAS Exam 3L These practice exams should be used during the last month prior to your exam. This practice exam contains 25 questions, of equal value, corresponding to an exam of about 2.5

More information

Stat 475 Life Contingencies I. Chapter 2: Survival models

Stat 475 Life Contingencies I. Chapter 2: Survival models Stat 475 Life Contingencies I Chapter 2: Survival models The future lifetime random variable Notation We are interested in analyzing and describing the future lifetime of an individual. We use (x) to denote

More information

Deeper Understanding, Faster Calculation: MLC, Fall 2011

Deeper Understanding, Faster Calculation: MLC, Fall 2011 Deeper Understanding, Faster Calculation: MLC, Fall 211 Yufeng Guo June 8, 211 actuary88.com Chapter Guo MLC: Fall 211 c Yufeng Guo 2 Contents INTRODUCTION 9 The origin of this study guide...........................

More information

Stat 475. Solutions to Homework Assignment 1

Stat 475. Solutions to Homework Assignment 1 Stat 475 Solutions to Homework Assignment. Jimmy recently purchased a house for he and his family to live in with a $3, 3-year mortgage. He is worried that should he die before the mortgage is paid, his

More information

Stat 476 Life Contingencies II. Multiple Life and Multiple Decrement Models

Stat 476 Life Contingencies II. Multiple Life and Multiple Decrement Models Stat 476 Life Contingencies II Multiple Life and Multiple Decrement Models Multiple Life Models To this point, all of the products we ve dealt with were based on the life status (alive / dead or multi-state)

More information

Chapter 2 - Survival Models

Chapter 2 - Survival Models 2-1 Chapter 2 - Survival Models Section 2.2 - Future Lifetime Random Variable and the Survival Function Let T x = ( Future lifelength beyond age x of an individual who has survived to age x [measured in

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 4. Life Insurance. Section 4.9. Computing APV s from a life table. Extract from: Arcones Manual for the SOA Exam MLC. Fall 2009 Edition. available at http://www.actexmadriver.com/ 1/29 Computing

More information

Mixture distributions in Exams MLC/3L and C/4

Mixture distributions in Exams MLC/3L and C/4 Making sense of... Mixture distributions in Exams MLC/3L and C/4 James W. Daniel Jim Daniel s Actuarial Seminars www.actuarialseminars.com February 1, 2012 c Copyright 2012 by James W. Daniel; reproduction

More information

Stat Hartman Winter 2018 Midterm Exam 28 February 2018

Stat Hartman Winter 2018 Midterm Exam 28 February 2018 Stat 475 - Hartman Winter 218 Midterm Exam 28 February 218 Name: This exam contains 11 pages (including this cover page) and 6 problems Check to see if any pages are missing You may only use an SOA-approved

More information

Course 1 Solutions November 2001 Exams

Course 1 Solutions November 2001 Exams Course Solutions November Exams . A For i =,, let R = event that a red ball is drawn form urn i i B = event that a blue ball is drawn from urn i. i Then if x is the number of blue balls in urn, ( R R)

More information

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Page

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Page Errata for ASM Exam LTAM Study Manual (First Edition Second Printing) Sorted by Page Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Page Practice Exam 0:A7, 2:A7, and 2:A8

More information

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Date

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Date Errata for ASM Exam LTAM Study Manual (First Edition Second Printing) Sorted by Date Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Date Practice Exam 0:A7, 2:A7, and 2:A8

More information

Notes for Math 324, Part 20

Notes for Math 324, Part 20 7 Notes for Math 34, Part Chapter Conditional epectations, variances, etc.. Conditional probability Given two events, the conditional probability of A given B is defined by P[A B] = P[A B]. P[B] P[A B]

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 4 (2011/12) 1 February 20, 2012 Outline: 1. Failure Time 2. Loss Frequency 3. Loss Severity 4. Aggregate Claim ====================================================

More information

MLC Fall 2014 Written Answer Questions. Model Solutions

MLC Fall 2014 Written Answer Questions. Model Solutions MLC Fall 2014 Written Answer Questions Model Solutions 1 MLC Fall 2014 Question 1 Model Solution Learning Objectives: 2(a), (a), 4(f) Textbook References: 5.4, 6.6, 1.5 (a) The EPV of the commission payments

More information

Estimation for Modified Data

Estimation for Modified Data Definition. Estimation for Modified Data 1. Empirical distribution for complete individual data (section 11.) An observation X is truncated from below ( left truncated) at d if when it is at or below d

More information

Subject CT4 Models. October 2015 Examination INDICATIVE SOLUTION

Subject CT4 Models. October 2015 Examination INDICATIVE SOLUTION Institute of Actuaries of India Subject CT4 Models October 2015 Examination INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the aim of helping candidates.

More information

RMSC 2001 Introduction to Risk Management

RMSC 2001 Introduction to Risk Management RMSC 2001 Introduction to Risk Management Tutorial 4 (2011/12) 1 February 20, 2012 Outline: 1. Failure Time 2. Loss Frequency 3. Loss Severity 4. Aggregate Claim ====================================================

More information

Survival Models. Lecture: Weeks 2-3. Lecture: Weeks 2-3 (Math 3630) Survival Models Fall Valdez 1 / 31

Survival Models. Lecture: Weeks 2-3. Lecture: Weeks 2-3 (Math 3630) Survival Models Fall Valdez 1 / 31 Survival Models Lecture: Weeks 2-3 Lecture: Weeks 2-3 (Math 3630) Survival Models Fall 2017 - Valdez 1 / 31 Chapter summary Chapter summary Survival models Age-at-death random variable Time-until-death

More information

Heriot-Watt University. M.Sc. in Actuarial Science. Life Insurance Mathematics I. Tutorial 2 Solutions

Heriot-Watt University. M.Sc. in Actuarial Science. Life Insurance Mathematics I. Tutorial 2 Solutions Heriot-Watt University M.Sc. in Actuarial Science Life Insurance Mathematics I Tutorial 2 Solutions. (a) The recursive relationship between pure enowment policy values is: To prove this, write: (V (t)

More information

Exam MLC Preparation Notes

Exam MLC Preparation Notes Exam MLC Preparation Notes Yeng M. Chang 213 All Rights Reserved 2 Contents Preface 7 1 Continuous Survival Models 9 1.1 CDFs, Survival Functions, µ x+t............................... 9 1.2 Parametric

More information

ARCONES MANUAL FOR THE SOA EXAM P/CAS EXAM 1, PROBABILITY, SPRING 2010 EDITION.

ARCONES MANUAL FOR THE SOA EXAM P/CAS EXAM 1, PROBABILITY, SPRING 2010 EDITION. A self published manuscript ARCONES MANUAL FOR THE SOA EXAM P/CAS EXAM 1, PROBABILITY, SPRING 21 EDITION. M I G U E L A R C O N E S Miguel A. Arcones, Ph. D. c 28. All rights reserved. Author Miguel A.

More information

PAST CAS AND SOA EXAMINATION QUESTIONS ON SURVIVAL

PAST CAS AND SOA EXAMINATION QUESTIONS ON SURVIVAL NOTES Questions and parts of some solutions have been taken from material copyrighted by the Casualty Actuarial Society and the Society of Actuaries. They are reproduced in this study manual with the permission

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Tutorial 1 : Probabilities

Tutorial 1 : Probabilities Lund University ETSN01 Advanced Telecommunication Tutorial 1 : Probabilities Author: Antonio Franco Emma Fitzgerald Tutor: Farnaz Moradi January 11, 2016 Contents I Before you start 3 II Exercises 3 1

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM P PROBABILITY P SAMPLE EXAM SOLUTIONS

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM P PROBABILITY P SAMPLE EXAM SOLUTIONS SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM P PROBABILITY P SAMPLE EXAM SOLUTIONS Copyright 9 by the Society of Actuaries and the Casualty Actuarial Society Some of the questions in this study

More information

LECTURE #6 BIRTH-DEATH PROCESS

LECTURE #6 BIRTH-DEATH PROCESS LECTURE #6 BIRTH-DEATH PROCESS 204528 Queueing Theory and Applications in Networks Assoc. Prof., Ph.D. (รศ.ดร. อน นต ผลเพ ม) Computer Engineering Department, Kasetsart University Outline 2 Birth-Death

More information

Continuous Random Variables

Continuous Random Variables MATH 38 Continuous Random Variables Dr. Neal, WKU Throughout, let Ω be a sample space with a defined probability measure P. Definition. A continuous random variable is a real-valued function X defined

More information

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam Math 5. Rumbos Fall 23 Solutions to Review Problems for Final Exam. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card in red on one side and white

More information

Chapter 5: Generalized Linear Models

Chapter 5: Generalized Linear Models w w w. I C A 0 1 4. o r g Chapter 5: Generalized Linear Models b Curtis Gar Dean, FCAS, MAAA, CFA Ball State Universit: Center for Actuarial Science and Risk Management M Interest in Predictive Modeling

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 1)

Chapter 3 Single Random Variables and Probability Distributions (Part 1) Chapter 3 Single Random Variables and Probability Distributions (Part 1) Contents What is a Random Variable? Probability Distribution Functions Cumulative Distribution Function Probability Density Function

More information

INVERSE PROBLEMS FOR MARKOV MODELS IN HEALTH INSURANCE. Semyen I. Spivak. The Bashkir State University, Ufa, Russia

INVERSE PROBLEMS FOR MARKOV MODELS IN HEALTH INSURANCE. Semyen I. Spivak. The Bashkir State University, Ufa, Russia INVERSE PROBLEMS FOR MARKOV MODELS IN HEALTH INSURANCE Semyen I. Spivak The Bashkir State University, Ufa, Russia The paper deals with inverse problems for Markov models in health insurance. Two opposite

More information

Solutions to the Fall 2018 CAS Exam MAS-1

Solutions to the Fall 2018 CAS Exam MAS-1 Solutions to the Fall 2018 CAS Exam MAS-1 (Incorporating the Preliminary CAS Answer Key) There were 45 questions in total, of equal value, on this 4 hour exam. There was a 15 minute reading period in addition

More information

Solutions to the Spring 2015 CAS Exam ST

Solutions to the Spring 2015 CAS Exam ST Solutions to the Spring 2015 CAS Exam ST (updated to include the CAS Final Answer Key of July 15) There were 25 questions in total, of equal value, on this 2.5 hour exam. There was a 10 minute reading

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

Course 4 Solutions November 2001 Exams

Course 4 Solutions November 2001 Exams Course 4 Solutions November 001 Exams November, 001 Society of Actuaries Question #1 From the Yule-Walker equations: ρ φ + ρφ 1 1 1. 1 1+ ρ ρφ φ Substituting the given quantities yields: 0.53 φ + 0.53φ

More information

November 2000 Course 1. Society of Actuaries/Casualty Actuarial Society

November 2000 Course 1. Society of Actuaries/Casualty Actuarial Society November 2000 Course 1 Society of Actuaries/Casualty Actuarial Society 1. A recent study indicates that the annual cost of maintaining and repairing a car in a town in Ontario averages 200 with a variance

More information

EXPERIENCE-BASED LONGEVITY ASSESSMENT

EXPERIENCE-BASED LONGEVITY ASSESSMENT EXPERIENCE-BASED LONGEVITY ASSESSMENT ERMANNO PITACCO Università di Trieste ermanno.pitacco@econ.units.it p. 1/55 Agenda Introduction Stochastic modeling: the process risk Uncertainty in future mortality

More information

Poisson Variables. Robert DeSerio

Poisson Variables. Robert DeSerio Poisson Variables Robert DeSerio Poisson processes A Poisson process is one in which events are randomly distributed in time, space or some other variable with the number of events in any non-overlapping

More information

Seven Introductory Lectures on Actuarial Mathematics

Seven Introductory Lectures on Actuarial Mathematics Seven Introductory Lectures on Actuarial Mathematics Mogens Steffensen 28. februar 26 Indhold 1 Compound Interest 3 1.1 Time Value of Money - Single Payments........................ 3 1.2 Time value of

More information

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012 3/7/ Recall Discrete Distribution 5. Continuous Random Variable For a discrete distribution, for eample Binomial distribution with n=5, and p=.4, the probabilit distribution is f().7776.59.3456.34.768.4.3

More information

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2 STAT 4 Exam I Continuous RVs Fall 7 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ = E

More information

University Of Calgary Department of Mathematics and Statistics

University Of Calgary Department of Mathematics and Statistics University Of Calgary Department of Mathematics and Statistics Hawkes Seminar May 23, 2018 1 / 46 Some Problems in Insurance and Reinsurance Mohamed Badaoui Department of Electrical Engineering National

More information

λ = pn µt = µ(dt)(n) Phylomath Lecture 4

λ = pn µt = µ(dt)(n) Phylomath Lecture 4 Phylomath Lecture 4 Brigid O Donnell (17 February 2004) A return to sojourn times We began by returning to the idea of sojourn times, or the time period until the next disruption event occurs for a given

More information

f X (x) = λe λx, , x 0, k 0, λ > 0 Γ (k) f X (u)f X (z u)du

f X (x) = λe λx, , x 0, k 0, λ > 0 Γ (k) f X (u)f X (z u)du 11 COLLECTED PROBLEMS Do the following problems for coursework 1. Problems 11.4 and 11.5 constitute one exercise leading you through the basic ruin arguments. 2. Problems 11.1 through to 11.13 but excluding

More information

Math Spring Practice for the Second Exam.

Math Spring Practice for the Second Exam. Math 4 - Spring 27 - Practice for the Second Exam.. Let X be a random variable and let F X be the distribution function of X: t < t 2 t < 4 F X (t) : + t t < 2 2 2 2 t < 4 t. Find P(X ), P(X ), P(X 2),

More information

SIMULATION - PROBLEM SET 1

SIMULATION - PROBLEM SET 1 SIMULATION - PROBLEM SET 1 " if! Ÿ B Ÿ 1. The random variable X has probability density function 0ÐBÑ œ " $ if Ÿ B Ÿ.! otherwise Using the inverse transform method of simulation, find the random observation

More information

Frequency Distributions

Frequency Distributions Mahlerʼs Guide to Frequency Distributions Joint Exam 4/C prepared by Howard C. Mahler, FCAS Copyright 2012 by Howard C. Mahler. Study Aid 2012-4-1 Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Actuarial mathematics

Actuarial mathematics Actuarial mathematics Multiple life tables Edward Furman Department of Mathematics and Statistics York University November 2, 2011 Edward Furman Actuarial mathematics MATH 3280 1 / 15 Life table Random

More information

FINAL EXAM: 3:30-5:30pm

FINAL EXAM: 3:30-5:30pm ECE 30: Probabilistic Methods in Electrical and Computer Engineering Spring 016 Instructor: Prof. A. R. Reibman FINAL EXAM: 3:30-5:30pm Spring 016, MWF 1:30-1:0pm (May 6, 016) This is a closed book exam.

More information

Notes for Math 324, Part 17

Notes for Math 324, Part 17 126 Notes for Math 324, Part 17 Chapter 17 Common discrete distributions 17.1 Binomial Consider an experiment consisting by a series of trials. The only possible outcomes of the trials are success and

More information

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and Math - 8 Rahman Final Eam Practice Problems () We use disks to solve this, Spring solutions V π (e ) d π e d. We solve this via integration by parts with u du d and dv e d v e /, V π e π e d. This is another

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

CPT Solved Scanner (English) : Appendix 71

CPT Solved Scanner (English) : Appendix 71 CPT Solved Scanner (English) : Appendix 71 Paper-4: Quantitative Aptitude Chapter-1: Ratio and Proportion, Indices and Logarithm [1] (b) The integral part of a logarithms is called Characteristic and the

More information

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z,

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, Random Variable And Probability Distribution Introduction Random Variable ( r.v. ) Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, T, and denote the assumed

More information

MCR 3UI EXAM REVIEW. 2 Hour Exam

MCR 3UI EXAM REVIEW. 2 Hour Exam MCR UI EXAM REVIEW Hour Eam Unit : Algebraic Tools for Operating with s: Rational Epressions. Simplif. State an restrictions on the variables. a) ( - 7-7) - (8 - - 9) b) ( - ) - ( + )( + ) - c) -6 d) -

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

Exam Two. Phu Vu. test Two. Take home group test April 13 ~ April 18. Your group alias: Your group members: Student name

Exam Two. Phu Vu. test Two. Take home group test April 13 ~ April 18. Your group alias: Your group members: Student name Exam Two Take home group test April 3 ~ April 8 Your group alias: Your group members: (leave it blank if you work alone on this test) Your test score Problem Score Total page /7 Problem : (chapter 9, applications

More information

Optimal investment strategies for an index-linked insurance payment process with stochastic intensity

Optimal investment strategies for an index-linked insurance payment process with stochastic intensity for an index-linked insurance payment process with stochastic intensity Warsaw School of Economics Division of Probabilistic Methods Probability space ( Ω, F, P ) Filtration F = (F(t)) 0 t T satisfies

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

Lecture Notes 2 Random Variables. Discrete Random Variables: Probability mass function (pmf)

Lecture Notes 2 Random Variables. Discrete Random Variables: Probability mass function (pmf) Lecture Notes 2 Random Variables Definition Discrete Random Variables: Probability mass function (pmf) Continuous Random Variables: Probability density function (pdf) Mean and Variance Cumulative Distribution

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Lectures prepared by: Elchanan Mossel Yelena Shvets

Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Lectures prepared by: Elchanan Mossel Yelena Shvets Follows Jim Pitman s book: Probability Section 4.2 Random Times Random times are often described

More information

IEOR 4106: Spring Solutions to Homework Assignment 7: Due on Tuesday, March 22.

IEOR 4106: Spring Solutions to Homework Assignment 7: Due on Tuesday, March 22. IEOR 46: Spring Solutions to Homework Assignment 7: Due on Tuesday, March. More of Chapter 5: Read the rest of Section 5.3, skipping Examples 5.7 (Coupon Collecting), 5. (Insurance claims)and Subsection

More information

Discrete Mathematics and Probability Theory Fall 2011 Rao Midterm 2 Solutions

Discrete Mathematics and Probability Theory Fall 2011 Rao Midterm 2 Solutions CS 70 Discrete Mathematics and Probability Theory Fall 20 Rao Midterm 2 Solutions True/False. [24 pts] Circle one of the provided answers please! No negative points will be assigned for incorrect answers.

More information

TABLE OF CONTENTS. 1. Survival Multiple Lives Multiple Decrements Daniel Markov Daniel Poisson

TABLE OF CONTENTS. 1. Survival Multiple Lives Multiple Decrements Daniel Markov Daniel Poisson TABLE OF CONTENTS 1. Survival 1 2. Multiple Lives 95 3. Multiple Decrements 135 4. Daniel Markov 1 169 5. Daniel Poisson 185 6. Insurance 279 7. Annuities 367 8. Premiums 449 9. Reserves 517 10. Insurances/Annuities

More information

CSCI-6971 Lecture Notes: Probability theory

CSCI-6971 Lecture Notes: Probability theory CSCI-6971 Lecture Notes: Probability theory Kristopher R. Beevers Department of Computer Science Rensselaer Polytechnic Institute beevek@cs.rpi.edu January 31, 2006 1 Properties of probabilities Let, A,

More information

Grade 11 Mathematics Page 1 of 6 Final Exam Review (updated 2013)

Grade 11 Mathematics Page 1 of 6 Final Exam Review (updated 2013) Grade Mathematics Page of Final Eam Review (updated 0) REVIEW CHAPTER Algebraic Tools for Operating With Functions. Simplify ( 9 ) (7 ).. Epand and simplify. ( ) ( ) ( ) ( 0 )( ). Simplify each of the

More information

Solutions to the Fall 2017 CAS Exam S

Solutions to the Fall 2017 CAS Exam S Solutions to the Fall 2017 CAS Exam S (Incorporating the Final CAS Answer Key) There were 45 questions in total, of equal value, on this 4 hour exam. There was a 15 minute reading period in addition to

More information

GENERALIZED ANNUITIES AND ASSURANCES, AND INTER-RELATIONSHIPS. BY LEIGH ROBERTS, M.Sc., ABSTRACT

GENERALIZED ANNUITIES AND ASSURANCES, AND INTER-RELATIONSHIPS. BY LEIGH ROBERTS, M.Sc., ABSTRACT GENERALIZED ANNUITIES AND ASSURANCES, AND THEIR INTER-RELATIONSHIPS BY LEIGH ROBERTS, M.Sc., A.I.A ABSTRACT By the definition of generalized assurances and annuities, the relation is shown to be the simplest

More information

Mathematics 375 Probability and Statistics I Final Examination Solutions December 14, 2009

Mathematics 375 Probability and Statistics I Final Examination Solutions December 14, 2009 Mathematics 375 Probability and Statistics I Final Examination Solutions December 4, 9 Directions Do all work in the blue exam booklet. There are possible regular points and possible Extra Credit points.

More information

Math438 Actuarial Probability

Math438 Actuarial Probability Math438 Actuarial Probability Jinguo Lian Department of Math and Stats Jan. 22, 2016 Continuous Random Variables-Part I: Definition A random variable X is continuous if its set of possible values is an

More information

Nonlife Actuarial Models. Chapter 5 Ruin Theory

Nonlife Actuarial Models. Chapter 5 Ruin Theory Nonlife Actuarial Models Chapter 5 Ruin Theory Learning Objectives 1. Surplus function, premium rate and loss process 2. Probability of ultimate ruin 3. Probability of ruin before a finite time 4. Adjustment

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Brief Review of Probability

Brief Review of Probability Brief Review of Probability Nuno Vasconcelos (Ken Kreutz-Delgado) ECE Department, UCSD Probability Probability theory is a mathematical language to deal with processes or experiments that are non-deterministic

More information

Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process

Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process Λ4flΛ4» ν ff ff χ Vol.4, No.4 211 8fl ADVANCES IN MATHEMATICS Aug., 211 Upper Bounds for the Ruin Probability in a Risk Model With Interest WhosePremiumsDependonthe Backward Recurrence Time Process HE

More information

SS257a Midterm Exam Monday Oct 27 th 2008, 6:30-9:30 PM Talbot College 342 and 343. You may use simple, non-programmable scientific calculators.

SS257a Midterm Exam Monday Oct 27 th 2008, 6:30-9:30 PM Talbot College 342 and 343. You may use simple, non-programmable scientific calculators. SS657a Midterm Exam, October 7 th 008 pg. SS57a Midterm Exam Monday Oct 7 th 008, 6:30-9:30 PM Talbot College 34 and 343 You may use simple, non-programmable scientific calculators. This exam has 5 questions

More information

Risk Models and Their Estimation

Risk Models and Their Estimation ACTEX Ac a d e m i c Se r i e s Risk Models and Their Estimation S t e p h e n G. K e l l i s o n, F S A, E A, M A A A U n i v e r s i t y o f C e n t r a l F l o r i d a ( R e t i r e d ) R i c h a r

More information

SOLUTION FOR HOMEWORK 12, ACTS Welcome to your last homework. Here you will see some actuarial notions that sometimes used on actuarial Exam 1.

SOLUTION FOR HOMEWORK 12, ACTS Welcome to your last homework. Here you will see some actuarial notions that sometimes used on actuarial Exam 1. SOLUTION FOR HOMEWORK 2, ACTS 36 Welcome to your last homework. Here you will see some actuarial notions that sometimes use on actuarial Exam.. Notation: B is benefit. Given: B = min(y, ), f Y (y) = 2y

More information

The semester B examination for Algebra 2 will consist of two parts. Part 1 will be selected response. Part 2 will be short answer. n times per year: 1

The semester B examination for Algebra 2 will consist of two parts. Part 1 will be selected response. Part 2 will be short answer. n times per year: 1 ALGEBRA B Semester Eam Review The semester B eamination for Algebra will consist of two parts. Part 1 will be selected response. Part will be short answer. Students ma use a calculator. If a calculator

More information

CS 1538: Introduction to Simulation Homework 1

CS 1538: Introduction to Simulation Homework 1 CS 1538: Introduction to Simulation Homework 1 1. A fair six-sided die is rolled three times. Let X be a random variable that represents the number of unique outcomes in the three tosses. For example,

More information

Executive's Summary of Costs and Benefits. Executive Trifecta Using Indexed Universal Life

Executive's Summary of Costs and Benefits. Executive Trifecta Using Indexed Universal Life Summary of Costs and s Summary Page: 1 Presented By: [Licensed user's name appears here] Insured: Tom Hamilton Deferred Transfer of Transfer to at Beginning of.00% 1 0 0 0 0 0 1,944,52 2 0 0 0 0 0 1,944,52

More information

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014 Time: 3 hours, 8:3-11:3 Instructions: MATH 151, FINAL EXAM Winter Quarter, 21 March, 214 (1) Write your name in blue-book provided and sign that you agree to abide by the honor code. (2) The exam consists

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

II. Probability. II.A General Definitions

II. Probability. II.A General Definitions II. Probability II.A General Definitions The laws of thermodynamics are based on observations of macroscopic bodies, and encapsulate their thermal properties. On the other hand, matter is composed of atoms

More information