International Mathematical Olympiad. Preliminary Selection Contest 2011 Hong Kong. Outline of Solutions

Size: px
Start display at page:

Download "International Mathematical Olympiad. Preliminary Selection Contest 2011 Hong Kong. Outline of Solutions"

Transcription

1 International Mathematical Olympiad Preliminary Selection Contest Hong Kong Outline of Solutions Answers: Solutions:. Such fractions include. They can be grouped into pairs each with sum (i.e. on). Hence the answer is. and so. The sum of consecutive positive integers has unit digit equal to that of ( ) which is. Hence f ( n) f( n) for all n. y direct computation we have f() f() f() Similarly we have f() f() f() 7 f() f() f(6) 7 and so on until f() f() f() 7. Altogether we have groups of 7. Finally since

2 f() f() f() f() f() f() the answer is We must have k and so k 7. On the other hand the product of digits of k must not exceed k (to see this suppose k is an n-digit number with leftmost digit b; then k b n but the product of digits of k is at most k b ) so we have k k and thus k. Since k being the product of digits of k must be an integer k is divisible by. Hence the product of digits of k is also even i.e. is odd. Therefore k (mod ) so the possible k values of k include 76 and. It is easy to check that only works.. Note that 6 and. Hence 6 6 ( ) ( )( ) and so is a possible answer. Remark. It can be checked that the answer is unique.. Note that there are different letters with I and M occurring twice. If the three letters are distinct there are C combinations. Otherwise there are either two I s or two M s plus one of the remaining letters. There are 6 such combinations. Hence the answer is We have y ax. Note that a b c is equal to the value of y when x i.e. a abca. Hence we need to look for the smallest positive a for 6

3 which a is divisible by 6. This corresponds to a 6 or a. 7. The four points form a rectangle if and only they are two pairs of diametrically opposite points. Hence among the C possible outcomes there are C 6 favourable outcomes (by choosing out of the 6 pairs of diametrically opposite points). Therefore the answer is.. Let D be a point on C such that DA D. Then 7 cosdac cos( A ). Let D DA x. Then DC x and applying cosine law in DAC gives x A A ( x) x ( x)() 7 or x i.e. DA and DC cosine law in DAC again we have. Applying x D x C cosc. ()() 6. Let P = ( a) and Q = ( b) where each of a and b is randomly chosen from to. Since each circle has radius the two circles intersect if and only if ba. ( ) ( ) PQ b a or On the Cartesian plane (with axes labelled a and b) the set of possible outcomes is the square bounded by the lines a and b. The set of favourable outcomes is the region of the square between the lines ba and ba as shown. b a b Consider the non-shaded triangular part of the square in the lower right hand corner. It is easy to find that the coordinates of the vertices of the triangle are ( ) ( ) and ( ). Thus it is a right- a angled isosceles triangle with leg and whose area is 7. The same is true for the non-shaded triangular part of the square in the b a

4 upper left hand corner. Hence the required probability is 7. D A. y the angle bisector theorem DC AC 7 and so D. y the power chord 7 theorem D M A and so M. Finally MN is parallel to C since A DM MAD DAN DMN. Hence we have AM A so that MN 6. MN or C MN M D N C. Since the lengths of the altitudes are inversely proportional to the side lengths the sides of the triangle are in ratio : : ::. Let the side lengths be k k k. Then the triangle has 6 perimeter k and Heron s formula asserts that it has area k.(. )(. )(. ) k. Since the in-radius of a triangle is equal to twice the area divided by the perimeter we have k k 6 which gives k. Let be the angle opposite the shortest side and R be the radius of the circumcircle. Then the sine law and cosine law give and hence 6 R. k k k R sin cos

5 . Since PQC is a cyclic quadrilateral with C = we have PQ =. Also P PQ since PC = PCQ =. y Ptolemy s Theorem we have A PQC PQC PC Q. Since Q P PQ and C this P simplifies to QC PC. Let CQ y. Then y PC and considering the area of CPQ gives y 6 y sin or (y)(y) so that y. D Q C. It suffices to consider the last three digits. There are 76 6 possibilities and we need to count how many of these are divisible by. To be divisible by the unit digit must be 6 or. We consider these cases one by one. If the unit digit is the tens digit must be or 7 in order for the number to be divisible by. If the tens digit is or there are choices of hundreds digit (e.g. if the tens digit is then the hundreds digit must be or 7 as and 7 are divisible by ); if the tens digit is or 7 there are also choices (namely 6 ). Hence there are possibilities in this case. If the unit digit is the tens digit must be 6 or leading to possibilities namely The case where the unit digit is 6 is essentially the same as the first case; possibilities. The case where the unit digit is leads to possibilities (it is slightly different from the second case) namely and 6. It follows that the answer is. 6. Consider any consecutive cards. There can be at most one since there are at least three cards between any two s. On the other hand there is at least one for otherwise they have to be s and subject to the required conditions which can easily be seen to be impossible. In other words there is exactly one among any consecutive cards. Since.7 the number of s must either be or. oth bounds can be achieved (for the former case consider ; for the latter case consider ). Hence mm.

6 . Divide the students into groups according to their surname. If there are k students in a group then every student in the group will write k for the question on surnames. The same is true if we divide the students into groups according to birthdays. Since each of has appeared as an answer there is at least one group of each of the sizes. As each student belongs to two groups (one surname group and one birthday group ) the number of students must be at least ( ). Finally it is possible that there are students when for instance the answers to the surname question are all (i.e. there are four surname groups with students) and the answers to the birthday question are all 6 7 (i.e. there are seven birthday groups with 6 7 students). Hence the answer is. 6. Let m be the common root of x ax and x bxc. Clearly m. Since c c we must have a b as m amm bmc. This also gives m. Similarly if a b n is the common root of a b x xa and x cxb then n. It follows that c mn. As m is a root of the equation root of this equation. Now n is a common root of the equations x ax and x ax which has product of roots n is also a x x a so we have n ann na which simplifies to ( a)( n). Clearly a for otherwise the equation x ax will have no real root. Thus we must have n and n na gives a. Since mn we have m and m bmc gives bc. Thus abc. 7. y scaling we may assume AC and A. Then the cosine law asserts that C cos6. Since C A C AC CP and CQ it can be C C shown that P is between and Q. Since A P A C( C CP) C P we have. C A Together with the common we have AC ~ PA and so AP = CA. It follows that APQ AP AP AP CA 6. On the other hand we have AQP since P A Q C A Q ( AC) ( C CQ) AC C C CQ CQ AC CQ. Therefore PAQ 6. 6

7 . We consider two cases. Case : No green ball and blue ball are adjacent to each other In this case the red balls must either occupy the st rd th th positions or the nd th 6th th positions. In each case there are C ways to arrange the green and blue balls. Hence there are altogether ways in this case. Case : A green ball and a blue ball are adjacent to each other We place the green-blue pair first. Since half of the total number of balls are red and that no two red balls may be adjacent the number of empty spaces before and after this pair must both be odd. Hence there are choices of positions of this pair (nd and rd th and th. th and th). Of course there are ways to arrange the two balls among the pair. After this pair is placed the positions of the red balls are fixed (e.g. if the pair is placed in the 6th and 7th positions then the red balls must be placed at the st rd th th th th and th positions) and there are C 7 ways to arrange the remaining green balls and blue balls. Hence there are altogether 7 6 ways in this case. Combining the two cases the answer is There are possible 6-digit passwords and we shall count how many of these have at least three identical consecutive digits. Let A (resp. C D) denote the set of passwords in which digits to (resp. to to to 6) are identical. Then we have A C D A C CD AC D AD AC CD AD ACD ACD It follows that ACD ( ) ( ) 6 and so the answer is Dividing the first equation by the second we get and denominator on the left hand side by x y xy. Dividing both the numerator x y t or y and writing t for x y we have t t t t (*) t 7

8 x Clearly every solution ( x y ) to the original system gives rise to a solution t to (*). y Moreover two different solutions ( x y ) and ( x' y ') to the original system give rise to x x ' two different solutions t and t ' to (*). (This is because once t is fixed then so y y ' are x and y ; for instance the first equation together with x ty imply y Writing t x i i we need to find the value of yi t t t t t t t t t t t ( t )( t )( t ) where each t i is a different solution to (*) and hence ( )( )( ). Consequently we () () () have ( t)( t)( t) 7..)

International Mathematical Olympiad. Preliminary Selection Contest 2017 Hong Kong. Outline of Solutions 5. 3*

International Mathematical Olympiad. Preliminary Selection Contest 2017 Hong Kong. Outline of Solutions 5. 3* International Mathematical Olympiad Preliminary Selection Contest Hong Kong Outline of Solutions Answers: 06 0000 * 6 97 7 6 8 7007 9 6 0 6 8 77 66 7 7 0 6 7 7 6 8 9 8 0 0 8 *See the remar after the solution

More information

nx + 1 = (n + 1)x 13(n + 1) and nx = (n + 1)x + 27(n + 1).

nx + 1 = (n + 1)x 13(n + 1) and nx = (n + 1)x + 27(n + 1). 1. (Answer: 630) 001 AIME SOLUTIONS Let a represent the tens digit and b the units digit of an integer with the required property. Then 10a + b must be divisible by both a and b. It follows that b must

More information

UNCC 2001 Comprehensive, Solutions

UNCC 2001 Comprehensive, Solutions UNCC 2001 Comprehensive, Solutions March 5, 2001 1 Compute the sum of the roots of x 2 5x + 6 = 0 (A) (B) 7/2 (C) 4 (D) 9/2 (E) 5 (E) The sum of the roots of the quadratic ax 2 + bx + c = 0 is b/a which,

More information

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Senior A Division CONTEST NUMBER 1

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Senior A Division CONTEST NUMBER 1 Senior A Division CONTEST NUMBER 1 PART I FALL 2011 CONTEST 1 TIME: 10 MINUTES F11A1 Larry selects a 13-digit number while David selects a 10-digit number. Let be the number of digits in the product of

More information

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints view.php3 (JPEG Image, 840x888 pixels) - Scaled (71%) https://mail.ateneo.net/horde/imp/view.php3?mailbox=inbox&inde... 1 of 1 11/5/2008 5:02 PM 11 th Philippine Mathematical Olympiad Questions, Answers,

More information

Baltic Way 2008 Gdańsk, November 8, 2008

Baltic Way 2008 Gdańsk, November 8, 2008 Baltic Way 008 Gdańsk, November 8, 008 Problems and solutions Problem 1. Determine all polynomials p(x) with real coefficients such that p((x + 1) ) = (p(x) + 1) and p(0) = 0. Answer: p(x) = x. Solution:

More information

2008 Euclid Contest. Solutions. Canadian Mathematics Competition. Tuesday, April 15, c 2008 Centre for Education in Mathematics and Computing

2008 Euclid Contest. Solutions. Canadian Mathematics Competition. Tuesday, April 15, c 2008 Centre for Education in Mathematics and Computing Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 008 Euclid Contest Tuesday, April 5, 008 Solutions c 008

More information

2007 Fermat Contest (Grade 11)

2007 Fermat Contest (Grade 11) Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 007 Fermat Contest (Grade 11) Tuesday, February 0, 007 Solutions

More information

International Mathematical Olympiad. Preliminary Selection Contest 2004 Hong Kong. Outline of Solutions 3 N

International Mathematical Olympiad. Preliminary Selection Contest 2004 Hong Kong. Outline of Solutions 3 N International Mathematical Olympiad Preliminary Selection Contest 004 Hong Kong Outline of Solutions Answers:. 8. 0. N 4. 49894 5. 6. 004! 40 400 7. 6 8. 7 9. 5 0. 0. 007. 8066. π + 4. 5 5. 60 6. 475 7.

More information

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION SAMPLE PAPER 02 F PERIODIC TEST III EXAM (2017-18) SUBJECT: MATHEMATICS(041) BLUE PRINT : CLASS IX Unit Chapter VSA (1 mark) SA I (2 marks) SA II (3 marks)

More information

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION

KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION KENDRIYA VIDYALAYA SANGATHAN, HYDERABAD REGION SAMPLE PAPER 02 F SESSING ENDING EXAM (2017-18) SUBJECT: MATHEMATICS(041) BLUE PRINT : CLASS IX Unit Chapter VSA (1 mark) SA I (2 marks) SA II (3 marks) LA

More information

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST 08 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST. A right triangle has hypotenuse 9 and one leg. What is the length of the other leg?. Don is /3 of the way through his run. After running another / mile, he

More information

HMMT November 2012 Saturday 10 November 2012

HMMT November 2012 Saturday 10 November 2012 HMMT November 01 Saturday 10 November 01 1. [5] 10 total. The prime numbers under 0 are:,, 5, 7, 11, 1, 17, 19,, 9. There are 10 in. [5] 180 Albert s choice of burgers, sides, and drinks are independent

More information

10! = ?

10! = ? AwesomeMath Team Contest 013 Solutions Problem 1. Define the value of a letter as its position in the alphabet. For example, C is the third letter, so its value is 3. The value of a word is the sum of

More information

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy

The sum x 1 + x 2 + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E): None of the above. How many pairs of positive integers (x, y) are there, those satisfy Important: Answer to all 15 questions. Write your answers on the answer sheets provided. For the multiple choice questions, stick only the letters (A, B, C, D or E) of your choice. No calculator is allowed.

More information

1966 IMO Shortlist. IMO Shortlist 1966

1966 IMO Shortlist. IMO Shortlist 1966 IMO Shortlist 1966 1 Given n > 3 points in the plane such that no three of the points are collinear. Does there exist a circle passing through (at least) 3 of the given points and not containing any other

More information

Baltic Way 2003 Riga, November 2, 2003

Baltic Way 2003 Riga, November 2, 2003 altic Way 2003 Riga, November 2, 2003 Problems and solutions. Let Q + be the set of positive rational numbers. Find all functions f : Q + Q + which for all x Q + fulfil () f ( x ) = f (x) (2) ( + x ) f

More information

46th ANNUAL MASSACHUSETTS MATHEMATICS OLYMPIAD. A High School Competition Conducted by. And Sponsored by FIRST-LEVEL EXAMINATION SOLUTIONS

46th ANNUAL MASSACHUSETTS MATHEMATICS OLYMPIAD. A High School Competition Conducted by. And Sponsored by FIRST-LEVEL EXAMINATION SOLUTIONS 46th ANNUAL MASSACHUSETTS MATHEMATICS OLYMPIAD 009 00 A High School Competition Conducted by THE MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES (MAML) And Sponsored by THE ACTUARIES CLUB OF BOSTON FIRST-LEVEL

More information

1 Hanoi Open Mathematical Competition 2017

1 Hanoi Open Mathematical Competition 2017 1 Hanoi Open Mathematical Competition 017 1.1 Junior Section Question 1. Suppose x 1, x, x 3 are the roots of polynomial P (x) = x 3 6x + 5x + 1. The sum x 1 + x + x 3 is (A): 4 (B): 6 (C): 8 (D): 14 (E):

More information

2003 Solutions Pascal Contest (Grade 9)

2003 Solutions Pascal Contest (Grade 9) Canadian Mathematics Competition An activity of The Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 00 Solutions Pascal Contest (Grade 9) for The CENTRE for

More information

1. The sides of a triangle are in the ratio 3 : 5 : 9. Which of the following words best describes the triangle?

1. The sides of a triangle are in the ratio 3 : 5 : 9. Which of the following words best describes the triangle? UNIVERSITY OF NORTH CAROLINA CHARLOTTE 999 HIGH SCHOOL MATHEMATICS CONTEST March 8, 999 The sides of a triangle are in the ratio : 5 : 9 Which of the following words best describes the triangle? (A) obtuse

More information

2003 AIME Given that ((3!)!)! = k n!, where k and n are positive integers and n is as large as possible, find k + n.

2003 AIME Given that ((3!)!)! = k n!, where k and n are positive integers and n is as large as possible, find k + n. 003 AIME 1 Given that ((3!)!)! = k n!, where k and n are positive integers and n is as large 3! as possible, find k + n One hundred concentric circles with radii 1,, 3,, 100 are drawn in a plane The interior

More information

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018.

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018. New Zealand Mathematical Olympiad Committee Camp Selection Problems 2018 Solutions Due: 28th September 2018 1. Suppose that a, b, c and d are four different integers. Explain why must be a multiple of

More information

CBSE X Mathematics 2012 Solution (SET 1) Section B

CBSE X Mathematics 2012 Solution (SET 1) Section B CBSE X Mathematics 01 Solution (SET 1) Section B Q11. Find the value(s) of k so that the quadratic equation x kx + k = 0 has equal roots. Given equation is x kx k 0 For the given equation to have equal

More information

Written test, 25 problems / 90 minutes

Written test, 25 problems / 90 minutes Sponsored by: UGA Math Department and UGA Math Club Written test, 5 problems / 90 minutes October, 06 WITH SOLUTIONS Problem. Let a represent a digit from to 9. Which a gives a! aa + a = 06? Here aa indicates

More information

Maharashtra Board Class X Mathematics - Geometry Board Paper 2014 Solution. Time: 2 hours Total Marks: 40

Maharashtra Board Class X Mathematics - Geometry Board Paper 2014 Solution. Time: 2 hours Total Marks: 40 Maharashtra Board Class X Mathematics - Geometry Board Paper 04 Solution Time: hours Total Marks: 40 Note: - () All questions are compulsory. () Use of calculator is not allowed.. i. Ratio of the areas

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD

SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD. Determine the following value: 7 August 6 Solutions π + π. Solution: Since π

More information

RMT 2013 Geometry Test Solutions February 2, = 51.

RMT 2013 Geometry Test Solutions February 2, = 51. RMT 0 Geometry Test Solutions February, 0. Answer: 5 Solution: Let m A = x and m B = y. Note that we have two pairs of isosceles triangles, so m A = m ACD and m B = m BCD. Since m ACD + m BCD = m ACB,

More information

The Alberta High School Mathematics Competition Solution to Part I, 2014.

The Alberta High School Mathematics Competition Solution to Part I, 2014. The Alberta High School Mathematics Competition Solution to Part I, 2014. Question 1. When the repeating decimal 0.6 is divided by the repeating decimal 0.3, the quotient is (a) 0.2 (b) 2 (c) 0.5 (d) 0.5

More information

Objective Mathematics

Objective Mathematics . In BC, if angles, B, C are in geometric seq- uence with common ratio, then is : b c a (a) (c) 0 (d) 6. If the angles of a triangle are in the ratio 4 : :, then the ratio of the longest side to the perimeter

More information

Math. Model Exam (1) Mid-year. Fifth primary. Question 1: Question 2: Answer the following: a = (to the nearest )

Math. Model Exam (1) Mid-year. Fifth primary. Question 1: Question 2: Answer the following: a = (to the nearest ) Model Exam (1) Question 1: Answer the following: a- 65.3814 + 63.4027 = (to the nearest ) b- 53.27 2.1 = (to the nearest tenth) c- (3.425 + 1.07) 2.8 = (to the nearest hundredth) d- 9.568 9 = (to the nearest

More information

Geometry Facts Circles & Cyclic Quadrilaterals

Geometry Facts Circles & Cyclic Quadrilaterals Geometry Facts Circles & Cyclic Quadrilaterals Circles, chords, secants and tangents combine to give us many relationships that are useful in solving problems. Power of a Point Theorem: The simplest of

More information

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin Circle and Cyclic Quadrilaterals MARIUS GHERGU School of Mathematics and Statistics University College Dublin 3 Basic Facts About Circles A central angle is an angle whose vertex is at the center of the

More information

45-th Moldova Mathematical Olympiad 2001

45-th Moldova Mathematical Olympiad 2001 45-th Moldova Mathematical Olympiad 200 Final Round Chişinǎu, March 2 Grade 7. Prove that y 3 2x+ x 3 2y x 2 + y 2 for any numbers x,y [, 2 3 ]. When does equality occur? 2. Let S(n) denote the sum of

More information

41st International Mathematical Olympiad

41st International Mathematical Olympiad 41st International Mathematical Olympiad Taejon, Korea July 13 25, 2001 Problems Problem 1 A B is tangent to the circles C A M N and N M B D. M lies between C and D on the line C D, and C D is parallel

More information

Methods in Mathematics (Linked Pair Pilot)

Methods in Mathematics (Linked Pair Pilot) Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier January 2013 Pages 3 4 5 Mark Methods

More information

Pre RMO Exam Paper Solution:

Pre RMO Exam Paper Solution: Paper Solution:. How many positive integers less than 000 have the property that the sum of the digits of each such number is divisible by 7 and the number itself is divisible by 3? Sum of Digits Drivable

More information

Individual Events 1 I2 x 0 I3 a. Group Events. G8 V 1 G9 A 9 G10 a 4 4 B

Individual Events 1 I2 x 0 I3 a. Group Events. G8 V 1 G9 A 9 G10 a 4 4 B Answers: (99-95 HKMO Final Events) Created by: Mr. Francis Hung Last updated: July 08 I a Individual Events I x 0 I3 a I r 3 I5 a b 3 y 3 b 8 s b c 3 z c t 5 c d w d 0 u d 6 3 6 G6 a 5 G7 a Group Events

More information

1. Prove that for every positive integer n there exists an n-digit number divisible by 5 n all of whose digits are odd.

1. Prove that for every positive integer n there exists an n-digit number divisible by 5 n all of whose digits are odd. 32 nd United States of America Mathematical Olympiad Proposed Solutions May, 23 Remark: The general philosophy of this marking scheme follows that of IMO 22. This scheme encourages complete solutions.

More information

International Mathematical Talent Search Round 26

International Mathematical Talent Search Round 26 International Mathematical Talent Search Round 26 Problem 1/26. Assume that x, y, and z are positive real numbers that satisfy the equations given on the right. x + y + xy = 8, y + z + yz = 15, z + x +

More information

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Tuesday, February 28, 2017

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Tuesday, February 28, 2017 The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 2017 Cayley Contest (Grade 10) Tuesday, February 28, 2017 (in North America and South America) Wednesday, March 1, 2017 (outside

More information

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST,

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 014 Solutions Junior Preliminary 1. Rearrange the sum as (014 + 01 + 010 + + ) (013 + 011 + 009 + + 1) = (014 013) + (01 011) + + ( 1) = 1 + 1 + +

More information

1 / 24

1 / 24 CBSE-XII-017 EXAMINATION CBSE-X-01 EXAMINATION MATHEMATICS Paper & Solution Time: 3 Hrs. Max. Marks: 90 General Instuctions : 1. All questions are compulsory.. The question paper consists of 34 questions

More information

CBSE Sample Paper-03 (Unsolved) SUMMATIVE ASSESSMENT II MATHEMATICS Class IX. Time allowed: 3 hours Maximum Marks: 90

CBSE Sample Paper-03 (Unsolved) SUMMATIVE ASSESSMENT II MATHEMATICS Class IX. Time allowed: 3 hours Maximum Marks: 90 CBSE Sample Paper-3 (Unsolved) SUMMATIVE ASSESSMENT II MATHEMATICS Class IX Time allowed: 3 hours Maximum Marks: 9 General Instructions: a) All questions are compulsory. b) The question paper consists

More information

MATHEMATICS. (Two hours and a half) Answers to this Paper must be written on the paper provided separately.

MATHEMATICS. (Two hours and a half) Answers to this Paper must be written on the paper provided separately. CLASS IX MATHEMATICS (Two hours and a half) Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent

More information

BRITISH COLUMBIA COLLEGES High School Mathematics Contest 2003 Solutions

BRITISH COLUMBIA COLLEGES High School Mathematics Contest 2003 Solutions BRITISH COLUMBIA COLLEGES High School Mathematics Contest 3 Solutions Junior Preliminary. Solve the equation x = Simplify the complex fraction by multiplying numerator and denominator by x. x = = x = (x

More information

UNC Charlotte 2005 Comprehensive March 7, 2005

UNC Charlotte 2005 Comprehensive March 7, 2005 March 7, 2005 1. The numbers x and y satisfy 2 x = 15 and 15 y = 32. What is the value xy? (A) 3 (B) 4 (C) 5 (D) 6 (E) none of A, B, C or D Solution: C. Note that (2 x ) y = 15 y = 32 so 2 xy = 2 5 and

More information

2005 Pascal Contest (Grade 9)

2005 Pascal Contest (Grade 9) Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 005 Pascal Contest (Grade 9) Wednesday, February 3, 005

More information

2009 Euclid Contest. Solutions

2009 Euclid Contest. Solutions Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 009 Euclid Contest Tuesday, April 7, 009 Solutions c 009

More information

Australian Intermediate Mathematics Olympiad 2016

Australian Intermediate Mathematics Olympiad 2016 Australian Intermediate Mathematics Olympiad 06 Questions. Find the smallest positive integer x such that x = 5y, where y is a positive integer. [ marks]. A 3-digit number in base 7 is also a 3-digit number

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

3. A square has 4 sides, so S = 4. A pentagon has 5 vertices, so P = 5. Hence, S + P = 9. = = 5 3.

3. A square has 4 sides, so S = 4. A pentagon has 5 vertices, so P = 5. Hence, S + P = 9. = = 5 3. JHMMC 01 Grade Solutions October 1, 01 1. By counting, there are 7 words in this question.. (, 1, ) = 1 + 1 + = 9 + 1 + =.. A square has sides, so S =. A pentagon has vertices, so P =. Hence, S + P = 9..

More information

Domino Servite School

Domino Servite School Domino Servite School Accreditation Number 13SCH0100008 Registration Number 122581 Mathematics Paper II Grade 12 2017 Trial Examination Name: Time: 3 hours Total: 150 Examiner: H Pretorius Moderators:

More information

LLT Education Services

LLT Education Services 8. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle. (a) 4 cm (b) 3 cm (c) 6 cm (d) 5 cm 9. From a point P, 10 cm away from the

More information

8. Quadrilaterals. If AC = 21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.

8. Quadrilaterals. If AC = 21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ. 8. Quadrilaterals Q 1 Name a quadrilateral whose each pair of opposite sides is equal. Mark (1) Q 2 What is the sum of two consecutive angles in a parallelogram? Mark (1) Q 3 The angles of quadrilateral

More information

number. However, unlike , three of the digits of N are 3, 4 and 5, and N is a multiple of 6.

number. However, unlike , three of the digits of N are 3, 4 and 5, and N is a multiple of 6. C1. The positive integer N has six digits in increasing order. For example, 124 689 is such a number. However, unlike 124 689, three of the digits of N are 3, 4 and 5, and N is a multiple of 6. How many

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February 4th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) 4 (e) 48 Problem. Suppose the function g(x) = f(x)

More information

RMT 2014 Geometry Test Solutions February 15, 2014

RMT 2014 Geometry Test Solutions February 15, 2014 RMT 014 Geometry Test Solutions February 15, 014 1. The coordinates of three vertices of a parallelogram are A(1, 1), B(, 4), and C( 5, 1). Compute the area of the parallelogram. Answer: 18 Solution: Note

More information

(A) 2S + 3 (B) 3S + 2 (C) 3S + 6 (D) 2S + 6 (E) 2S + 12

(A) 2S + 3 (B) 3S + 2 (C) 3S + 6 (D) 2S + 6 (E) 2S + 12 1 The sum of two numbers is S Suppose 3 is added to each number and then each of the resulting numbers is doubled What is the sum of the final two numbers? (A) S + 3 (B) 3S + (C) 3S + 6 (D) S + 6 (E) S

More information

CAREER POINT. PRMO EXAM-2017 (Paper & Solution) Sum of number should be 21

CAREER POINT. PRMO EXAM-2017 (Paper & Solution) Sum of number should be 21 PRMO EXAM-07 (Paper & Solution) Q. How many positive integers less than 000 have the property that the sum of the digits of each such number is divisible by 7 and the number itself is divisible by 3? Sum

More information

41st International Mathematical Olympiad

41st International Mathematical Olympiad 41st International Mathematical Olympiad Taejon, Korea, July 2000 1 Two circles Γ 1 and Γ 2 intersect at M and N Let l be the common tangent to Γ 1 and Γ 2 so that M is closer to l than N is Let l touch

More information

32 nd United States of America Mathematical Olympiad Recommended Marking Scheme May 1, 2003

32 nd United States of America Mathematical Olympiad Recommended Marking Scheme May 1, 2003 32 nd United States of America Mathematical Olympiad Recommended Marking Scheme May 1, 23 Remark: The general philosophy of this marking scheme follows that of IMO 22. This scheme encourages complete solutions.

More information

INTERNATIONAL MATHEMATICAL OLYMPIADS. Hojoo Lee, Version 1.0. Contents 1. Problems 1 2. Answers and Hints References

INTERNATIONAL MATHEMATICAL OLYMPIADS. Hojoo Lee, Version 1.0. Contents 1. Problems 1 2. Answers and Hints References INTERNATIONAL MATHEMATICAL OLYMPIADS 1990 2002 Hojoo Lee, Version 1.0 Contents 1. Problems 1 2. Answers and Hints 15 3. References 16 1. Problems 021 Let n be a positive integer. Let T be the set of points

More information

2010 Shortlist JBMO - Problems

2010 Shortlist JBMO - Problems Chapter 1 2010 Shortlist JBMO - Problems 1.1 Algebra A1 The real numbers a, b, c, d satisfy simultaneously the equations abc d = 1, bcd a = 2, cda b = 3, dab c = 6. Prove that a + b + c + d 0. A2 Determine

More information

1. (A) Factor to get (2x+3)(2x 10) = 0, so the two roots are 3/2 and 5, which sum to 7/2.

1. (A) Factor to get (2x+3)(2x 10) = 0, so the two roots are 3/2 and 5, which sum to 7/2. Solutions 00 53 rd AMC 1 A 1. (A) Factor to get (x+3)(x 10) = 0, so the two roots are 3/ and 5, which sum to 7/.. (A) Let x be the number she was given. Her calculations produce so x 9 3 = 43, x 9 = 19

More information

Pre-Regional Mathematical Olympiad Solution 2017

Pre-Regional Mathematical Olympiad Solution 2017 Pre-Regional Mathematical Olympiad Solution 07 Time:.5 hours. Maximum Marks: 50 [Each Question carries 5 marks]. How many positive integers less than 000 have the property that the sum of the digits of

More information

2003 AIME2 SOLUTIONS (Answer: 336)

2003 AIME2 SOLUTIONS (Answer: 336) 1 (Answer: 336) 2003 AIME2 SOLUTIONS 2 Call the three integers a, b, and c, and, without loss of generality, assume a b c Then abc = 6(a + b + c), and c = a + b Thus abc = 12c, and ab = 12, so (a, b, c)

More information

USA Aime 1983: Problems & Solutions 1

USA Aime 1983: Problems & Solutions 1 USA Aime 1983: Problems & Solutions 1 1 Problems 1. Let x,y, and z all exceed 1, and let w be a positive number such that log x w = 4, log y w = 40, and log xyz w = 1. Find log z w.. Let f(x) = x p + x

More information

9 th CBSE Mega Test - II

9 th CBSE Mega Test - II 9 th CBSE Mega Test - II Time: 3 hours Max. Marks: 90 General Instructions All questions are compulsory. The question paper consists of 34 questions divided into four sections A, B, C and D. Section A

More information

Non-standard MMC problems

Non-standard MMC problems Non-standard MMC problems Carl Joshua Quines 1 Algebra 1. (15S/9B/E6) A quadratic function f(x) satisfies f(0) = 30 and f(2) = 0. Determine all the zeros of f(x). [2 and 15] 2. (15S/IVB/E6) What is the

More information

Australian Intermediate Mathematics Olympiad 2016

Australian Intermediate Mathematics Olympiad 2016 A u s t r a l i a n M at h e m at i c a l O ly m p i a d C o m m i t t e e a d e p a r t m e n t o f t h e a u s t r a l i a n m at h e m at i c s t r u s t Australian Intermediate Mathematics Olympiad

More information

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Tuesday, February 27, 2018

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Tuesday, February 27, 2018 The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 018 Cayley Contest (Grade 10) Tuesday, February 7, 018 (in North America and South America) Wednesday, February 8, 018 (outside of

More information

HANOI OPEN MATHEMATICS COMPETITON PROBLEMS

HANOI OPEN MATHEMATICS COMPETITON PROBLEMS HANOI MATHEMATICAL SOCIETY NGUYEN VAN MAU HANOI OPEN MATHEMATICS COMPETITON PROBLEMS 2006-2013 HANOI - 2013 Contents 1 Hanoi Open Mathematics Competition 3 1.1 Hanoi Open Mathematics Competition 2006...

More information

HIGH SCHOOL - SOLUTIONS = n = 2315

HIGH SCHOOL - SOLUTIONS = n = 2315 PURPLE COMET! MATH MEET April 018 HIGH SCHOOL - SOLUTIONS Copyright c Titu Andreescu and Jonathan Kane Problem 1 Find the positive integer n such that 1 3 + 5 6 7 8 + 9 10 11 1 = n 100. Answer: 315 1 3

More information

SAMPLE PAPER 3 (SA II) Mathematics CLASS : X. Time: 3hrs Max. Marks: 90

SAMPLE PAPER 3 (SA II) Mathematics CLASS : X. Time: 3hrs Max. Marks: 90 1 SAMPLE PAPER 3 (SA II) MRS.KIRAN WANGNOO Mathematics CLASS : X Time: 3hrs Max. Marks: 90 General Instruction:- 1. All questions are Compulsory. 1. The question paper consists of 34 questions divided

More information

Worksheet 1- of 17. Preparatory Program - AMTI-NMTC Final Primary Level (Std V-VI)

Worksheet 1- of 17. Preparatory Program - AMTI-NMTC Final Primary Level (Std V-VI) Preparatory Program - AMTI-NMTC Final Primary Level (Std V-VI) Worksheet 1- of 17 Note - Elegant and novel solution will get extra Credits Diagrams and explanation should be given wherever necessary. Rough

More information

20th Bay Area Mathematical Olympiad. BAMO 2018 Problems and Solutions. February 27, 2018

20th Bay Area Mathematical Olympiad. BAMO 2018 Problems and Solutions. February 27, 2018 20th Bay Area Mathematical Olympiad BAMO 201 Problems and Solutions The problems from BAMO- are A E, and the problems from BAMO-12 are 1 5. February 27, 201 A Twenty-five people of different heights stand

More information

The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in

The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in Grade 11 or higher. Problem E What s Your Angle? A

More information

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in Chapter - 10 (Circle) Key Concept * Circle - circle is locus of such points which are at equidistant from a fixed point in a plane. * Concentric circle - Circle having same centre called concentric circle.

More information

Olimpiada Matemática de Centroamérica y el Caribe

Olimpiada Matemática de Centroamérica y el Caribe Olimpiada Matemática de Centroamérica y el Caribe 1st Centromerican 1999 Problem A1 A, B, C, D, E each has a unique piece of news. They make a series of phone calls to each other. In each call, the caller

More information

Georgia Tech HSMC 2010

Georgia Tech HSMC 2010 Georgia Tech HSMC 2010 Varsity Multiple Choice February 27 th, 2010 1. A cube of SPAM defined by S = {(x, y, z) 0 x, y, z 1} is cut along the planes x = y, y = z, z = x. How many pieces are there? (No

More information

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Thursday, February 20, 2014

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca Cayley Contest. (Grade 10) Thursday, February 20, 2014 The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca 2014 Cayley Contest (Grade 10) Thursday, February 20, 2014 (in North America and South America) Friday, February 21, 2014 (outside

More information

ANSWERS. CLASS: VIII TERM - 1 SUBJECT: Mathematics. Exercise: 1(A) Exercise: 1(B)

ANSWERS. CLASS: VIII TERM - 1 SUBJECT: Mathematics. Exercise: 1(A) Exercise: 1(B) ANSWERS CLASS: VIII TERM - 1 SUBJECT: Mathematics TOPIC: 1. Rational Numbers Exercise: 1(A) 1. Fill in the blanks: (i) -21/24 (ii) -4/7 < -4/11 (iii)16/19 (iv)11/13 and -11/13 (v) 0 2. Answer True or False:

More information

GRE. Advanced GRE Math Questions

GRE. Advanced GRE Math Questions Advanced GRE Math Questions Quantitative Arithmetic 1. What is the sum of all integers x, such that 7 < x 5? 7 7 6 6 7 1. C Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a

More information

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS. Problems 1-2. Time Limit 8 Minutes

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS. Problems 1-2. Time Limit 8 Minutes Problems 1-2 Time Limit 8 Minutes 1. In one week, a salesman sells p cars for q thousands of dollars each, earning a commission of $100 plus q% of the selling price each time he sells a car, where p and

More information

IMO Training Camp Mock Olympiad #2

IMO Training Camp Mock Olympiad #2 IMO Training Camp Mock Olympiad #2 July 3, 2008 1. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted by M. Let X be a variable point on the shorter arc MA of the circumcircle

More information

XX Asian Pacific Mathematics Olympiad

XX Asian Pacific Mathematics Olympiad XX Asian Pacific Mathematics Olympiad March, 008 Problem 1. Let ABC be a triangle with A < 60. Let X and Y be the points on the sides AB and AC, respectively, such that CA + AX = CB + BX and BA + AY =

More information

2017 Harvard-MIT Mathematics Tournament

2017 Harvard-MIT Mathematics Tournament Team Round 1 Let P(x), Q(x) be nonconstant polynomials with real number coefficients. Prove that if P(y) = Q(y) for all real numbers y, then P(x) = Q(x) for all real numbers x. 2 Does there exist a two-variable

More information

Hanoi Open Mathematical Competition 2017

Hanoi Open Mathematical Competition 2017 Hanoi Open Mathematical Competition 2017 Junior Section Saturday, 4 March 2017 08h30-11h30 Important: Answer to all 15 questions. Write your answers on the answer sheets provided. For the multiple choice

More information

2013 Sharygin Geometry Olympiad

2013 Sharygin Geometry Olympiad Sharygin Geometry Olympiad 2013 First Round 1 Let ABC be an isosceles triangle with AB = BC. Point E lies on the side AB, and ED is the perpendicular from E to BC. It is known that AE = DE. Find DAC. 2

More information

2009 Math Olympics Level II Solutions

2009 Math Olympics Level II Solutions Saginaw Valley State University 009 Math Olympics Level II Solutions 1. f (x) is a degree three monic polynomial (leading coefficient is 1) such that f (0) 3, f (1) 5 and f () 11. What is f (5)? (a) 7

More information

1. How many six-digit multiples of 5 can be formed from the digits 1, 2, 3, 4, 5, and 6 using each of the digits exactly once?

1. How many six-digit multiples of 5 can be formed from the digits 1, 2, 3, 4, 5, and 6 using each of the digits exactly once? UNIVERSITY OF NORTH CAROLINA CHARLOTTE 2000 HIGH SCHOOL MATHEMATICS CONTEST March 6, 2000 1 How many six-digit multiples of 5 can be formed from the digits 1, 2, 3, 4, 5, and 6 using each of the digits

More information

x = y +z +2, y = z +x+1, and z = x+y +4. C R

x = y +z +2, y = z +x+1, and z = x+y +4. C R 1. [5] Solve for x in the equation 20 14+x = 20+14 x. 2. [5] Find the area of a triangle with side lengths 14, 48, and 50. 3. [5] Victoria wants to order at least 550 donuts from Dunkin Donuts for the

More information

QUESTION BANK ON STRAIGHT LINE AND CIRCLE

QUESTION BANK ON STRAIGHT LINE AND CIRCLE QUESTION BANK ON STRAIGHT LINE AND CIRCLE Select the correct alternative : (Only one is correct) Q. If the lines x + y + = 0 ; 4x + y + 4 = 0 and x + αy + β = 0, where α + β =, are concurrent then α =,

More information

Joe Holbrook Memorial Math Competition

Joe Holbrook Memorial Math Competition Joe Holbrook Memorial Math Competition 8th Grade Solutions October 9th, 06. + (0 ( 6( 0 6 ))) = + (0 ( 6( 0 ))) = + (0 ( 6)) = 6 =. 80 (n ). By the formula that says the interior angle of a regular n-sided

More information

Pre-REGIONAL MATHEMATICAL OLYMPIAD, 2017

Pre-REGIONAL MATHEMATICAL OLYMPIAD, 2017 P-RMO 017 NATIONAL BOARD FOR HIGHER MATHEMATICS AND HOMI BHABHA CENTRE FOR SCIENCE EDUCATION TATA INSTITUTE OF FUNDAMENTAL RESEARCH Pre-REGIONAL MATHEMATICAL OLYMPIAD, 017 TEST PAPER WITH SOLUTION & ANSWER

More information

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2 CIRCLE [STRAIGHT OBJECTIVE TYPE] Q. The line x y + = 0 is tangent to the circle at the point (, 5) and the centre of the circles lies on x y = 4. The radius of the circle is (A) 3 5 (B) 5 3 (C) 5 (D) 5

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) (e) 8 Solution: Note that xy = (x + y) (x y) = 169

More information

SUMMATIVE ASSESSMENT I, IX / Class IX

SUMMATIVE ASSESSMENT I, IX / Class IX I, 0 SUMMATIVE ASSESSMENT I, 0 0 MATHEMATICS / MATHEMATICS MATHEMATICS CLASS CLASS - IX - IX IX / Class IX MA-0 90 Time allowed : hours Maximum Marks : 90 (i) (ii) 8 6 0 0 (iii) 8 (iv) (v) General Instructions:

More information