Impact for Particles. The focus of this class is particle impact. We will not discuss impact for rigid bodies.

Size: px
Start display at page:

Download "Impact for Particles. The focus of this class is particle impact. We will not discuss impact for rigid bodies."

Transcription

1 Impact for Particles The focus of this class is particle impact. We will not discuss impact for rigid bodies. Terminology: 1. Central Impact: The incident and departure velocities of the two particles are collinear. (fter impact, and move along same line.) Central Impact Plane of Contact v 1 v 1 2. Oblique Impact: (See net page) Oblique Impact v 1 v 1

2 Terminology (cont d): Oblique Impact 2. Oblique Impact: Initial velocities of and are NOT collinear. Particles and strike a glancing blow and their departure velocities (at least one, or ) are at angles to their initial velocities. Important!! You must draw and label the plane of contact and line of impact. ssume no friction impulse along the plane of contact, thus: v y2 = v y1 Oblique Impact v y1 v 1 v 1 v 2 y v y2 v 2 v 2 v 1 v 1 EQUL! v y1 v y2 = v y1 EQUL! v 2 v y2 Plane of Contact

3 Terminology (cont d): Oblique Impact Labeling the plane of contact vs. the line of impact: Some tets label these tangential (t) and normal (n), but these confuse me. I always have to think about which is which. So, I usually just draw the picture and label them and y. You may do either, whichever makes sense to you. The point is this: Draw them and label them with something! Then, resolve the vectors into components along these aes. Oblique Impact v y1 EQUL! v 1 v 1 v 2 v 2 y v y2 v y2 v 2 v 2 v 1 v 1 Plane of Contact EQUL! v y1

4 Oblique Impact v y1 EQUL! v 1 v 1 v 2 v 2 y v y2 v y2 v 2 v 2 v 1 v 1 Plane of Contact EQUL! v y1 Resolving vectors along the plane of contact greatly aids solving the problem! This looks complicated, but once you see that v y2 v y2 = = v y1 v y1 then the problem becomes a straight line one in the -direction. Once you recognize that along the Plane of Contact, v y2 v y2 = = v y1 v y1 all that remains is a simple straight line problem in the -. direction only v 1 y v 1 Plane of Contact

5 Details ; Coefficient of Restitution What happens during impact? n Up-Close View: Description of Phase efore impact, relative velocity v 1/1 = v 1 - v 1 Deformation phase: Kinetic energy stored as deformation Ma deformation: and momentarily share same velocity, v. Close View of Particles and v 1 v v 1 Restitution phase: Energy stored as deformation converted back to KE. fter impact: If e < 1, some KE lost. Rel Velocity: v 2/2 = v 2 - v 2 v 2 v 2 Coefficient of Restitution, e: e = v 2/2 v 1/1 v 2 - v2 = ( ) v - v ( ) 1 1 v 2 - v2 = ( ) v - v ( ) 1 1

6 Details ; Coefficient of Restitution Coefficient of Restitution, e: (bbreviated as COR ) COR, e, is a measure of the energy stored in deformation during impact which is recovered back to kinetic energy. More precisely. (see your tet for a derivation ) Relative Departure Velocity Relative Incident Velocity e = = v 2/2 v 1/1 v 2 - v2 = ( ) v - v ( ) 1 1 v 2 - v2 = ( ) v - v ( ) 1 1 Cases: e = 1 e = 0 Perfectly Elastic Rel Departure Velocity = Rel Incident Velocity Perfectly Plastic (Particles stick together ) Rel Departure Velocity = 0 0 < e < 1 Range for e is between zero and one. Typical values:.5 to.8 for balls

7 More on Coefficient of Restitution (COR) Kinetic Energy recovered after impact is appro e 2. COR (e) of 0.8 sounds high. ut the KE after impact is (.8) 2 = 64% of the original KE, meaning 36% of KE was lost! pplications: Golf Drivers: The USG limits the COR of a driver s face to be no greater than COR = They have on-site testing facilities to test compliance (if requested). High school and college metal baseball bats: Using metal bats saves money because wood bats break. ut metal bats have a higher COR (batted balls have a 5-10% higher velocity off of a metal bat) than wooden bats. atting and slugging averages are inflated because of this. Pitchers are also subject to injury. Cool high speed videos of balls on bats: lso ecellent information at this site about bats and balls. Highly recommended.

8 Champaign News-Gazette, pril 19, 2003

9 Various alls: Rebound Height (function of energy recovered from bounce collision)

10 Equations for Impact Problems (Let be the, y be the Plane of Contact) long the Plane of Contact: (ssumes no friction impulse along this plane.) v y2 v y2 = = v y1 v y1 long the (Conservation of Momentum: m v 1 + m v m v = m v 2 lso along the : v 1 y v 1 Plane of Contact ( e = v 2 - v 2) ( ) v - v 1 1 Use a consistent sign convention for v s in these equations.

11 long the (-direction ) Write TWO equations to solve for TWO unknowns (v 2, v 2 ): Equation 1: Conservation of Momentum m v 1 + m v m v = m v 2 Equation 2: e Equation, Coeff of Restitution Equation ( e = v 2 - v 2) ( ) v - v 1 1 We know: v 1, v 1 y Solve for: v 2, v 2 using these two equations. v 1 v 1 Plane of Contact

12

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, October 16, 2012 2 / 38 PRINCIPLE

More information

Exploration Phase. What can we use to store mechanical energy? Lab Activity

Exploration Phase. What can we use to store mechanical energy? Lab Activity Solids and Elastic potential Energy Exploration Phase What can we use to store mechanical energy? Lab Activity Is there a limit to how much deformation force a solid object can take? Bend a Popsicle stick

More information

Impulse/Momentum And Its Conservation

Impulse/Momentum And Its Conservation Impulse/Momentum And Its Conservation Which is easier to stop? Truck, car, bowling ball, or baseball all moving at 30 mph. Baseball -it is the least massive. Baseball at 30 mph or a baseball at 90 mph.

More information

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

CHAPTER 9 LINEAR MOMENTUM AND COLLISION CHAPTER 9 LINEAR MOMENTUM AND COLLISION Couse Outline : Linear momentum and its conservation Impulse and Momentum Collisions in one dimension Collisions in two dimension The center of mass (CM) 9.1 Linear

More information

Energy problems look like this: Momentum conservation problems. Example 8-1. Momentum is a VECTOR Example 8-2

Energy problems look like this: Momentum conservation problems. Example 8-1. Momentum is a VECTOR Example 8-2 Review Chp 7: Accounting with Mechanical Energy: the overall Bank Balance When we judge how much energy a system has, we must have two categories: Kinetic energy (K sys ), and potential energy (U sys ).

More information

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left Momentum A ball bounces off the floor as shown. The direction of the impulse on the ball,, is... A: B: C: D: straight up straight down to the right to the left This is also the direction of Momentum A

More information

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q ore on Linear omentum nd Collisions Elastic and Perfect Inelastic Collision (D) Two Dimensional Elastic Collisions Exercise: illiards oard Explosion q ulti-particle

More information

Chapter 10 Collision and Impulse

Chapter 10 Collision and Impulse Chapter 10 Collision and Impulse Momentum provides a new analysis technique. With fce analysis and wk-energy analysis, application of the appropriate analysis technique to the problems at the end of the

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

Section 4: Newton s Laws and Momentum

Section 4: Newton s Laws and Momentum Section 4: Newton s Laws and Momentum The following maps the videos in this section to the Texas Essential Knowledge and Skills for Physics TAC 112.39(c). 4.01 Newton s First Law Physics (4)(D) 4.02 Newton

More information

Kinetics of Particles: Work and Energy

Kinetics of Particles: Work and Energy Kinetics of Particles: Work and Energy Total work done is given by: Modifying this eqn to account for the potential energy terms: U 1-2 + (-ΔV g ) + (-ΔV e ) = ΔT T U 1-2 is work of all external forces

More information

Announcements. The second midterm exam is March 8, 5-7 PM in White B51 (this room).

Announcements. The second midterm exam is March 8, 5-7 PM in White B51 (this room). Announcements The second midterm exam is March 8, 5-7 PM in White B51 (this room). The makeup exam is March 5, 5-7 PM in Clark 317. All exam info, including this, is at the class webpage, http://community.wvu.edu/

More information

OCR Maths M2. Topic Questions from Papers. Collisions

OCR Maths M2. Topic Questions from Papers. Collisions OCR Maths M2 Topic Questions from Papers Collisions 41 Three smooth spheres A, B and C, ofequalradiusandofmassesm kg, 2m kg and 3m kg respectively, lie in a straight line and are free to move on a smooth

More information

Collisions in 1- and 2-D

Collisions in 1- and 2-D Collisions in 1- and 2-D Momentum and Energy Conservation Physics 109 Experiment Number 7 2017 Outline Brief summary of Binary Star Experiment Some thoughts on conservation principles Description of the

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

Slide 1 / 47. Momentum by Goodman & Zavorotniy

Slide 1 / 47. Momentum by Goodman & Zavorotniy Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 47 Conservation of Momentum s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These

More information

Elastic collisions. Objectives. Physics terms. Assessment. Review: conservation laws. Equations 5/14/14. Define and describe an elastic collision.

Elastic collisions. Objectives. Physics terms. Assessment. Review: conservation laws. Equations 5/14/14. Define and describe an elastic collision. Elastic collisions Objectives Define and describe an elastic collision. Describe the possible outcomes that result from the collision of one moving ball with one stationary ball when their masses are equal

More information

Collisions A + B C+D+

Collisions A + B C+D+ Collisions A + B C+D+ Conservation of Momentum Momentum in an isolated system in which a collision occurs is conserved An isolated system will not have external forces Specifically, the total momentum

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

AP Physics Ch 6 Day 4

AP Physics Ch 6 Day 4 Textbook Reference: Goal/Objectives: Sections 6.3 (Collisions) - Understand how momentum and kinetic energy relate to the 3 types of collisions: elastic, inelastic, and perfectly inelastic - Use projectile

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Lecture 17. Conservation of Linear Momentum

Lecture 17. Conservation of Linear Momentum Lecture 17 Chapter 11 Physics I Conservation of Linear Momentum Course website: http://faculty.uml.edu/ndriy_danylov/teaching/physicsi Department of Physics and pplied Physics IN THIS CHPTER, you will

More information

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy onservation of Momentum Slide 2 / 47 s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These principles

More information

1. While rolling on a rough surface, the momentum of a ball becomes half its original value. What can be predicted about the ball s velocity?

1. While rolling on a rough surface, the momentum of a ball becomes half its original value. What can be predicted about the ball s velocity? o Not Reproduce NPI EO Physics Sample Items Goal 6 1. While rolling on a rough surface, the momentum of a ball becomes half its original value. What can be predicted about the ball s velocity? It becomes

More information

Momentum Energy Angular Momentum

Momentum Energy Angular Momentum Notes 8 Impulse and Momentum Page 1 Impulse and Momentum Newton's "Laws" require us to follow the details of a situation in order to calculate properties of the system. Is there a simpler way? CONSERVATION

More information

MEI Mechanics 2. A Model for Friction. Section 1: Friction

MEI Mechanics 2. A Model for Friction. Section 1: Friction Notes and Examples These notes contain subsections on model for friction Modelling with friction MEI Mechanics Model for Friction Section 1: Friction Look at the discussion point at the foot of page 1.

More information

Lecture Presentation Chapter 9 Momentum

Lecture Presentation Chapter 9 Momentum Lecture Presentation Chapter 9 Momentum Suggested Videos for Chapter 9 Prelecture Videos Impulse and Momentum Conservation of Momentum Video Tutor Solutions Momentum Class Videos Force and Momentum Change

More information

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving Physics 11 (Fall 2012) Chapter 9: Momentum The answers you receive depend upon the questions you ask. Thomas Kuhn Life is a mirror and will reflect back to the thinker what he thinks into it. Ernest Holmes

More information

Algebra Based Physics

Algebra Based Physics 1 Algebra Based Physics Momentum 2016 01 20 www.njctl.org 2 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions

More information

Chapter 13. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy

Chapter 13. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy Chapter 3. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy pplications of the Principle of Work & Energy Power and

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 Lesson Description In this lesson we: Learn that an object s momentum is the amount of motion it has due to its mass and velocity. Show that

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard General Physics How hard would a puck have to be shot to be able to knock

More information

Linear momentum conservation

Linear momentum conservation Linear momentum conservation Bullet +head Low speed High mass Bullet High speed Low mass Momentum = mv Fluid, brain Low speed, low mass CONSERVATION OF MOMENTUM COMES FROM NEWTON S THIRD LAW = ACTION =

More information

The SI units of mass are kilograms (kg) and of velocity are meters / second (m/s). Therefore, the units of momentum are kg m/s.

The SI units of mass are kilograms (kg) and of velocity are meters / second (m/s). Therefore, the units of momentum are kg m/s. Momentum Introduction As was pointed out in the previous chapter, some of the most powerful tools in physics are based on conservation principles. The idea behind a conservation principle is that there

More information

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects Chapter 9 Linear Momentum and Collisions This chapter is about interaction between TWO objects 1 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum

More information

Physics Lecture 12 Momentum & Collisions

Physics Lecture 12 Momentum & Collisions Physics 101 - Lecture 12 Momentum & Collisions Momentum is another quantity (like energy) that is tremendously useful because it s often conserved. In fact, there are two conserved quantities that we can

More information

An Introduction to Momentum (Doodle Science)

An Introduction to Momentum (Doodle Science) Momentum An Introduction to Momentum (Doodle Science) Intro to Momentum part one Momentum Momentum is a way of describing the inertia of an object in motion. Momentum = Mass x Velocity P = m v When direction

More information

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr.

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr. HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10 Chapter 6 Conservation of Linear Momentum and Collisions Dr. Armen Kocharian Momentum and Newton s Laws The linear momentum of an object of mass m

More information

MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension

MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension Momentum Defined p = m v p = momentum vector m = mass v = velocity vector Momentum Facts p = m v Momentum is a vector quantity! Velocity

More information

Momentum Practice Test

Momentum Practice Test Momentum Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following equations can be used to directly calculate an object s momentum,

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

A level Exam-style practice

A level Exam-style practice A level Exam-style practice 1 a e 0 b Using conservation of momentum for the system : 6.5 40 10v 15 10v 15 3 v 10 v 1.5 m s 1 c Kinetic energy lost = initial kinetic energy final kinetic energy 1 1 6.5

More information

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum Linear Momentum (Ch 9) The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity v is defined to be the product of the mass and velocity: p = m v

More information

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv)

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv) Impulse (J) We create an unbalancing force to overcome the inertia of the object. the integral of force over time The unbalancing force is made up of the force we need to unbalance the object and the time

More information

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion AP Physics Mechanics Chapter 6 Momentum and Collisions Text chapter 6 - Reading pp. 141-161 - textbook HW -- #1,3,4,6,9,15,16,20,21,23,26,27,25,34,63,70,71 1 6.1 Momentum and Impulse A. What is momentum?

More information

A-level Physics (7407/7408)

A-level Physics (7407/7408) A-level Physics (7407/7408) Mechanics II progress test Name: Class: Author: Date: Time: 55 minutes Marks: 45 Comments: Page Q.A car exerts a driving force of 500 N when travelling at a constant speed of72

More information

Lecture 13. Collisions. and Review of material. Pre-reading: KJF 9.5. Please take an evaluation form

Lecture 13. Collisions. and Review of material. Pre-reading: KJF 9.5. Please take an evaluation form Lecture 13 Collisions and Review of material Pre-reading: KJF 9.5 Please take an evaluation form COLLISIONS KJF 9.5, 10.7 Conservation of momentum Recall from our discussion of momentum (Lecture 9), that

More information

This Week. 9/5/2018 Physics 214 Fall

This Week. 9/5/2018 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 9/5/2018 Physics 214 Fall 2018 1 Momentum What

More information

7.1 Momentum. Can you have inertia sitting in your seat? Do you have momentum (relative to the room) sitting in your seat? What is momentum?

7.1 Momentum. Can you have inertia sitting in your seat? Do you have momentum (relative to the room) sitting in your seat? What is momentum? Impulse & Momentum 7.1 Momentum Can you have inertia sitting in your seat? Do you have momentum (relative to the room) sitting in your seat? What is momentum? 2 7.1 Momentum Which is harder to stop a truck

More information

M1.D [1] M2.A [1] M3.A [1] Slow moving neutrons or low (kinetic) energy neutrons

M1.D [1] M2.A [1] M3.A [1] Slow moving neutrons or low (kinetic) energy neutrons M.D [] M.A [] M3.A [] M4.(a) ANY from Slow moving neutrons or low (kinetic) energy neutrons B (They are in) thermal equilibrium with the moderator / Are in thermal equilibrium with other material (at a

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

This Week. 7/29/2010 Physics 214 Fall

This Week. 7/29/2010 Physics 214 Fall This Week Momentum Is momentum in basketball physics? Rockets and guns How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 7/29/2010 Physics 214 Fall 2010 1 Momentum What

More information

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer:

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer: PROBLEM 2 10 points A disk of mass m is tied to a block of mass 2m via a string that passes through a hole at the center of a rotating turntable. The disk rotates with the turntable at a distance R from

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 8 Last Lecture Work for nonconstant force F x Spring force F =!kx x Potential Energy of Spring PE = 1 2 kx2 Power P = "W "t P = Fv = "KE "t Chapter 6 Momentum

More information

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass LINEAR MOMENTUM Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass MOMENTUM Quantity of Motion Product of Mass and Velocity p = mv

More information

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity.

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity. AP Physics - Problem Drill 08: Momentum and Collisions No. 1 of 10 1. A car and motor bike are travelling down the road? Which of these is a correct statement? (A) The car will have a higher momentum.

More information

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum Slide 1 / 69 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 69 onservation of Momentum The most powerful concepts in science are called "conservation principles". Without worrying about the details of

More information

Lesson 4 Momentum and Energy

Lesson 4 Momentum and Energy Lesson 4 Momentum and Energy Introduction: Connecting Your Learning The previous lessons concentrated on the forces that cause objects to change motion. Lesson 4 will introduce momentum and energy, as

More information

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem Today Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem System of particles Conservation of Momentum 1 Data : Fatality of a driver in head-on collision

More information

Ch 6 Homework. Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly.

Ch 6 Homework. Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. Ch 6 Homework Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1. (Conceptual questions 6.) A skater is standing still on a frictionless

More information

weight (Total 1 mark)

weight (Total 1 mark) Q1.Which one of the following has the same unit as the rate of change of momentum? B work energy acceleration weight Q2.The nucleus of a radioactive isotope X is at rest and decays by emitting an α particle

More information

LECTURE 15. Prof. Paul

LECTURE 15. Prof. Paul LECTURE 15 Prof. Paul Review Clicker Questions: Review Clicker Questions: (You can talk with others) Mark and David are loading identical cement blocks onto a truck. Mark lifts his block straight up from

More information

PHY 1150 Doug Davis Chapter 7; Linear Momentum and Collisions 7.4, 9, , 33, 34, 36, 43, 48, 53, 56, 63

PHY 1150 Doug Davis Chapter 7; Linear Momentum and Collisions 7.4, 9, , 33, 34, 36, 43, 48, 53, 56, 63 PHY 1150 Doug Davis Chapter 7; Linear Momentum and Collisions 7.4, 9, 23. 30, 33, 34, 36, 43, 48, 53, 56, 63 7.4 What is the momentum of a 1200 kg sedan traveling at 90 km/hr? At what speed must a 3600

More information

Solving Momentum Problems

Solving Momentum Problems Solving Momentum Problems Momentum: For lack of a better definition, momentum is a measure of the oomph that an object has due to its motion. The more mass an object has and the more speed it has the more

More information

Chapter 7 Lecture. Pearson Physics. Linear Momentum and Collisions. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 7 Lecture. Pearson Physics. Linear Momentum and Collisions. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 7 Lecture Pearson Physics Linear Momentum and Collisions Prepared by Chris Chiaverina Chapter Contents Momentum Impulse Conservation of Momentum Collisions Momentum How can the effect of catching

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

Physics 1A Fall 2013: Quiz 4 Version A 1. Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock. Version A

Physics 1A Fall 2013: Quiz 4 Version A 1. Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock. Version A Physics 1A Fall 2013: Quiz 4 Version A 1 Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock Version A DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO PUT AWAY ALL BOOKS, NOTES, PHONES,

More information

PreClass Notes: Chapter 9, Sections

PreClass Notes: Chapter 9, Sections PreClass Notes: Chapter 9, Sections 9.3-9.6 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Physics 111. Thursday, October 14, Elastic Perfectly Inelastic Inelastic. We ll finish up energy conservation after the break

Physics 111. Thursday, October 14, Elastic Perfectly Inelastic Inelastic. We ll finish up energy conservation after the break ics Thursday, ober 14, 2004 Ch 9: Collisions Elastic Perfectly Inelastic Inelastic We ll finish up energy conservation after the break Announcements Sunday, 6:30-8 pm in CCLIR 468 Midnight Madness: Monday

More information

Physics. Impulse & Momentum

Physics. Impulse & Momentum Physics Impulse & Momentum Warm up - Write down everything you know about impulse and momentum. Objectives Students will learn the definitions and equations for impulse, momentum, elastic and inelastic

More information

AP Physics 1 Momentum

AP Physics 1 Momentum Slide 1 / 133 Slide 2 / 133 AP Physics 1 Momentum 2015-12-02 www.njctl.org Slide 3 / 133 Table of Contents Click on the topic to go to that section Momentum Impulse-Momentum Equation The Momentum of a

More information

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics. Bell Ringer: Define Kinetic Energy, Potential Energy, and Work. What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

More information

The total momentum in any closed system will remain constant.

The total momentum in any closed system will remain constant. The total momentum in any closed system will remain constant. When two or more objects collide, the collision does not change the total momentum of the two objects. Whatever momentum is lost by one object

More information

Momentum and Impulse

Momentum and Impulse Momentum and Impulse Momentum All objects have mass; so if an object is moving, then it has momentum - it has its mass in motion. The amount of momentum which an object has is dependent upon two variables:

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum Chapter 6 Work & Energy

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

Physics 30 Momentum and Impulse Notes

Physics 30 Momentum and Impulse Notes Jan 30 8:48 PM Momentum the momentum of an object is the product of its mass and velocity i.e. how hard it is to stop something vs. inertia: momentum is a vector quantity the main equation used to find

More information

Phys 2101 Gabriela González. Single particle: = ma. net. dt = F. Several particles: P dt = M a com. F ext. If F net =0, momentum is conserved

Phys 2101 Gabriela González. Single particle: = ma. net. dt = F. Several particles: P dt = M a com. F ext. If F net =0, momentum is conserved Phys 2101 Gabriela González Single particle: Several particles: p = mv dp dt = F net = ma p +... P = p p 1 + 2 3 + d P dt = M a com = F ext If F net =0, momentum is conserved Ricardo, mass 95 kg, and Carmelita,

More information

Collision Theory Challenge Problems Solutions

Collision Theory Challenge Problems Solutions Collision Theory Challenge Problems Solutions Problem 1 Estimate the energy loss in a completely inelastic collision between two identical cars that collide head-on traveling at highway speeds! Solution:

More information

Mechanics M2 Advanced Subsidiary

Mechanics M2 Advanced Subsidiary Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced Subsidiary Tuesday 6 June 2006 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Lilac or Green) Items

More information

Announcements 8 Oct 2013

Announcements 8 Oct 2013 Announcements 8 Oct 2013 1. Exam 2 still going on a. ends tomorrow 2 pm, late fee after 2 pm today Colton - Lecture 11 - pg 1 Where are we now? Topics Kinematics (velocity, acceleration) Vectors & 2D Motion

More information

A Level Maths Notes: M2 Equations for Projectiles

A Level Maths Notes: M2 Equations for Projectiles A Level Maths Notes: M2 Equations for Projectiles A projectile is a body that falls freely under gravity ie the only force acting on it is gravity. In fact this is never strictly true, since there is always

More information

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

Inaugural University of Michigan Science Olympiad Invitational Tournament. Hovercraft

Inaugural University of Michigan Science Olympiad Invitational Tournament. Hovercraft Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Hovercraft Team number: Team name: Student names: Instructions: Do not open this test until told to do

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum 5 1/26/16 Rotational Dynamics

More information

Conservation of Momentum. Last modified: 08/05/2018

Conservation of Momentum. Last modified: 08/05/2018 Conservation of Momentum Last modified: 08/05/2018 Links Momentum & Impulse Momentum Impulse Conservation of Momentum Example 1: 2 Blocks Initial Momentum is Not Enough Example 2: Blocks Sticking Together

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

Work, Energy and Momentum Notes 1 Work and Energy

Work, Energy and Momentum Notes 1 Work and Energy Work, Energy and Momentum Notes 1 Work and Energy Work is defined as the transfer of energy from one body to another. Or more rigorously: We can calculate the work done on an object with: the units of

More information