Supplements. Phys. 201 Methods of Theoretical Physics 1. Dr. Nidal M. Ershaidat. Phys. 201 Methods of Theoretical Physics 1

Size: px
Start display at page:

Download "Supplements. Phys. 201 Methods of Theoretical Physics 1. Dr. Nidal M. Ershaidat. Phys. 201 Methods of Theoretical Physics 1"

Transcription

1 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics Ps. Metods of Teoeticl Psics Supplemets D. Nidl M. Esidt

2 Tble of Cotets Vecto Spce... Vecto Idetities... Te Cul... Comple Numbes...7 Comple Logitms... Detemits... Odi Diffeetil Equtios (ODE s)...6 ODE A Emple...9 Ect Diffeetil... Metod of Udetemied Coefficiet o Guessig Metod... Metod of Vitio of Pmetes... Fouie Seies...7 Cuvilie Coodites...5

3 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. Vecto Spce A. Te Cocept Oe of te fudmetl cocepts of lie lgeb is te cocept of vecto spce. Fo emple, m fuctio sets studied i mtemticl lsis e wit espect to tei lgebic popeties vecto spces. I lsis te otio lie spce is used isted of te otio vecto spce. B. Defiitio A set X is clled vecto spce ove te umbe field K if to eve pi (,) of elemets of X tee coespods sum X, d to eve pi (α,) wee α K d X, tee coespods elemet α X, wit te popeties -8: ) (commutbilit of dditio); ) ( z) ( ) z (ssocitivit of dditio); ) X suc tt X (eistece of ull elemet); ) X - X: (-) (eistece of te ivese elemet); 5). (uitism); 6) α (β) (αβ) (ssocitivit wit espect to umbe multiplictio); 7) α ( ) α α (distibutivit wit espect to vecto dditio); 8) (α β ) α β (distibutivit wit espect to umbe dditio). Te popeties -8 e clled te vecto spce ioms. Aioms - sow tt X is commuttive goup o Abeli goup wit espect to vecto dditio. Te secod coespodece is clled multiplictio of te vecto b umbe, d it stisfies ioms 5-8. Elemets of vecto spce e clled vectos. If K R, te oe speks of el vecto spce, d if K C, te of comple vecto spce. Isted of te otio vecto spce we sll use te bbevitive spce.

4 Psics Deptmet, Ymouk Uivesit, Ibid Jod D. Nidl M. Esidt Ps. Mtemticl Psics Doc. A Vecto Idetities I te followig φ d ψ e scl fuctios, AdB e vectos. A B A B () A B A B () φ A φ Aφ A () A B B A A B () A B B A A B A B B A (5) A (6) φ φ φ φ (Lplci) (7) (8) A A A (9)

5 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. Te Cul A) Geometicl sigificce of te Cul Te divegece d cul of vecto field e two vecto opetos wose bsic popeties c be udestood geometicll b viewig vecto field s te flow of fluid o gs. Hee we give oveview of bsic popeties of cul t c be ituited fom fluid flow. Te cul of vecto field cptues te ide of ow fluid m otte. Imgie tt te below vecto field F epesets fluid flow (See Fig. ). Te vecto field idictes tt te fluid is cicultig oud cetl is. B) Mesuig te Cul I ode to mesue te desit of some mtte t poit, we mesue te mss (dm) of smll volume (dv) oud te poit, d te divide b te volume. Mtemticll, tis c be epessed b: dm ρ () dv Te smlle te volume, te bette te ppoimtio. Actull we defie te desit ρ s beig te limit: dm ρ lim () dv dv A simil pocedue is used to mesue te stegt of te ottio of fluid. If te vecto field is itepeted s velocit of fluid flow, te fluid ppes to flow i cicles. Tis mcoscopic cicultio of fluid oud cicles ctull is ot wt cul mesues. But, it tus out tt tis vecto field lso s cul, wic we migt tik of s micoscopic cicultio. To test fo cul, imgie tt ou immese smll spee ito te fluid flow, d ou fi te cete of te spee t some poit so tt te spee cot follow te fluid oud (See Fig. ).

6 () Time t (b) Time t Figue : Te ottig vecto field F t two diffeet times. Altoug ou fi te cete of te spee, ou llow te spee to otte i diectio oud its cete poit. Te ottio of te spee mesues te cul of te vecto field F t te poit i te cete of te spee. (Te spee sould ctull be ell ell smll, becuse, emembe, te cul is micoscopic cicultio.) () Time t (b) Time t Figue : A smll spee immesed ito te fluid flow. Te vecto field F detemies bot i wt diectio te spee ottes, d te speed t wic it ottes. We defie te cul of F, deoted cul F, b vecto tt poits log te is of te ottio d wose legt coespods to te speed of te ottio. We c dw te vecto coespodig to cul F s follows. We mke te legt of te vecto cul F popotiol to te speed of te spee's ottio. Te diectio of cul F poits log te is of ottio, but we eed to specif i wic diectio log tis is te vecto sould poit. We will (bitil?) set te diectio of te cul vecto b usig te followig

7 5 igt d ule. To see wee cul F sould poit, cul te figes of ou igt d i te diectio te spee is ottig; ou tumb will poit i te diectio of cul F. Fo ou emple, cul F is sow b te gee ow. Figue : Te diectio of cul F is covetioll cose usig igt-d ule. Te cul is tee-dimesiol vecto, d ec of its tee compoets tus out to be combitio of deivtives of te vecto field F. Oce ou ve te fomul, clcultig te cul of vecto field is simple mtte. Te cul is sometimes clled te ottio, o "ot". C) Te Cul i diffeet sstem of coodites Te cul of vecto fuctio is te vecto poduct of te del opeto wit tis vecto fuctio: Te Cul i Ctesi coodites k F F j F z F i z F F F z z ˆ ˆ ˆ () wee k j i ˆ,ˆ, ˆ e uit vectos i te,, z diectios. It c lso be epessed i detemit fom: z F F F z k j i ˆ ˆ ˆ () Te Cul i clidicl pol coodites

8 6 Te cul i clidicl pol coodites, epessed i detemit fom is: z θ θ F F F z θ k ˆ (5) Te Cul i speicl pol coodites Te cul i speicl pol coodites, epessed i detemit fom is: φ θ F θ F F φ θ θ θ F si si si (6) Refeece: - ttp://pepsics.p-st.gsu.edu/bse/cul.tml - (See te pplets i) ttp://mtisigt.og/cul_ide

9 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods fo Teoeticl Psics D. Nidl M. Esidt Doc. Comple Numbes A. Defiitio of comple umbe A comple umbe z is defied b z i wee d e el umbes d i. is clled te el pt of z d deoted Re(z) is clled te imgi pt of z d deoted Im(z) Te fom z i is clled te ectgul fom of te comple umbe z. Note: I tis documet te lette z efes to comple umbe d ote lette, i pticul, d, efe to el umbes o vibles. B. Te Comple (Numbes) Spce Comple umbes defie spce clled te spce of comple umbes o simpl te comple spce. Te eigt ioms ecess to defie spce i lie lsis e veified, s follows:. Commutbilit of dditio Fo two comple umbes z d z we defie z z z z ( z, z ). Associtivit of dditio Fo set of comple umbes z, z d z we defie z (z z ) (z z ) z. Eistece of ull elemet: C suc tt z z C. Eistece of te ivese elemet: z C - z C suc tt z (-z) 5. Uitism: z C. z z Ad fo (α, β d z C) we ve: 6. Associtivit wit espect to umbe multiplictio α (β z) (α β) z 7. Distibutivit wit espect to comple umbe dditio α (z z ) α z α z 8. Distibutivit wit espect to umbe dditio (α β ) z α z β z 7

10 C. Comple cojugte of comple umbe Te comple cojugte of comple umbe z (z i ) is defied b z* - i D. Bsic Opetios i te Comple Spce Coside te comple umbes z i d z i - Additio z z z ( ) i ( ) z z - Subtctio z z - z ( - ) i ( - ) z' z z ( ) i ( )# z - z -Multiplictio z z. z ( i ).( i ) i i - -Divisio z z z i i i i. i i i i i ( i ) E. Gpicl Repesettio of comple umbes A comple umbe z i is epeseted i D ple, clled te Agd Ple, b poit P wose coodites e ( d ) (Fig. ). Figue : Gpicl Repesettio of z 8

11 Te vecto OP epesets te comple umbe z. Fig. epesetig z is te so-clled Agd digm of z. Te comple cojugte z* is epeseted b te vecto OP * i Fig.. Figue : Gpicl Repesettio of z* Fom Fig. oe c see tt: θ t d θ e clled te pol coodites of P d ltetivel we ve: z c be witte i te fom: cos θ si θ z (cos θ i si θ) Usig Mclui s seies fo e iθ, cosθ d si θ we c wite: z c be ewitte i te fom: e iθ cos θ i si θ z e iθ Wic we cll te pol fomt of z. Tis fom is ve useful we defiig d usig fuctios of comple vibles. F. Modulus (Mgitude) d Agumet of z epesets te mgitude o modulus of z d θ is clled te gumet of z. Ad we wite: ( z) Mod θ g ( z) t 9

12 Comple Logitms Te epoetil fuctio c be eteded to fuctio wic gives comple umbe s e fo bit comple umbe ; simpl use te ifiite seies wit comple. Tis epoetil fuctio c be iveted to fom comple logitm tt eibits most of te popeties of te odi logitm. Tee e two difficulties ivolved: o s e ; d it tus out tt e πi e. Sice te multiplictive popet still woks fo te comple epoetil fuctio, e z e z πi, fo ll comple z d itegl. So te logitm cot be defied fo te wole comple ple, d eve te it is multi-vlued comple logitm c be cged ito "equivlet" logitm b ddig πi t will. Te comple logitm c ol be sigle-vlued o te cut ple. Fo emple, l i ½ πi o 5/ π i o / π i, etc.; d ltoug i, log i c be defied s π i, o π i o 6 π i, d so o. z Re(l(i)) z Im(l(i)) z l(i) Plots of te tul logitm fuctio o te comple ple (picipl bc) Nidl M. Esidt

13 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods fo Teoeticl Psics D. Nidl M. Esidt Doc. 5 Detemits Coside te sque mti of ode : A b c d Te mti A is ivetible if d ol if d bc#. Tis umbe is clled te detemit of A. It is cle fom tis, tt we would like to ve simil esult fo bigge mtices (meig ige odes). So is tee simil otio of detemit fo sque mti, wic detemies wete sque mti is ivetible o ot? I ode to geelize suc otio to ige odes, we will eed to stud te detemit d see wt kid of popeties it stisfies. Fist let us use te followig ottio fo te detemit: Detemit of b b b c d det c d c d d bc Popeties of te Detemit. A mti A d its tspose ve te sme detemit, meig det A det A T Tis is iteestig sice it implies tt weeve we use ows, simil bevio will esult if we use colums. I pticul we will see ow ow elemet opetios e elpful i fidig te detemit. Teefoe, we ve simil coclusios fo elemet colum opetios.. Te detemit of tigul mti is te poduct of te eties o te digol, tt is d b c d d.. If we itecge two ows, te detemit of te ew mti is te opposite of te old oe, tt is b c d c d. b. If we multipl oe ow wit costt, te detemit of te ew mti is te detemit of te old oe multiplied b te costt, tt is

14 λ c λb d λ b b c d. λc λd I pticul, if ll te eties i oe ow e zeo, te te detemit is zeo. 5. If we dd oe ow to ote oe multiplied b costt, te detemit of te ew mti is te sme s te old oe, tt is λc c b λd d c b d c λ b. d λb Note tt weeve ou wt to eplce ow b sometig (toug elemet opetios), do ot multipl te ow itself b costt. Otewise, ou will esil mke eos (due to Popet ). 6. We ve det (AB) det(a) det (B) I pticul, if A is ivetible (wic ppes if d ol if det (A) #), te det - ( A ) det( A) If A d B e simil, te det (A) det(b). Let us look t emple, to see ow tese popeties wok. Emple. Evlute. Let us tsfom tis mti ito tigul oe toug elemet opetios. We will keep te fist ow d dd to te secod oe te fist multiplied b ½. We get 7. Usig te Popet, we get 7 Teefoe, we ve wic oe m ceck esil.

15 Detemits of Mtices of Hige Ode As we sid befoe, te ide is to ssume tt pevious popeties stisfied b te detemit of mtices of ode, e still vlid i geel. So let us see ow tis woks i cse of mti of ode. Emple. Evlute We ve If we subtct eve ow multiplied b te ppopite umbe fom te fist ow, we get We do ot touc te fist ow d wok wit te ote ows. We itecge te secod wit te tid to get If we subtct eve ow multiplied b te ppopite umbe fom te secod ow, we get Usig pevious popeties, we ve. If we multipl te tid ow b d dd it to te fout, we get

16 wic is equl to. Puttig ll te umbes togete, we get ( ) ( ) Tese clcultios seem to be te legt. We will see lte o tt geel fomul fo te detemit does eist. Emple. Evlute. I tis emple, we will ot give te detils of te elemet opetios. We ve 9. Emple. Evlute. We ve Geel Fomul fo te Detemit Let A be sque mti of ode. Wite A ( ij ), wee ij is te et o te ow umbe i d te colum umbe j, fo i,,, d j,,. Fo i d j, set C ij (clled te cofctos) to be te detemit of te sque mti of ode (-) obtied fom A b emovig te ow umbe i d te colum umbe j multiplied b (-) ij. We ve ( ) j j ij ij A det C fo fied i, d ( ) i i ij C ij A det

17 5 fo fied j. I ote wods, we ve two tpes of fomuls: log ow (umbe i) o log colum (umbe j). A ow o colum will do. Te tick is to use ow o colum wic s lot of zeos. I pticul, we ve log te ows g e d c k g f d b k f e k g f e d c b o g b f k g c e k c b d k g f e d c b, o e d b k f d c f e c b g k g f e d c b. As eecise wite te fomuls log te colums. Emple 5. Evlute. We will use te geel fomul log te tid ow. We ve ( ) ( ) 9 6 Wic tecique to evlute detemit is esie? Te swe depeds o te peso wo is evlutig te detemit. Some like te elemet ow opetios d some like te geel fomul. All tt mttes is to get te coect swe. Note tt ll of te bove popeties e still vlid i te geel cse. Also ou sould emembe tt te cocept of detemit ol eists fo sque mtices. ttp:// Auto: M.A. Kmsi

18 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. 6 Odi Diffeetil Equtios (ODE s) A) Defiitio A odi diffeetil equtio is equtio wic s ect diffeetils o ect deivtives i bot sides. Te ode of te igest deivtive is clled te ode of te diffeetil equtios. Te solutio of ODE is eltiosip betwee te ukow fuctio wit its vible wic veifies te ODE. B) Fist Ode Diffeetil Equtios Sepble st ode DE A st ode diffeetil of te fom: Is clled sepble st ode DE. ( ) d G( ) d F () Te geel solutio of Eq. is obtied b itegtig bot sides, i.e. Lie st ode DE ( ) d G( ) d C F () d d ( ) Q( ) If Q() te Eq. c be witte s: d P () ( ) P d wic is sepble st ode ODE (See Eq. ), wee ( ) P( ) G ( ). - Homogeeous Lie st ode DE Eq. is lso clled omogeeous st ode DE. d d ( ) P Te geel solutio of Eq. is obtied b itegtig bot sides, i.e. () F d Auto s emil: eidl@u.edu.jo Addess: Psics Deptmet, Ymouk Uivesit 6 Ibid Jod 6

19 { } ( ) A P( ) - Iomogeeous Lie st ode DE ep d (5) d d ( ) Q( ) Te geel solutio of Eq. 6 is give b: P (6) wee I( ) I( ) I( ) ( ) e e Q( ) d Ce (7) Ect Equtios I I( ) ( ) e P( )d (8) A fist ode odi diffeetil is clled ect equtio if its ls c be epessed s ect diffeetil du of fuctio U(,) suc tt: Tis is veified if d ol of: (, ) d N(, ) du M d (9) M N M is te ptil deivtive of te fuctio M(,) wit espect to. Tis mes tt we deive te fuctio M(,) cosideig s costt (wic we smbolize b te subscipt. N is te ptil deivtive of te fuctio N(,) wit espect to. Tis mes tt we deive te fuctio N(,) cosideig s costt (wic we smbolize b te subscipt. () Emple: if ( ) M, te M 6 M d. Homogeeous Fist Ode DE A fist ode odi diffeetil is clled ect equtio if te ls c be epessed s ect diffeetil du of fuctio U(,) suc tt: d d F () Auto s emil: eidl@u.edu.jo Addess: Psics Deptmet, Ymouk Uivesit 6 Ibid Jod 7

20 Te geel solutio is: Wee d dv F v C ( v) ( ) Secod Ode Diffeetil Equtios () v () Lie d ode DE A d ode DE equtio is lie if d ol of it c be witte i te fom: d P d d d ( ) Q( ) R( ) Wee P(), Q() d R() e geel fuctios of te idepedet vible, Vious metods e used to solve suc equtios. Tese metods deped o te tue of P(), Q() d R(). () Refeece: Ps. Metods of Teoeticl Psics Tetbook Itoductio to Mtemticl Psics, d Editio, Autos: N. Lm d N. Aoub Nidl M. Esidt 8

21 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. 8 ODE A Emple Emple : 5 Solve Tis is iomogeeous lie d ode diffeetil equtio. wit: ( ) b R (), b d R ( ) 5 costt Its geel solutio () is te sum C () P () wee C () is te complemet solutio i.e. te solutio of te coespodig omogeeous equtio ( ) d P () is te (uique) pticul solutio obtied usig te metod of udetemied coefficiets. wit d F ( ) ( ) ( ) P () C β ( ) ( αβ) e e F( )d P () α ( ) e R( )d () Complemet Solutio C ( ) C e α β C e (5) Wee α d β e te oots of te uili equtio ( ), i.e. α d β (6) Pticul Solutio α 5 α F( ) e ( 5 ) d e (7) α wic gives: P β ( ) ( αβ e e ) 5 e α β e β 5 α e d α 5 5 d αβ 5 ( ) C e Ce (9) (8) Auto s emil: eidl@u.edu.jo, Addess: Psics Deptmet, Ymouk Uivesit 6 Ibid Jod Nidl M. Esidt 9

22 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. 8 Ect Diffeetil A diffeetil of te fom (, ) d Q( )d df P, () is ect (lso clled totl diffeetil) if df is pt-idepedet. Tis will be tue if df So P d Q must be of te fom f f d d. () But P f f, () ( ) d Q(, ) P f, () Q f. (5) wic ields P Q. (6) Te otio of ect diffeetils pls impott ole i psics. I temodmics, popeties of temodmic sstem (fo emple, te pessue, volume d tempetue fo gs) sould be ect diffeetils. Auto s emil: eidl@u.edu.jo, Addess: Psics Deptmet, Ymouk Uivesit 6 Ibid Jod Nidl M. Esidt

23 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. 9 Metod of Udetemied Coefficiet o Guessig Metod Piciple Tis metod is bsed o guessig tecique. Tt is, we will guess te fom of P d te plug it i te equtio to fid it. Howeve, it woks ol ude te followig two coditios: Coditio : te ssocited omogeeous equtios s costt coefficiets Coditio : te oomogeeous tem R() is specil fom R ( ) P( ) e ( β) α cos () O R ( ) L( ) e ( β) α si () wee P() d L() e polomil fuctios. Note tt we m ssume tt R() is sum of suc fuctios (see te emk below fo moe o tis). Assume tt te two coditios e stisfied. Coside te equtio wee, b d c e costts d R ( ) b c R () ( ) P ( ) e α cos ( β) o R( ) P ( ) e ( β) α si () wee P () is polomil fuctio wit degee. Te pticul solutio P is give b Wee Ad P ( ) s α α ( ) T ( ) e ( β) U ( ) e si( β) T U cos (5) ( ) A A A A (6) ( ) B B B B Wee te costts A k d B k e to be detemied. Te vlue of te powe s depeds o α iβ i te followig me: if α iβ is ot oot of te ccteistic equtio te s. if α iβ is simple oot of te ccteistic equtio te s. if α iβ is double oot of te ccteistic equtio te s.

24 Remk: If te oomogeeous tem R() stisfies te followig R i N i ( ) R i ( ) wee R i () e of te foms cited bove, te we split te oigil equtio ito N equtios: ( ) ( i,, N) b c Ri, (8) Te fid pticul solutio i. A pticul solutio to te oigil equtio is give b (7) Summ i ( ) i N P i. (8) Let us summize te steps to follow i pplig tis metod: () Fist, ceck tt te two coditios metioed bove e stisfied; () If te equtio is give s R b c k N k ( ) R k ( ) P ( ) e α cos ( β) o R( ) P ( ) e ( β), (9) α si () wee P is polomil fuctio wit degee, te split tis equtio ito N equtios ( ) b c R, () wee () Wite dow te ccteistic equtio b c d fid its oots; () Wite dow te umbe α k i β k. Compe tis umbe to te oots of te ccteistic equtio foud i te pevious step. (.) If α k iβ k is ot oe of te oots, te set s ; (.) If α k iβ k is oe of te two distict oots, te set s ; (.) If α k iβ k is equl to bot oots (wic mes tt te ccteistic equtio s double oot, te set s ; I ote wods, s mesues ow m times α k i β k is oot of te ccteistic equtio; (5) Wite dow te fom of te pticul solutio k Nidl M. Esidt

25 wee d P ( ) s α α ( ) T ( ) e ( β) U ( ) e si( β) T cos, () ( ) A A A A () U ( ) B B B B. () (6) Fid te costts A i d B i b pluggig R k ito te equtio ( ) b c R, (7) Oce ll te pticul solutios k e foud, te te pticul solutio of te oigil equtio is te seies k k ( ) k N P k (5) Refeece: ttp:// Nidl M. Esidt

26 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. Metod of Vitio of Pmetes Piciple Tis metod s o pio coditios to be stisfied. Teefoe, it m soud moe geel t te metod of udetemied coefficiet o guessig metod. We will see tt tis metod depeds o itegtio wile te ote oe cited is puel lgebic wic, fo some t lest, is dvtge. Coside te equtio ( ) Q( ) R( ) P () I ode to use te metod of vitio of pmetes we eed to kow tt {, } is set of fudmetl solutios of te ssocited omogeeous equtio P( ) Q( ). We kow tt, i tis cse, te geel solutio of te ssocited omogeeous equtio is c c. Te ide beid te metod of vitio of pmetes is to look fo pticul solutio suc s ( ) u ( ) ( ) u ( ) ( ) P, () wee u d u e fuctios. Fom tis, te metod got its me. Te fuctios u d u e solutios to te sstem wic implies u u u u R Wee ( )( ) ( ) ( ) R( ) (, )( ) ( ) R( ) (, )( ) u ( ) d, W u( ) d. W W, is te woski of d. Teefoe, we ve ( ) ( ) ( ) R( ) (, )( ) ( ) R( ) (, )( ) d ( ) d W W P () () (5)

27 Summ Let us summize te steps to follow i pplig tis metod: () Fid {, } set of fudmetl solutios of te ssocited ; omogeeous equtio P( ) Q( ) () Wite dow te fom of te pticul solutio ( ) u ( ) ( ) u ( ) ( ) P (6) () Wite dow te sstem: u u (7) u u R( ) () Solve it. Tt is, fid u d u ; (5) Plug u d u ito te equtio givig te pticul solutio. Emple Fid te pticul solutio to t( ) Solutio ; Let us follow te steps i te summ: π π < < () A set of fudmetl solutios of te ssocited omogeeous equtio is { cos(), si()}; () Te pticul solutio is give s ( ) u ( ) ( ) u ( ) si( ). P cos () We, tus, ve te sstem: u cos u si ( ) u si( ) ( ) u cos( ) t( ) () We solve fo u d u d get: u u si si( ) ( t( ) ) ( ) cos( ) ( t( ) ) Usig Itegtio teciques, we get: u ( ), u ( ) cos( ) si( ) l sec( ) t( ) ( ) si( ) cos( ). (5) Te pticul solutio is o P cos ( ) ( cos( ) si( ) l( sec( ) t( ) )) si( ) ( si( ) cos( ) ) 5

28 P cos( ) l( sec( ) t( ) ). Remk: Note tt sice te equtio is lie, we m still split if ecess. Fo emple, we m split te equtio t ( ) ito te two equtios (R) d t( ) (R ) te, fid te pticul solutios fo (R) d fo (R), to geete pticul solutio fo te oigil equtio b P Tee e o estictios o te metod to be used to fid o. Fo emple, we c use te metod of udetemied coefficiets to fid, wile fo, we e ol left wit te vitio of pmetes. Refeece: ttp:// 6

29 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. Fouie Seies A) Defiitio A Fouie seies is epsio of peiodic fuctio f() i tems of ifiite sum of sies d cosies. Fouie seies mke use of te otogolit eltiosips of te sie d cosie fuctios. Te computtio d stud of Fouie seies is kow s moic lsis d is etemel useful s w to bek up bit peiodic fuctio ito set of simple tems tt c be plugged i, solved idividull, d te ecombied to obti te solutio to te oigil poblem o ppoimtio to it to wteve ccuc is desied o pcticl. B) Illusttio Emples of successive ppoimtios to commo fuctios usig Fouie seies e illustted below. () (b) (c) (d) Figue : Usig Fouie seies i ode to ppoimte some fuctios. ) Te sque wve, b) Te swtoot wve, c) te tigle wve d d) te semicicle. 7

30 C) Applictio - solutio of odi diffeetil equtios I pticul, sice te supepositio piciple olds fo solutios of lie omogeeous odi diffeetil equtio, if suc equtio c be solved i te cse of sigle siusoid, te solutio fo bit fuctio is immeditel vilble b epessig te oigil fuctio s Fouie seies d te pluggig i te solutio fo ec siusoidl compoet. I some specil cses wee te Fouie seies c be summed i closed fom, tis tecique c eve ield ltic solutios. D) Geelized Fouie Seies A set of fuctios tt fom complete otogol sstem ve coespodig geelized Fouie seies logous to te Fouie seies. Fo emple, usig otogolit of te oots of Bessel fuctio of te fist kid gives so-clled Fouie-Bessel seies. E) Computtio of Fouie seies Te computtio of te (usul) Fouie seies is bsed o te followig itegl idetities wic epeset te otogolit eltiosips of te sie d te cosie fuctios: π π π π π π π π π π ( m) si( ) si d πδm () ( m) cos( ) cos d πδm () ( ) cos( ) si m d () ( ) si m d () ( ) cos m d (5) Fo m,, wee δ m is te Koecke delt. Usig te metod fo geelized Fouie seies, te usul Fouie seies ivolvig sies d cosies is obtied b tkig f () cos d f () si. Sice tese fuctios fom complete otogol sstem ove [- π, π], te 8

31 Fouie seies of fuctio f() is give b f ( ) cos( ) b si( ) (6), e clled te Fouie coefficiets. Tese coefficiets e obtied usig te followig eltios: π π f ( ) d (7) π π π f ( ) cos( ) d π (8) b π π f ( ) si( ) d π,,,. Note tt te coefficiet of te costt tem s bee witte i specil fom comped to te geel fom fo geelized Fouie seies i ode to peseve smmet wit te defiitios of d b. A Fouie seies coveges to te fuctio f (equl to te oigil fuctio t poits of cotiuit o to te vege of te two limits t poits of discotiuit) (9) lim f lim π f f ( ) lim f ( ) ( ) lim f( ) π fo fo π< <π π, π if te fuctio stisfies so-clled Diiclet coditios. () As esult, e poits of discotiuit, "igig" kow s te Gibbs peomeo, illustted bove, c occu. 9

32 Fo fuctio f() peiodic o itevl [- L, L] isted of [- π, π], simple cge of vibles c be used to tsfom te itevl of itegtio fom [- π, π] to [- L, L]. Let π L π d d L Solvig fo gives L, d pluggig tis i Eq. 6 gives π () () Teefoe, π π f ( ) cos b si () L L L L f ( ) d () L L L L f ( ) π cos L d (5) b L L L f ( ) π si d L Simill, te fuctio is isted defied o te itevl [,L], te bove equtios simpl become (6) L f ( ) d L (7) b L π f ( ) cos L L d L π f ( ) si L L d (8) (9) I fct, fo f() peiodic wit peiod L, itevl [, L ] c be used, wit te coice beig oe of coveiece o pesol pefeece (Afke 985, p. 769). Te coefficiets fo Fouie seies epsios of few commo fuctios e

33 give i Bee (987, pp. -) d Bel (959, p. 5). Oe of te most commo fuctios usull lzed b tis tecique is te sque wve. Te Fouie seies fo few commo fuctios e summized i te tble below. F) Emples Fuctio f() Fouie seies swtoot wve L π si L sque wve H H L L π tigle wve T() 8 π,, 5,,, 5, π si L ( ) π si L If fuctio is eve so tt f() f(- ), te f() si() is odd. (Tis follows sice si() is odd d eve fuctio times odd fuctio is odd fuctio.) Teefoe, b fo ll. Simill, if fuctio is odd so tt f() - f(-), te f() cos() is odd. (Tis follows sice cos() is eve d eve fuctio times odd fuctio is odd fuctio.) Teefoe, fo ll. G) Comple Coefficiets Te otio of Fouie seies c lso be eteded to comple coefficiets. Coside el-vlued fuctio f(). Wite Now emie ( ) i f A e () π π f π im ( ) e d i im A e e d π () π π i( m A e ) d () π A π [ ( m) isi( m) ] cos d ()

34 A π δ () m So π, (5) A m A π π i f ( ) e d π Te coefficiets c be epessed i tems of tose i te Fouie seies (6) A π π f ( ) [ cos( ) isi( ) ] d π (7) π π π π π π π π π π π π f f f ( ) [ cos( ) isi( ) ] ( ) d ( ) [ cos( ) isi( ) ] ( ib ) ( ib ) fo fo fo d d < < < Fo fuctio peiodic i [- L/, L/], tese become f i ( ) ( π L) A e < > (8) (9) () L L i ( ) ( π L e ) A f d () L Tese equtios e te bsis fo te etemel impott Fouie tsfom, wic is obtied b tsfomig A fom discete vible to cotiuous oe s te legt L.

35 H) Refeeces Afke, G. "Fouie Seies." C. i Mtemticl Metods fo Psicists, d ed. Oldo, FL: Acdemic Pess, pp , 985. Aske, R. d Himo, D. T. "Similities betwee Fouie d Powe Seies." Ame. Mt. Motl, 97-, 996. Bee, W. H. (Ed.). CRC Stdd Mtemticl Tbles, 8t ed. Boc Rto, FL: CRC Pess, 987. Bow, J. W. d Cucill, R. V. Fouie Seies d Boud Vlue Poblems, 5t ed. New Yok: McGw-Hill, 99. Bel, W. E. A Elemet Tetise o Fouie's Seies, d Speicl, Clidicl, d Ellipsoidl Hmoics, wit Applictios to Poblems i Mtemticl Psics. New Yok: Dove, 959. Cslw, H. S. Itoductio to te Teo of Fouie's Seies d Itegls, d ed., ev. d el. New Yok: Dove, 95. Dvis, H. F. Fouie Seies d Otogol Fuctios. New Yok: Dove, 96. Dm, H. d McKe, H. P. Fouie Seies d Itegls. New Yok: Acdemic Pess, 97. Folld, G. B. Fouie Alsis d Its Applictios. Pcific Gove, CA: Books/Cole, 99. Goeme, H. Geometic Applictios of Fouie Seies d Speicl Hmoics. New Yok: Cmbidge Uivesit Pess, 996. Köe, T. W. Fouie Alsis. Cmbidge, Egld: Cmbidge Uivesit Pess, 988. Köe, T. W. Eecises fo Fouie Alsis. New Yok: Cmbidge Uivesit Pess, 99. Ktz, S. G. "Fouie Seies." 5. i Hdbook of Comple Vibles. Bosto, MA: Bikäuse, pp. 95-, 999. Ligtill, M. J. Itoductio to Fouie Alsis d Geelised Fuctios. Cmbidge, Egld: Cmbidge Uivesit Pess, 958. Moiso, N. Itoductio to Fouie Alsis. New Yok: Wile, 99. Ssoe, G. "Epsios i Fouie Seies." C. i Otogol Fuctios, ev. Eglis ed. New Yok: Dove, pp. 9-68, 99.

36 Weisstei, E. W. "Books bout Fouie Tsfoms." ttp:// Wittke, E. T. d Robiso, G. "Pcticl Fouie Alsis." C. i Te Clculus of Obsevtios: A Tetise o Numeicl Mtemtics, t ed. New Yok: Dove, pp. 6-8, 967. Souce iteet Weisstei, Eic W. "Fouie Seies." Fom MtWold - A Wolfm Web Resouce. ttp://mtwold.wolfm.com/fouieseies.tml 999 CRC Pess LLC, Wolfm Resec, Ic. Tems of Use

37 Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. 5 Cuvilie Coodites Wt e cuvilie coodites? A cuvilie coodite sstem is composed of itesectig sufces. If te itesectios e ll t igt gles, te te cuvilie coodites e sid to fom otogol coodite sstem. If ot, te fom skew coodite sstem. Cuvilie q q q Ctesi z î ĵ kˆ Speicl θ φ si θ ˆ θˆ φˆ Clidicl (o ρ) φ z ˆ o ρˆ φˆ kˆ dq dq dq l d φ φ φ i i i i i i i q l ( ) ( ) ( ) q A q A q A A A A A q q q A φ φ φ φ φ q q q q q q

38 dl ψ Psics Deptmet, Ymouk Uivesit, Ibid Jod Ps. Metods of Teoeticl Psics D. Nidl M. Esidt Doc. Ctesi to Clidicl Clidicl to Ctesi Ctesi to Speicl Speicl to Ctesi i ˆ ˆ cosφφ ˆ siφ φ ˆ ˆ iˆcos jsiφ i ˆ ˆ siθcosφθˆ cosθcosφφˆ siφ θ φ θ φ ˆ ˆ iˆsi cos ˆsi j si kcosθ ˆj ˆ siφφ ˆ cosφ φˆ i ˆsiφ ˆj cosφ ˆj ˆ siθsiφθˆ cosθsiφφˆ cosφ θˆ i ˆcosθcosφ ˆcos j θsiφkˆ siθ kˆ kˆ k ˆ k ˆ k ˆ ˆ cos θθ ˆ siθ φˆ i ˆ siφ ˆj cosφ A A Ctesi Speicl Clidicl dl diˆ d ˆj dzkˆ dl d dθθ ˆ siθdφφˆ dl d dφφˆ iˆ ψ ψ ψ ˆj kˆ z A A Az z ψ ˆ ˆ ψ θˆ ( ) ( ) ( ) iˆ A ˆj A kˆ z A ψ z ψ ψ ψ ψ z ψ θ si φˆ θ ψ φ A siθa θa siθ θ si A O ψ ψ siθ siθ ˆ A ψ ψ siθ θˆ θ A θ siθ θ θ θ siθφˆ φ siθa φ φ ψ siθ θ ψ siθ θ si A φ si ψ θ φ ψ θ φ ψ ˆ A A ˆ ψ φˆ ψ φ dzkˆ ψ kˆ z ( A ) Aφ ( A ) ˆ A φˆ φ A φ kˆ z φ A z ψ ψ ψ ψ ψ φ z z ψ ψ φ z ψ φ ψ z z 6

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 3. Fid the geel solutio of the diffeetil equtio blk d si y ycos si si, d givig you swe i the fom y = f(). (8) 6 *M3544A068* PhysicsAdMthsTuto.com Jue

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder

Expansion by Laguerre Function for Wave Diffraction around an Infinite Cylinder Joul of Applied Mthemtics d Physics, 5, 3, 75-8 Published Olie Juy 5 i SciRes. http://www.scip.og/joul/jmp http://dx.doi.og/.436/jmp.5.3 Expsio by Lguee Fuctio fo Wve Diffctio oud Ifiite Cylide Migdog

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com 5. () Show tht d y d PhysicsAdMthsTuto.com Jue 009 4 y = sec = 6sec 4sec. (b) Fid Tylo seies epsio of sec π i scedig powes of 4, up to d 3 π icludig the tem i 4. (6) (4) blk *M3544A08*

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 7. () Sketch the gph of y, whee >, showig the coodites of the poits whee the gph meets the es. () Leve lk () Solve, >. (c) Fid the set of vlues of fo

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

The evaluation of P, and T from these formulae indeed requires that the energy E be expressed as a function of the quantities N, V and S.

The evaluation of P, and T from these formulae indeed requires that the energy E be expressed as a function of the quantities N, V and S. d dq, dq d d d, d d d d, e evlutio of, d from tese formule ideed requires tt te eerg be epressed s fuctio of te qutities, d. f (,,) is sould, i priciple, be possible oce is kow s fuctio of, d. f (,, )

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level 3 Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Mathematics: Lecture 1 Differential Equations:

Mathematics: Lecture 1 Differential Equations: Mthemtics: Lectue Dieetil Equtios: Dieetil Equtios A dieetil equtio is equtio tht ivolves oe o moe deivtives o dieetils. Dieetil equtios e clssiied b:. Te: Odi o til.. Ode: The ode o dieetil equtio is

More information

2012 GCE A Level H2 Maths Solution Paper Let x,

2012 GCE A Level H2 Maths Solution Paper Let x, GCE A Level H Maths Solutio Pape. Let, y ad z be the cost of a ticet fo ude yeas, betwee ad 5 yeas, ad ove 5 yeas categoies espectively. 9 + y + 4z =. 7 + 5y + z = 8. + 4y + 5z = 58.5 Fo ude, ticet costs

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Chapter 8 Complex Numbers

Chapter 8 Complex Numbers Chapte 8 Complex Numbes Motivatio: The ae used i a umbe of diffeet scietific aeas icludig: sigal aalsis, quatum mechaics, elativit, fluid damics, civil egieeig, ad chaos theo (factals. 8.1 Cocepts - Defiitio

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds.

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds. Jso Mille 8 Udestd the piciples, popeties, d techiques elted to sequece, seies, summtio, d coutig sttegies d thei pplictios to polem solvig. Polomil Diffeece Theoem: f is polomil fuctio of degee iff fo

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Peso Edecel Level Advced Subsidiy d Advced GCE Mthemtics d Futhe Mthemtics Mthemticl fomule d sttisticl tbles Fo fist cetifictio fom Jue 08 fo: Advced Subsidiy GCE i Mthemtics (8MA0) Advced GCE i Mthemtics

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess 3- Fluid Mecnics Clss Emple 3: Newton s Viscosit Lw nd Se Stess Motition Gien elocit field o ppoimted elocit field, we wnt to be ble to estimte

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

Lacunary Almost Summability in Certain Linear Topological Spaces

Lacunary Almost Summability in Certain Linear Topological Spaces BULLETIN of te MLYSİN MTHEMTİCL SCİENCES SOCİETY Bull. Malays. Mat. Sci. Soc. (2) 27 (2004), 27 223 Lacuay lost Suability i Cetai Liea Topological Spaces BÜNYMIN YDIN Cuuiyet Uivesity, Facutly of Educatio,

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

Step-index silica fiber

Step-index silica fiber Modl lysis of step-idex fibes Itoductio C 46/566 Guided Wve Optics Step-idex silic fibe Mteil d fbictio Types d mig of modes Deivtio d solutio of the W Solutio of the W T/TM modes Hybid modes LP modes

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

82A Engineering Mathematics

82A Engineering Mathematics Clss Notes 9: Power Series /) 8A Egieerig Mthetics Secod Order Differetil Equtios Series Solutio Solutio Ato Differetil Equtio =, Hoogeeous =gt), No-hoogeeous Solutio: = c + p Hoogeeous No-hoogeeous Fudetl

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

GEOMETRY Properties of lines

GEOMETRY Properties of lines www.sscexmtuto.com GEOMETRY Popeties of lines Intesecting Lines nd ngles If two lines intesect t point, ten opposite ngles e clled veticl ngles nd tey ve te sme mesue. Pependicul Lines n ngle tt mesues

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan.

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. SULT 347/ Rumus-umus eikut oleh memtu d mejw sol. Simol-simol yg diei dlh yg is diguk. LGER. 4c x 5. log m log m log 9. T d. m m m 6. log = log m log 0. S d m m 3. 7. log m log m. S, m m logc 4. 8. log.

More information

7.5-Determinants in Two Variables

7.5-Determinants in Two Variables 7.-eteminnts in Two Vibles efinition of eteminnt The deteminnt of sque mti is el numbe ssocited with the mti. Eve sque mti hs deteminnt. The deteminnt of mti is the single ent of the mti. The deteminnt

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MSS SEQUENCE AND SERIES CA SEQUENCE A sequece is fuctio of tul ubes with codoi is the set of el ubes (Coplex ubes. If Rge is subset of el ubes (Coplex ubes the it is clled el sequece (Coplex sequece. Exple

More information

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example:

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example: 74 The Method of Partial Fractios I algebra oe speds much time fidig commo deomiators ad thus simplifyig ratioal epressios For eample: + + + 6 5 + = + = = + + + + + ( )( ) 5 It may the seem odd to be watig

More information

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2

[5 points] (c) Find the charge enclosed by the cylindrical surface of radius ρ 0 = 9 mm and length L = 1 m. [2 STUDENT NAME: STUDENT ID: ELEC ENG FH3: MIDTERM EXAMINATION QUESTION SHEET This emitio is TWO HOURS log. Oe double-sided cib sheet is llowed. You c use the McMste ppoved clculto Csio f99. You c tke y mteil

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

Inner Product Spaces (Chapter 5)

Inner Product Spaces (Chapter 5) Ier Product Spces Chpter 5 I this chpter e ler out :.Orthogol ectors orthogol suspces orthogol mtrices orthogol ses. Proectios o ectors d o suspces Orthogol Suspces We ko he ectors re orthogol ut ht out

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Engineering Mathematics I (10 MAT11)

Engineering Mathematics I (10 MAT11) www.booksp.com VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Egieeig Mthemtics I (0 MAT) LECTURE NOTES (FOR I SEMESTER B E OF VTU) www.booksp.com VTU NOTES QUESTION PAPERS of 4 www.booksp.com VTU NOTES

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

11/16/2010 The Inner Product.doc 1/9. The Inner Product. So we now know that a continuous, analog signal v t can be expressed as:

11/16/2010 The Inner Product.doc 1/9. The Inner Product. So we now know that a continuous, analog signal v t can be expressed as: 11/16/2010 The Ier Product.doc 1/9 The Ier Product So we ow kow tht cotiuous, log sigl v t c be epressed s: v t t So tht cotiuous, log sigl c be (lmost) completel specified b discrete set of umbers:,,,,,,

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y ALGEBRA Popeties of Asoute Vue Fo e umes : 0, 0 + + Tige Iequity Popeties of Itege Epoets Ris Assume tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fute isussio. + ( )

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Using Counting Techniques to Determine Probabilities

Using Counting Techniques to Determine Probabilities Kowledge ticle: obability ad Statistics Usig outig Techiques to Detemie obabilities Tee Diagams ad the Fudametal outig iciple impotat aspect of pobability theoy is the ability to detemie the total umbe

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

Induction. Induction and Recursion. Induction is a very useful proof technique

Induction. Induction and Recursion. Induction is a very useful proof technique Iductio Iductio is vey useul poo techique Iductio d Recusio CSC-59 Discete Stuctues I compute sciece, iductio is used to pove popeties o lgoithms Iductio d ecusio e closely elted Recusio is desciptio method

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information