ADVANCED PROBLEMS AND SOLUTIONS

Size: px
Start display at page:

Download "ADVANCED PROBLEMS AND SOLUTIONS"

Transcription

1 ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, MATHEMATICAL INSTITUTE, UNAM, CP 0450, MEXICO DF, MEXICO or by at as files of the type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions sent by regular mail should be submitted on separate signed sheets within two months after publication of the problems. PROBLEMS PROPOSED IN THIS ISSUE H-75 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu, Buzău, Romania. Prove that F 2n m+ + 2n+ F 2n m+ F m + + 2n+ n F n m+ Fm n + 2n+ n+ F m F n m+ F n m + + 2n+ 2n F m+ Fm+ F 2n m p+ p+ F 2n+ p+ m+2 2 p F m F m+ holds for any p 0 and positive integers m and n, and that the same inequality holds with all the F s replaced by L s. H-752 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu, Buzău, Romania. Prove that 2n+ 2n+ p 2m+ p 2m+ p p 5 m L 2m+ F 5 n L 2n+ F, p p p0 2n+ 2 5 m F 2m+ p0 0 p 2n+ p 0 p p0 0 2m+ p 2m+ L 5 n F 2n+ p p0 0 p L. H-753 Proposed by H. Ohtsua, Saitama, Japan. For integers n, m, a 0 and b, prove that n 2m Fa+b 4m 4m an+b+r F anr L an+a+2br 2mr 25 m + F ar r 4m n 2m 25 m. MAY

2 THE FIBONACCI QUARTERLY H-754 Proposed by H. Ohtsua, Saitama, Japan. Let a, b and n be integers. The two sequences {T n } and {S n } satisfy T n+3 T n+2 +T n+ +T n with arbitrary T 0, T, T 2, S n+3 S n+2 +S n+ +S n with S 0 3, S, S 2 3 for all integers n. Let R n S n +. For n, prove that n Ra 2 R2 a Ta+b 2 A n A 0, where A n 2T an+b R a T an+a+b +R a T ana+b T an+a+b T ana+b 2 R a T an+b 2. SOLUTIONS Infinite Sums With Reciprocals of Squares of Fibonacci and Lucas Numbers H-724 Proposed by H. Ohtsua, Saitama, Japan. Vol. 50, No. 3, August 202 Determine Solution by the proposer. F 2 4 The following identity is easily verified. L L 2 2 5F 2 n L2 n 4n. If n 0, dividing both sides of the identity by F 2 2n, 2 5 L 2 n F 2 n 4n F2n 2. F 2 2. Using the above identity, we have F 2 L 2 + L 2 F F L 2 + L 2 F F 2 F F F F 2 + F 2 4 F F 2 4 F VOLUME 52, NUMBER 2

3 ADVANCED PROBLEMS AND SOLUTIONS Thus, we have Therefore, 5 F 2 4 F 2 4 L L L 2 2 L 2 2 F 2 2 F Also solved by Paul S. Brucman and Dmitry Fleishman. Sums With Powers of 3, 4 and Binomial Coefficients H-725 Proposed by Paul S. Brucman, Nanaimo, BC. Vol. 50, No. 4, November 202 Prove the following identities valid for n 0,,2,... n3 a n4 6 0 where sinθ 2/3; n b n4 8 3n+53 n n 3 n/2sinnθ sinθ, 9n+7+3 3n/2 cosnρ+sinnρ/ 2, where sinρ 2/27; n2 pqp 2 q 2 2 c 2 p 2 +q 2 2 pp+qn+ qq p n+ 2p 2 +2pq q 2 p 2 +q 2 n 0 + ppqn+ qq +p n+ 2p 2 2pq q 2 p 2 +q 2, where p > q > 0 are integers. n Solution by G. C. Greubel. a The process for the three series will be to consider the generating function of the given relations and compare the final results. For the first series in question consider From this, we have Sn tn n,0 0 S n n+ 0 n n t n n t t 4 4t 4t 27t 4 0 4t + n 4t n n! 4t+27t4. MAY

4 THE FIBONACCI QUARTERLY Alternatively, let φ n be given by for which φ n 6 [ φ n tn 6 3n+53 n n 3 n/2sinnθ, sinθ 56t 3t 2 ] 3t n sinnθ. sinθ The summation on the right-hand side can be evaluated as follows. 3t n sinnθ e inθ e inθ 3t n 2i e iθ 2i + 3e e iθ iθt cosθt sinθ 3e iθ t +2. 3cosθt+3t 2 From this, we have [ φ nt n ] 56t 6 3t cosθt +2. 3cosθt+3t 2 In order to reduce this expression use sinθ 2/3 or cosθ /3 to obtain φ n tn [ ] 56t 6 6t+9t t +2t+3t 2 By comparing equations and 2, we are led to the desired result 0 n3 where sinθ 2/ n4 6 4t+27t2. 2 3n+53 n n 3 n/2sinnθ, sinθ b Let Sn 2 be the series to be summed. As before, consider the generating function for this series. Snt 2 n [n/4] 0 n t n4 t n n,0 3 + n 4t n n! 4t n n t n+3 27t 4 0 4t 3 4t 2 4t 3 +27t VOLUME 52, NUMBER 2

5 ADVANCED PROBLEMS AND SOLUTIONS Now that we have the desired generating function to compare to, let φ 2 n be the right-hand side of the desired result and proceed to find its generating function. φ 2 n tn 7+9n+ 33n/2 2cosnρ+sinnρ t n 8 2 where Υ,2 are the series Υ 8 7+2t t 2 + Υ + Υ 2, cosnρ3 3/2 t n, and Υ 2 Evaluating Υ yields Υ [ ] 2 3 3/2 e iρ t + 3 3/2 e iρ t The result for Υ 2 is similar and is given by Υ 2 sinnρ3 3/2 t n. 3 3/2 cosρ t 2 3 3/2 cosρ t+27t /2 sinρ t 2 3 3/2 cosρ t+27t2. 6 By combining 4, 5 and 6, the resulting series taes the form φ 2 n tn 7+2t 8 t /2 2cosρsinρt /2 cosρt+27t 2 Now using the provided value sinρ 2/27, which also provides cosρ 25/27, leads to the reduction φ 2 nt n [ ] 7+2t 8 t t 0t+27t 3 [ 844t+268t 2 ] 8 2t+48t 2 64t 3 +27t 4 4t 2 4t 3 +27t4. 8 Since 3 and 8 have the same generating function, then we conclude that 0 n 3 where sinρ 2/ n n+ 33n/2 2cosnρ+sinnρ, 9 2 c Let x pqp2 q 2 p 2 +q 2 2, 0 MAY

6 THE FIBONACCI QUARTERLY and let Sn 3 be the series in question, then [n/4] n2 Sn 3 tn 2 0 n,0 x 2 t n n,0 2 + n x 2 t 4 t n n! t n+2 2 x 2 t 4 0 x 2 t 4 t n t 2 t t 2 x 2 t4. Alternatively, let φ 3 n be the right-hand side of the third series in question and see the generating function. where Υ 3 φ 3 nt n 2p 2 +2pq q 2 Υ 3 + pp+q n+ qq p n+ p 2 +q 2 n t n, and Υ 4 2p 2 2pq q 2 Υ 4, 2 ppq n+ qp+q n+ p 2 +q 2 n t n. Consider the evaluation of Υ 3. This is done in the following way. pp+q n+ qq p n+ Υ 3 p 2 +q 2 n t n pp+qp2 +q 2 p 2 +q 2 pp+qt qq pp2 +q 2 p 2 +q 2 qq pt p 2 +2pq q 2 p 2 +q 2 2 p 2 +q 2 2 tpqp 2 q 2 t 2 p2 +2pq q 2 txt 2, 3 where x is given by 0. The same process may be applied to evaluating Υ 4 and we are led to the result Υ 4 p2 2pq q 2 t+xt 2. 4 From these expressions equation 2 is reduced to φ 3 n tn 2 txt 2 + t+xt 2 t t 2 x 2 t 4. This is the same generating function as that of equation. Thus leading to the statement n2 pqp 2 q p 2 +q 2 2 pp+qn+ qq p n+ 2p 2 +2pq q 2 p 2 +q 2 n 0 where p > q > 0 are integers. + ppqn+ qq +p n+ 2p 2 2pq q 2 p 2 +q 2 n, 5 Also solved by Paul S. Brucman and Kenneth B. Davenport. 90 VOLUME 52, NUMBER 2

7 ADVANCED PROBLEMS AND SOLUTIONS Sums of Sums of Reciprocals of Fibonacci Numbers H-726 Proposed by Hideyui Ohtsua, Saitama, Japan. Vol. 50, No. 4, November 202 Prove that F 2 F 4 F 8 F 6 F 2 n F 2 F 2. Solution by the proposer. First, we will prove the following lemma. Lemma. F n F n+ α n + F n α n+ ; F n+ 2 F 2n α n n F n α 2n. F 2n Proof of Lemma. We have Thus, 5αFn+ +F n αα n+ β n+ +α n β n α n+2 +α n α n α 2 + 5α n+. α n+ αf n+ +F n. Dividing both sides of this identity by α n+ F n F n+, we get identity. 2 We have Thus, α n L n α n α n +β n α 2n + n. α 2n α n L n n. Dividing both sides of this identity by α 2n F 2n, we get identity 2. Using Lemma, we have F 2 F 2 Using Lemma 2, we have F 4 α 2 + F 2 α 2 F 2 α 2 F 2 α 4 F 4 α F. α 42 F MAY 204 9

8 THE FIBONACCI QUARTERLY Using Lemma 2, we have We have Thus, we obtain, F n3 2 n lim N F 2 lim N n3 α 4 F 4 F 2 F 2 F 2 F 2 F 2 α F N α 2n F 2 n α 2n F 2 n α 2N F 2 N α 4 F 4 + F n3 2 n F 4 + Also solved by Paul S. Brucman. α 4 F 4. 3 α 2 F 2 by Lemma 2 + F n3 2 n α 42 F 42 by F 4. by 2 and 3. F 2 F VOLUME 52, NUMBER 2

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE ADVANCED PROBLEMS AND SOLUTIONS EDITED BY LORIAN LUCA Please sen all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to LORIAN LUCA, SCHOOL O MATHEMATICS, UNIVERSITY O THE WITWA- TERSRAND, PRIVATE

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals their solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics Statistics, Northwest Missouri State University,

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals and their solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals their solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics Statistics, Northwest Missouri State University,

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all commuicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, WITS

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Florian Luca Please send all communications concerning ADVANCED PROBLEMS AND SOLU- TIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 61-3 (XANGARI),CP 58 089, MORELIA, MICHOACAN, MEXICO, or by e-mail

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals and their solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri State

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY 4063, or by email

More information

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE EDITED BY LORIAN LUCA Please sed all commuicatios cocerig to LORIAN LUCA, SCHOOL O MATHEMATICS, UNIVERSITY O THE WITWA- TERSRAND, PRIVATE BAG X3, WITS 00, JOHANNESBURG, SOUTH ARICA or by e-mail at the

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all couicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, PRIVATE

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 4063, or by email at kwong@fredoniaedu If you

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 4063, or by

More information

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Florian Luca

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Florian Luca Edited by Floria Luca Please sed all commuicatios cocerig ADVANCED PROBLEMS AND SOLU- TIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 6-3 (XANGARI), CP 58 089, MORELIA, MICHOACAN, MEXICO, or by e-mail at

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathematical Sciences, SUNY Fredonia, Fredonia, NY, 4063, or by

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutios ad problem proposals to Dr. Harris Kwog Departmet of Mathematical Scieces SUNY Fredoia Fredoia NY 14063 or by email at wog@fredoia.edu.

More information

Edited by Russ Euler and Jawad Sadek

Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sade Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY RUSS EULER AND JAWAD SADEK Please submit all new problem proposals and their solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics,

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA VEN, PA 17745. This

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA PA 17745, This department

More information

ADVANCED PEOBLEMS AND SOLUTIONS

ADVANCED PEOBLEMS AND SOLUTIONS ADVANCED PEOBLEMS AND SOLUTIONS Edited by Raymond E* Whitney Please send all communications concerning to RAYMOND K WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 7745. This department

More information

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Raymond E. Whitney

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Raymond E. Whitney Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 7745. This department

More information

Cullen Numbers in Binary Recurrent Sequences

Cullen Numbers in Binary Recurrent Sequences Cullen Numbers in Binary Recurrent Sequences Florian Luca 1 and Pantelimon Stănică 2 1 IMATE-UNAM, Ap. Postal 61-3 (Xangari), CP 58 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx 2 Auburn

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lk Haven State College, Lock Haven, Pennsylvania 17745 Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney,

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E* Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 775. This department

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Lock Haven State College, Lock Haven, Pennsylvania Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney,

More information

Fibonacci and Lucas Identities the Golden Way

Fibonacci and Lucas Identities the Golden Way Fibonacci Lucas Identities the Golden Way Kunle Adegoe adegoe00@gmail.com arxiv:1810.12115v1 [math.nt] 25 Oct 2018 Department of Physics Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife,

More information

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Loc Haven State College, Loc Haven, Pennsylvania Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics

More information

SOME FORMULAE FOR THE FIBONACCI NUMBERS

SOME FORMULAE FOR THE FIBONACCI NUMBERS SOME FORMULAE FOR THE FIBONACCI NUMBERS Brian Curtin Department of Mathematics, University of South Florida, 4202 E Fowler Ave PHY4, Tampa, FL 33620 e-mail: bcurtin@mathusfedu Ena Salter Department of

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutios ad problem proposals to Dr Harris Kwog, Departmet of Mathematical Scieces, SUNY Fredoia, Fredoia, NY, 4063, or by email at

More information

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney,

More information

Journal of Number Theory

Journal of Number Theory Journal of Number Theory 132 2012) 324 331 Contents lists available at SciVerse ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt Digit sums of binomial sums Arnold Knopfmacher a,florianluca

More information

In memoriam Péter Kiss

In memoriam Péter Kiss Kálmán Liptai Eszterházy Károly Collage, Leányka út 4, 3300 Eger, Hungary e-mail: liptaik@gemini.ektf.hu (Submitted March 2002-Final Revision October 2003) In memoriam Péter Kiss ABSTRACT A positive integer

More information

Edited by Russ Euler and Jawad Sadek

Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

K th -order linear difference equation (Normal Form)

K th -order linear difference equation (Normal Form) The standard form of the general K th -order difference equation is x n + 1 = F(x n, x n - 1, x n - 2,..., x n - K + 1, P) where P is a vector of parameters. However, linear equations are normally expressed

More information

Winter 2014 Practice Final 3/21/14 Student ID

Winter 2014 Practice Final 3/21/14 Student ID Math 4C Winter 2014 Practice Final 3/21/14 Name (Print): Student ID This exam contains 5 pages (including this cover page) and 20 problems. Check to see if any pages are missing. Enter all requested information

More information

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS Applicable Analysis and Discrete Mathematics, 1 (27, 371 385. Available electronically at http://pefmath.etf.bg.ac.yu A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS H. W. Gould, Jocelyn

More information

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION ISSN 2066-6594 Ann Acad Rom Sci Ser Math Appl Vol 10, No 1/2018 HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION Mircea Merca Dedicated to Professor Mihail Megan on

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E. Whitney Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA VEN, PA 17745. This

More information

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions David R. Wilkins Copyright c David R. Wilkins 2005 Contents 7 Trigonometric and Exponential Functions 1 7.1 Basic Trigonometric

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

Summation of certain infinite Fibonacci related series

Summation of certain infinite Fibonacci related series arxiv:52.09033v (30 Dec 205) Summation of certain infinite Fibonacci related series Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes Université de Bejaia 06000 Bejaia Algeria

More information

Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums

Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums Bull. Math. Soc. Sci. Math. Roumanie Tome 55(103 No. 1, 01, 51 61 Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums by Emrah Kilic, Iler Aus and Hideyui Ohtsua Abstract In this

More information

A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS

A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 006 A SUMMATION FORMULA FOR SEQUENCES INVOLVING FLOOR AND CEILING FUNCTIONS M.A. NYBLOM ABSTRACT. A closed form expression for the Nth partial

More information

17 Advancement Operator Equations

17 Advancement Operator Equations November 14, 2017 17 Advancement Operator Equations William T. Trotter trotter@math.gatech.edu Review of Recurrence Equations (1) Problem Let r(n) denote the number of regions determined by n lines that

More information

uniform distribution theory

uniform distribution theory Uniform Distribution Theory 9 204 no. 2 25 uniform distribution theory ON THE FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION Florian Luca Pantelimon Stănică ABSTRACT. Here we show that

More information

8. Sequences, Series, and Probability 8.1. SEQUENCES AND SERIES

8. Sequences, Series, and Probability 8.1. SEQUENCES AND SERIES 8. Sequences, Series, and Probability 8.1. SEQUENCES AND SERIES What You Should Learn Use sequence notation to write the terms of sequences. Use factorial notation. Use summation notation to write sums.

More information

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n Florian Luca IMATE de la UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacan, Mexico e-mail: fluca@matmor.unain.inx

More information

arxiv: v1 [math.co] 26 Sep 2017

arxiv: v1 [math.co] 26 Sep 2017 SPECTRAL RADIUS OF A STAR WITH ONE LONG ARM arxiv:170908871v1 [mathco] 26 Sep 2017 HYUNSHIK SHIN Abstract A tree is said to be starlike if exactly one vertex has degree greater than two In this paper,

More information

ABSTRACT. In this note, we find all the solutions of the Diophantine equation x k = y n, 1, y 1, k N, n INTRODUCTION

ABSTRACT. In this note, we find all the solutions of the Diophantine equation x k = y n, 1, y 1, k N, n INTRODUCTION Florian Luca Instituto de Matemáticas UNAM, Campus Morelia Apartado Postal 27-3 (Xangari), C.P. 58089, Morelia, Michoacán, Mexico e-mail: fluca@matmor.unam.mx Alain Togbé Mathematics Department, Purdue

More information

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 8180, Morelia, Michoacán, México e-mail: fluca@matmor.unam.mx Laszlo Szalay Department of Mathematics and Statistics,

More information

Solutions I.N. Herstein- Second Edition

Solutions I.N. Herstein- Second Edition Solutions I.N. Herstein- Second Edition Sadiah Zahoor Please email me if any corrections at sadiahzahoor@cantab.net. R is a ring in all problems. Problem 0.1. If a, b, c, d R, evaluate (a + b)(c + d).

More information

Products of Factorials Modulo p

Products of Factorials Modulo p Products of Factorials Modulo p Florian Luca and Pantelimon Stănică IMATE, UNAM, Ap. Postal 6-3 Xangari, CP. 58 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx Auburn University Montgomery,

More information

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Annales Univ. Sci. Budapest., Sect. Comp. 41 (2013) 119 124 THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Florian Luca (Morelia, Mexico) Pantelimon Stănică (Monterey, USA) Dedicated

More information

Linear recurrence relations with the coefficients in progression

Linear recurrence relations with the coefficients in progression Annales Mathematicae et Informaticae 4 (013) pp. 119 17 http://ami.ektf.hu Linear recurrence relations with the coefficients in progression Mircea I. Cîrnu Department of Mathematics, Faculty of Applied

More information

UWO CS2214 Feb. 4, Assignment #1 Due: Feb. 12, 2017, by 23:55 Submission: on the OWL web site of the course

UWO CS2214 Feb. 4, Assignment #1 Due: Feb. 12, 2017, by 23:55 Submission: on the OWL web site of the course UWO CS2214 Feb. 4, 2019 Assignment #1 Due: Feb. 12, 2017, by 23:55 Submission: on the OWL web site of the course Format of the submission. You must submit a single file which must be in PDF format. All

More information

Partial Sums of Powers of Prime Factors

Partial Sums of Powers of Prime Factors 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 10 (007), Article 07.1.6 Partial Sums of Powers of Prime Factors Jean-Marie De Koninck Département de Mathématiques et de Statistique Université Laval Québec

More information

#A2 INTEGERS 12A (2012): John Selfridge Memorial Issue ON A CONJECTURE REGARDING BALANCING WITH POWERS OF FIBONACCI NUMBERS

#A2 INTEGERS 12A (2012): John Selfridge Memorial Issue ON A CONJECTURE REGARDING BALANCING WITH POWERS OF FIBONACCI NUMBERS #A2 INTEGERS 2A (202): John Selfridge Memorial Issue ON A CONJECTURE REGARDING BALANCING WITH POWERS OF FIBONACCI NUMBERS Saúl Díaz Alvarado Facultad de Ciencias, Universidad Autónoma del Estado de México,

More information

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4)

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4) Chapter 4 Complex Numbers 4.1 Definition of Complex Numbers A complex number is a number of the form where a and b are real numbers and i has the property that z a + ib (4.1) i 2 1. (4.2) a is called the

More information

uniform distribution theory

uniform distribution theory Uniform Distribution Theory 9 (2014), no.1, 21 25 uniform distribution theory ON THE FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION Florian Luca Pantelimon Stănică ABSTRACT. Here, we show

More information

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E. Whitney

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E. Whitney Edited by Raymond E. Whitney Please send all communications concerning to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA VEN, PA 7745. This department especially welcomes problems

More information

FIFTH ROOTS OF FIBONACCI FRACTIONS. Christopher P. French Grinnell College, Grinnell, IA (Submitted June 2004-Final Revision September 2004)

FIFTH ROOTS OF FIBONACCI FRACTIONS. Christopher P. French Grinnell College, Grinnell, IA (Submitted June 2004-Final Revision September 2004) Christopher P. French Grinnell College, Grinnell, IA 0112 (Submitted June 2004-Final Revision September 2004) ABSTRACT We prove that when n is odd, the continued fraction expansion of Fn+ begins with a

More information

Real Variables: Solutions to Homework 9

Real Variables: Solutions to Homework 9 Real Variables: Solutions to Homework 9 Theodore D Drivas November, 20 xercise 0 Chapter 8, # : For complex-valued, measurable f, f = f + if 2 with f i real-valued and measurable, we have f = f + i f 2

More information

Examples of Finite Sequences (finite terms) Examples of Infinite Sequences (infinite terms)

Examples of Finite Sequences (finite terms) Examples of Infinite Sequences (infinite terms) Math 120 Intermediate Algebra Sec 10.1: Sequences Defn A sequence is a function whose domain is the set of positive integers. The formula for the nth term of a sequence is called the general term. Examples

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail

More information

Manual for SOA Exam MLC.

Manual for SOA Exam MLC. Chapter 10. Poisson processes. Section 10.5. Nonhomogenous Poisson processes Extract from: Arcones Fall 2009 Edition, available at http://www.actexmadriver.com/ 1/14 Nonhomogenous Poisson processes Definition

More information

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Problem 1. [5pts] Consider our definitions of Z, Q, R, and C. Recall that A B means A is a subset

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

arxiv: v1 [math.ca] 15 Jan 2018

arxiv: v1 [math.ca] 15 Jan 2018 Preprint submitted to arxiv.org Accurate estimates of 1 + x 1/x Involved in Carleman Inequality and Keller Limit arxiv:1801.04963v1 [math.ca] 15 Jan 2018 Branko Malešević 1, Yue Hu 2 and Cristinel Mortici

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

Applications. More Counting Problems. Complexity of Algorithms

Applications. More Counting Problems. Complexity of Algorithms Recurrences Applications More Counting Problems Complexity of Algorithms Part I Recurrences and Binomial Coefficients Paths in a Triangle P(0, 0) P(1, 0) P(1,1) P(2, 0) P(2,1) P(2, 2) P(3, 0) P(3,1) P(3,

More information

Sums of fourth powers of Fibonacci and Lucas numbers

Sums of fourth powers of Fibonacci and Lucas numbers Sums of fourth powers of Fibonacci Lucas numbers arxiv:1706.00407v1 [math.nt] 28 May 2017 Kunle Adegoke Department of Physics Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria Abstract

More information

198 VOLUME 46/47, NUMBER 3

198 VOLUME 46/47, NUMBER 3 LAWRENCE SOMER Abstract. Rotkiewicz has shown that there exist Fibonacci pseudoprimes having the forms p(p + 2), p(2p 1), and p(2p + 3), where all the terms in the products are odd primes. Assuming Dickson

More information

#A12 INTEGERS 11 (2011) ON THE NUMBER OF FACTORIZATIONS OF AN INTEGER

#A12 INTEGERS 11 (2011) ON THE NUMBER OF FACTORIZATIONS OF AN INTEGER #A12 INTEGERS 11 (2011) ON THE NUMBER OF FACTORIZATIONS OF AN INTEGER R. Balasubramanian The Institute of Mathematical Sciences, Chennai, India balu@imsc.res.in Florian Luca 1 Instituto de Matemáticas,

More information

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT Journal of Prime Research in Mathematics Vol. 8 202, 28-35 GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT JORGE JIMÉNEZ URROZ, FLORIAN LUCA 2, MICHEL

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Introduction to Abstract Mathematics

Introduction to Abstract Mathematics Introduction to Abstract Mathematics Notation: Z + or Z >0 denotes the set {1, 2, 3,...} of positive integers, Z 0 is the set {0, 1, 2,...} of nonnegative integers, Z is the set {..., 1, 0, 1, 2,...} of

More information

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1.

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1. MATH 222 LEC SECOND MIDTERM EXAM THU NOV 8 PROBLEM ( 5 points ) Find the standard-form equation for the hyperbola which has its foci at F ± (±2, ) and whose asymptotes are y ± 3 x The calculations b a

More information

CONGRUENCES FOR BERNOULLI - LUCAS SUMS

CONGRUENCES FOR BERNOULLI - LUCAS SUMS CONGRUENCES FOR BERNOULLI - LUCAS SUMS PAUL THOMAS YOUNG Abstract. We give strong congruences for sums of the form N BnVn+1 where Bn denotes the Bernoulli number and V n denotes a Lucas sequence of the

More information

EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES

EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES EXTENDING THE DOMAINS OF DEFINITION OF SOME FIBONACCI IDENTITIES MARTIN GRIFFITHS Abstract. In this paper we consider the possibility for extending the domains of definition of particular Fibonacci identities

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

Sequences and Series. Copyright Cengage Learning. All rights reserved.

Sequences and Series. Copyright Cengage Learning. All rights reserved. Sequences and Series Copyright Cengage Learning. All rights reserved. 12.1 Sequences and Summation Notation Copyright Cengage Learning. All rights reserved. Objectives Sequences Recursively Defined Sequences

More information

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression Applied Mathematical Sciences Vol. 207 no. 25 2-29 HIKARI Ltd www.m-hikari.com https://doi.org/0.2988/ams.207.7392 On Two New Classes of Fibonacci Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

More information

Summation of Certain Infinite Lucas-Related Series

Summation of Certain Infinite Lucas-Related Series J. Integer Sequences 22 (209) Article 9..6. Summation of Certain Infinite Lucas-Related Series arxiv:90.04336v [math.nt] Jan 209 Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences

More information

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR.

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR. GENERATING FUNCTIONS OF CENTRAL VALUES CLAUDIA SMITH and VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95. INTRODUCTION In this paper we shall examine the generating functions of the central

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test.

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test. Throughout these templates, let series. be a series. We hope to determine the convergence of this Divergence Test: If lim is not zero or does not exist, then the series diverges. Preliminary check: are

More information

ftz]}]z .tt#t*qtmjfi aiii } { n } or [ n ] I anianforn 1+2=2+-5 an = n 11.1 Sequences A sequence is a list of numbers in a certain order:

ftz]}]z .tt#t*qtmjfi aiii } { n } or [ n ] I anianforn 1+2=2+-5 an = n 11.1 Sequences A sequence is a list of numbers in a certain order: . 11.1 Sequences A sequence is a list of numbers in a certain order: a 1 a 2 a 3 a 4 a n1 a n (In this book all the sequences will be infinite.) The number a 1 is called the first term of the sequence.

More information

On strings of consecutive economical numbers of arbitrary length

On strings of consecutive economical numbers of arbitrary length INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A05 1 On strings of consecutive economical numbers of arbitrary length Jean-Marie De Koninck 1 and Florian Luca 2 Received: 11/5/03,

More information

LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS

LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS ANDREAS N. PHILIPPOU & FROSSO S. MAKRI University of Patras, Patras, Greece (Submitted January 1984; Revised April 1984) 1. INTRODUCTION AND SUMMARY

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n 0 5 6 7 8 9 0 F n 0 5 8 55 89

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz IMPORTANT NOTICE: There is a new editor of this department and a new address for all submissions. Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to DR. STANLEY

More information

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr,

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr, Edited by Stanley Rablnowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to

More information

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Annales Univ. Sci. Budapest., Sect. Comp. 40 (2013) nn nnn THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Florian Luca (Morelia, Mexico) Pantelimon Stănică (Monterey, USA) Dedicated to

More information

7-7 Multiplying Polynomials

7-7 Multiplying Polynomials Example 1: Multiplying Monomials A. (6y 3 )(3y 5 ) (6y 3 )(3y 5 ) (6 3)(y 3 y 5 ) 18y 8 Group factors with like bases together. B. (3mn 2 ) (9m 2 n) Example 1C: Multiplying Monomials Group factors with

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Raymond E 0 Whitney Please send all communications concerning to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture II: Chapter 2 R. Paul Wiegand George Mason University, Department of Computer Science February 1, 2006 Outline 1 Analysis Framework 2 Asymptotic

More information