uniform distribution theory

Size: px
Start display at page:

Download "uniform distribution theory"

Transcription

1 Uniform Distribution Theory no uniform distribution theory ON THE FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION Florian Luca Pantelimon Stănică ABSTRACT. Here we show that given any two finite strings of base b digits say and s 2 there are infinitely many Fibonacci numbers F n such that the base b representation of F n starts with and the base b representation of φf n starts with s 2. Communicated by Oto Strauch. Introduction Let b 2beandinteger.Let = c c kb be a positive integer written in base b. Washington [4] proved that there exist infinitely many Fibonacci numbers F n whose base b representation starts with. In fact the first digits of the Fibonacci sequence obey Benford s law in that the proportion of the positive integers n such that F n starts with is precisely log +/ /. Here we take this one step further. Let φm be the Euler function of the positive integer m. We put s 2 = d...d lb for some other positive integer written in base b and prove the following theorem. Theorem. Given positive integers = c c kb and s 2 = d...d lb written in base b there exist infinitely many positive integers n such that the base b representation of F n starts with the digits of and the base b representation of φf n starts with the digits of s 2. We use the fact that with α β = + 5/2 5/2 the Binet formula F n = αn β n holds for all n 0. α β For a positive real number x we write log x for the natural logarithm of x and x respectively {x} for the integer part respectively fractional part of x. 200 M a t h e m a t i c s Subject Classification: B39K36. K e y w o r d s: Euler function Fibonacci numbers digits distribution. 2

2 FLORIAN LUCA PANTELIMON STĂNICĂ 2. The proof By replacing with b m for some positive integer m if needed whose effect is adding m zeros at the end of the base b representation of we may assume that >s 2. By replacing s 2 by b m respectively s 2 b m for an arbitrary positive integer m we may assume that the length of the base b representation of thatisk is as large as we wish. In Section 4 of [2] it is shown that φf n /F n is dense in [0 ]. So we take ε 0 /5b 2k and choose a positive integer a such that + ε s 2 +2ε φ. Now we take any prime p> and look at p.sincep> it follows that p = Fap and the two factors and p / on the right above are coprime indeed the only common prime factor of these two numbers could be p which is not the case since p>. Any prime factor q of p / is a primitive prime factor of F dp for some divisor d of a. Recall that a prime number q is said to be a primitive prime factor of F n if q divides F n but does not divide any F m for m<n. One of the properties of primitive prime factors q of F n when n>5isthat q ±modn. In particular every prime factor q of p / is congruent to ± modp. Let q...q t be all the prime factors of p /.Then 2p t q q t p p α ap. Thus t = Op/ log p. Then 22 φp p = t φfa qi = φ = φ = φ i= exp t i= t exp O exp O q log p + O q i q 2 q q

3 FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION = φf a +O. log p It implies that if p>expκε where κ>0 is some absolute constant then φp +0.5ε s 2 +.5ε. 2 p We now follow Washington s argument [4] to prove that there exist infinitely many primes p such that the base b representation of p starts with. For this it is enough to show that p = b N + ζ ap for some integer 0 ζ ap b N. 3 Note that since q 2p it follows that if p is sufficiently large say p>b k then p cannot equal b N and in particular if in the above formula 3 we have ζ ap 0 then in fact ζ ap. The above formula 3 yields α ap = 5 b N + 5ζ ap + β ap = 5 b N + x ap. Since ζ ap it follows that 5ζap + β ap > 5ζap + β ap 5 > and 0 <x ap = 5s b. N So if x ap 0 /b k and p > b k is sufficiently large it then follows that ζ ap <b N which is what we want. Thus or ap log α =log 5 +N +log+x ap ap log α N log { 5 = log } 5 + log + x ap. 4 Observe that log 5 / is never an integer. Assume that k is sufficiently large such that { b k < log } 5. Then putting δ = log + /bk we see that a relation like 4 with x ap 0 /b k holds provided that { } { a log α log } { 5 log } 5 p + δ. 5 23

4 FLORIAN LUCA PANTELIMON STĂNICĂ The number γ = a log α/ is irrational. By a result of Vinogradov [3] the sequence of fractional parts {pγ} p prime is uniformly distributed. In particular containment 5 holds for a positive proportion of primes p and therefore certainly for infinitely many of them. So indeed relation 3 holds. Relation 2 now shows that φp =s 2 b N + θ where θ ζ ap +0.5ε +0.5εb N ζ ap +.5ε +.5ε b N. Since ε</5b 2k the above upper bound is b ζ ap +.5ε +.5ε b N < b N k b k + 0. b k < b N + 0.bk b 2k b N where the last inequality above is implied by 9 < bn b N which holds true for all b 2andN. This completes the proof of the theorem. 3. Comments It was shown in [] that with σm being the sum of divisors of the positive integer m theratioσf n /F n is dense in [. The present method now shows that there are infinitely many positive integers n such that the base b representation of F n starts with the digits of and the base b representation of σf n starts with the digits of s 2. Also one may replace the Fibonacci sequence F n in the above statements with some other sequence u n for which it has been proved that φu n /u n and u n /σu n respectively are dense in [0 ]. For example one can take u n =2 n see [] and the main result of this paper still holds provided that b is not a power of 2. We give no further details. Acknowledgments. We thank the referee for a careful reading of the paper and for comments which improved its quality. This paper was written during a visit of F. L. to the Applied Mathematics Department of Naval Postgraduate 24

5 FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION School in December 202. During the preparation of this paper F. L. was supported in part by Project PAPIIT IN0452 UNAM VSP N Department of the US Navy ONR Global and a Marcos Moshinsky fellowship. REFERENCES [] LUCA F.: On the sum of divisors of the Mersenne numbers Math. Slovaca [2] LUCA F. MEJÍA HUGUET V. J. NICOLAE F.: On the Euler function of Fibonacci numbers J. Integer Sequences A [3] VINOGRADOV I. M.: A new estimation of a trigonometric sum containing primes Bull. Acad. Sci. URSSSer. Math [4] WASHINGTON L. C.: Benford s law for Fibonacci and Lucas numbers Fibonacci Quart Received January Accepted June F. Luca Mathematical Institute UNAM Juriquilla Santiago de Querétaro México and School of Mathematics University of the Witwatersrand P. O. Box Wits 2050 SOUTH AFRICA fluca@matmor.unam.mx P. Stănică Naval Postgraduate School Applied Mathematics Department Monterey CA USA pstanica@nps.edu 25

uniform distribution theory

uniform distribution theory Uniform Distribution Theory 9 (2014), no.1, 21 25 uniform distribution theory ON THE FIRST DIGITS OF THE FIBONACCI NUMBERS AND THEIR EULER FUNCTION Florian Luca Pantelimon Stănică ABSTRACT. Here, we show

More information

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Annales Univ. Sci. Budapest., Sect. Comp. 41 (2013) 119 124 THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Florian Luca (Morelia, Mexico) Pantelimon Stănică (Monterey, USA) Dedicated

More information

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Annales Univ. Sci. Budapest., Sect. Comp. 40 (2013) nn nnn THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS Florian Luca (Morelia, Mexico) Pantelimon Stănică (Monterey, USA) Dedicated to

More information

Fibonacci numbers of the form p a ± p b

Fibonacci numbers of the form p a ± p b Fibonacci numbers of the form p a ± p b Florian Luca 1 and Pantelimon Stănică 2 1 IMATE, UNAM, Ap. Postal 61-3 (Xangari), CP. 8 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx 2 Auburn University

More information

Cullen Numbers in Binary Recurrent Sequences

Cullen Numbers in Binary Recurrent Sequences Cullen Numbers in Binary Recurrent Sequences Florian Luca 1 and Pantelimon Stănică 2 1 IMATE-UNAM, Ap. Postal 61-3 (Xangari), CP 58 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx 2 Auburn

More information

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 8180, Morelia, Michoacán, México e-mail: fluca@matmor.unam.mx Laszlo Szalay Department of Mathematics and Statistics,

More information

Powers of Two as Sums of Two Lucas Numbers

Powers of Two as Sums of Two Lucas Numbers 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 17 (014), Article 14.8.3 Powers of Two as Sums of Two Lucas Numbers Jhon J. Bravo Mathematics Department University of Cauca Street 5 No. 4-70 Popayán,

More information

Revista Colombiana de Matemáticas Volumen 40 (2006), páginas 81 86

Revista Colombiana de Matemáticas Volumen 40 (2006), páginas 81 86 Revista Colombiana de Matemáticas Volumen 40 2006), páginas 81 86 Palindromic powers Santos Hernández Hernández Pontificia Universidad Católica de Chile, Santigo Florian Luca Universidad Nacional Autónoma

More information

When do Fibonacci invertible classes modulo M form a subgroup?

When do Fibonacci invertible classes modulo M form a subgroup? Calhoun: The NPS Institutional Archive DSace Reository Faculty and Researchers Faculty and Researchers Collection 2013 When do Fibonacci invertible classes modulo M form a subgrou? Luca, Florian Annales

More information

Journal of Number Theory

Journal of Number Theory Journal of Number Theory 132 2012) 324 331 Contents lists available at SciVerse ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt Digit sums of binomial sums Arnold Knopfmacher a,florianluca

More information

Members of binary recurrences on lines of the Pascal triangle

Members of binary recurrences on lines of the Pascal triangle Publ. Math. Debrecen 67/1-2 (2005), 103 113 Members of binary recurrences on lines of the Pascal triangle By FLORIAN LUCA (Morelia) and FRANCESCO PAPPALARDI (Roma) Abstract. In this paper, we look at a

More information

When do the Fibonacci invertible classes modulo M form a subgroup?

When do the Fibonacci invertible classes modulo M form a subgroup? Annales Mathematicae et Informaticae 41 (2013). 265 270 Proceedings of the 15 th International Conference on Fibonacci Numbers and Their Alications Institute of Mathematics and Informatics, Eszterházy

More information

On the spacings between C-nomial coefficients

On the spacings between C-nomial coefficients On the spacings between C-nomial coefficients lorian Luca, Diego Marques,2, Pantelimon Stănică 3 Instituto de Matemáticas, Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México,

More information

arxiv: v1 [math.nt] 24 Aug 2015

arxiv: v1 [math.nt] 24 Aug 2015 LUCAS NUMBERS WITH THE LEHMER PROPERTY arxiv:1508.05709v1 [math.nt] 24 Aug 2015 BERNADETTE FAYE AND FLORIAN LUCA Abstract. A composite positive integer n is Lehmer if φ(n) divides n 1, where φ(n) is the

More information

On strings of consecutive economical numbers of arbitrary length

On strings of consecutive economical numbers of arbitrary length INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A05 1 On strings of consecutive economical numbers of arbitrary length Jean-Marie De Koninck 1 and Florian Luca 2 Received: 11/5/03,

More information

ON THE EULER FUNCTION OF THE CATALAN NUMBERS

ON THE EULER FUNCTION OF THE CATALAN NUMBERS ON THE EULER FUNCTION OF THE CATALAN NUMBERS FLORIAN LUCA AND PANTELIMON STĂNICĂ Abstract. We study the solutions of the equation φ(c m)/φ(c n) = r, where r is a fixed rational number, C k is the kth Catalan

More information

THE DIOPHANTINE EQUATION P (x) = n! AND A RESULT OF M. OVERHOLT. Florian Luca Mathematical Institute, UNAM, Mexico

THE DIOPHANTINE EQUATION P (x) = n! AND A RESULT OF M. OVERHOLT. Florian Luca Mathematical Institute, UNAM, Mexico GLASNIK MATEMATIČKI Vol. 37(57(2002, 269 273 THE IOPHANTINE EQUATION P (x = n! AN A RESULT OF M. OVERHOLT Florian Luca Mathematical Institute, UNAM, Mexico Abstract. In this note, we show that the ABC-conjecture

More information

Power of Two Classes in k Generalized Fibonacci Sequences

Power of Two Classes in k Generalized Fibonacci Sequences Revista Colombiana de Matemáticas Volumen 482014)2, páginas 219-234 Power of Two Classes in k Generalized Fibonacci Sequences Clases de potencias de dos en sucesiones k generalizadas de Fibonacci Carlos

More information

ABSTRACT. In this note, we find all the solutions of the Diophantine equation x k = y n, 1, y 1, k N, n INTRODUCTION

ABSTRACT. In this note, we find all the solutions of the Diophantine equation x k = y n, 1, y 1, k N, n INTRODUCTION Florian Luca Instituto de Matemáticas UNAM, Campus Morelia Apartado Postal 27-3 (Xangari), C.P. 58089, Morelia, Michoacán, Mexico e-mail: fluca@matmor.unam.mx Alain Togbé Mathematics Department, Purdue

More information

PELL NUMBERS WHOSE EULER FUNCTION IS A PELL NUMBER. Bernadette Faye and Florian Luca

PELL NUMBERS WHOSE EULER FUNCTION IS A PELL NUMBER. Bernadette Faye and Florian Luca PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série tome 05 207 23 245 https://doiorg/02298/pim7523f PELL NUMBERS WHOSE EULER FUNCTION IS A PELL NUMBER Bernadette Faye and Florian Luca Abstract We show

More information

Aliquot sums of Fibonacci numbers

Aliquot sums of Fibonacci numbers Aliquot sums of Fibonacci numbers Florian Luca Instituto de Matemáticas Universidad Nacional Autónoma de Méico C.P. 58089, Morelia, Michoacán, Méico fluca@matmor.unam.m Pantelimon Stănică Naval Postgraduate

More information

arxiv: v1 [math.nt] 2 Oct 2015

arxiv: v1 [math.nt] 2 Oct 2015 PELL NUMBERS WITH LEHMER PROPERTY arxiv:1510.00638v1 [math.nt] 2 Oct 2015 BERNADETTE FAYE FLORIAN LUCA Abstract. In this paper, we prove that there is no number with the Lehmer property in the sequence

More information

Marcos J. González Departamento de Matemáticas Puras y Aplicadas, Universidad Simón Bolívar, Sartenejas, Caracas, Venezuela

Marcos J. González Departamento de Matemáticas Puras y Aplicadas, Universidad Simón Bolívar, Sartenejas, Caracas, Venezuela #A89 INTEGERS 16 (016) ON SIERPIŃSKI NUMBERS OF THE FORM '(N)/ n Marcos J. González Departamento de Matemáticas Puras y Aplicadas, Universidad Simón Bolívar, Sartenejas, Caracas, Venezuela mago@usb.ve

More information

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers

Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers University of South Carolina Scholar Commons Theses and Dissertations 2017 Covering Subsets of the Integers and a Result on Digits of Fibonacci Numbers Wilson Andrew Harvey University of South Carolina

More information

On a problem of Nicol and Zhang

On a problem of Nicol and Zhang Journal of Number Theory 28 2008 044 059 www.elsevier.com/locate/jnt On a problem of Nicol and Zhang Florian Luca a, József Sándor b, a Instituto de Matemáticas, Universidad Nacional Autonoma de México,

More information

Prime Divisors of Palindromes

Prime Divisors of Palindromes Prime Divisors of Palindromes William D. Banks Department of Mathematics, University of Missouri Columbia, MO 6511 USA bbanks@math.missouri.edu Igor E. Shparlinski Department of Computing, Macquarie University

More information

Partial Sums of Powers of Prime Factors

Partial Sums of Powers of Prime Factors 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 10 (007), Article 07.1.6 Partial Sums of Powers of Prime Factors Jean-Marie De Koninck Département de Mathématiques et de Statistique Université Laval Québec

More information

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory.

Number Theory. CSS322: Security and Cryptography. Sirindhorn International Institute of Technology Thammasat University CSS322. Number Theory. CSS322: Security and Cryptography Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 29 December 2011 CSS322Y11S2L06, Steve/Courses/2011/S2/CSS322/Lectures/number.tex,

More information

On arithmetic functions of balancing and Lucas-balancing numbers

On arithmetic functions of balancing and Lucas-balancing numbers MATHEMATICAL COMMUNICATIONS 77 Math. Commun. 24(2019), 77 1 On arithmetic functions of balancing and Lucas-balancing numbers Utkal Keshari Dutta and Prasanta Kumar Ray Department of Mathematics, Sambalpur

More information

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT

GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT Journal of Prime Research in Mathematics Vol. 8 202, 28-35 GAPS IN BINARY EXPANSIONS OF SOME ARITHMETIC FUNCTIONS, AND THE IRRATIONALITY OF THE EULER CONSTANT JORGE JIMÉNEZ URROZ, FLORIAN LUCA 2, MICHEL

More information

#A2 INTEGERS 12A (2012): John Selfridge Memorial Issue ON A CONJECTURE REGARDING BALANCING WITH POWERS OF FIBONACCI NUMBERS

#A2 INTEGERS 12A (2012): John Selfridge Memorial Issue ON A CONJECTURE REGARDING BALANCING WITH POWERS OF FIBONACCI NUMBERS #A2 INTEGERS 2A (202): John Selfridge Memorial Issue ON A CONJECTURE REGARDING BALANCING WITH POWERS OF FIBONACCI NUMBERS Saúl Díaz Alvarado Facultad de Ciencias, Universidad Autónoma del Estado de México,

More information

On the Fractional Parts of a n /n

On the Fractional Parts of a n /n On the Fractional Parts of a n /n Javier Cilleruelo Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM and Universidad Autónoma de Madrid 28049-Madrid, Spain franciscojavier.cilleruelo@uam.es Angel Kumchev

More information

ODD REPDIGITS TO SMALL BASES ARE NOT PERFECT

ODD REPDIGITS TO SMALL BASES ARE NOT PERFECT #A34 INTEGERS 1 (01) ODD REPDIGITS TO SMALL BASES ARE NOT PERFECT Kevin A. Broughan Department of Mathematics, University of Waikato, Hamilton 316, New Zealand kab@waikato.ac.nz Qizhi Zhou Department of

More information

1 n <. n G F. ζ(3) c = 2ζ(2) ζ(6)log α = , Our method is general and can be applied to any Lucas sequence of general term

1 n <. n G F. ζ(3) c = 2ζ(2) ζ(6)log α = , Our method is general and can be applied to any Lucas sequence of general term Fibonacci Integers Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México fluca@matmor.unam.mx Carl Pomerance Mathematics Department, Dartmouth

More information

Products of Factorials Modulo p

Products of Factorials Modulo p Products of Factorials Modulo p Florian Luca and Pantelimon Stănică IMATE, UNAM, Ap. Postal 6-3 Xangari, CP. 58 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx Auburn University Montgomery,

More information

Introduction to Number Theory

Introduction to Number Theory INTRODUCTION Definition: Natural Numbers, Integers Natural numbers: N={0,1,, }. Integers: Z={0,±1,±, }. Definition: Divisor If a Z can be writeen as a=bc where b, c Z, then we say a is divisible by b or,

More information

Normic continued fractions in totally and tamely ramified extensions of local fields

Normic continued fractions in totally and tamely ramified extensions of local fields Normic continued fractions in totally and tamely ramified extensions of local fields Pantelimon Stănică Naval Postgraduate School Applied Mathematics Department, Monterey, CA 93943 5216, USA; email: pstanica@nps.edu

More information

Sierpiński and Carmichael numbers

Sierpiński and Carmichael numbers Sierpiński and Carmichael numbers William Banks Department of Mathematics University of Missouri Columbia, MO 65211, USA bbanks@math.missouri.edu Carrie Finch Mathematics Department Washington and Lee

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006

Divisibility in the Fibonacci Numbers. Stefan Erickson Colorado College January 27, 2006 Divisibility in the Fibonacci Numbers Stefan Erickson Colorado College January 27, 2006 Fibonacci Numbers F n+2 = F n+1 + F n n 1 2 3 4 6 7 8 9 10 11 12 F n 1 1 2 3 8 13 21 34 89 144 n 13 14 1 16 17 18

More information

arxiv: v2 [math.nt] 29 Jul 2017

arxiv: v2 [math.nt] 29 Jul 2017 Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation arxiv:1509.07898v2 [math.nt] 29 Jul 2017 Prapanpong Pongsriiam Department of Mathematics, Faculty of Science Silpakorn University

More information

Arithmetic properties of the Ramanujan function

Arithmetic properties of the Ramanujan function Proc. Indian Acad. Sci. (Math. Sci.) Vol. 116, No. 1, February 2006, pp. 1 8. Printed in India Arithmetic properties of the Ramanujan function FLORIAN LUCA 1 and IGOR E SHPARLINSKI 2 1 Instituto de Matemáticas,

More information

arxiv: v1 [math.nt] 18 Jul 2012

arxiv: v1 [math.nt] 18 Jul 2012 Some remarks on Euler s totient function arxiv:107.4446v1 [math.nt] 18 Jul 01 R.Coleman Laboratoire Jean Kuntzmann Université de Grenoble Abstract The image of Euler s totient function is composed of the

More information

Irreducible radical extensions and Euler-function chains

Irreducible radical extensions and Euler-function chains Irreducible radical extensions and Euler-function chains Florian Luca Carl Pomerance June 14, 2006 For Ron Graham on his 70th birthday Abstract We discuss the smallest algebraic number field which contains

More information

RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS

RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS RECIPROCAL SUMS OF SEQUENCES INVOLVING BALANCING AND LUCAS-BALANCING NUMBERS GOPAL KRISHNA PANDA, TAKAO KOMATSU and RAVI KUMAR DAVALA Communicated by Alexandru Zaharescu Many authors studied bounds for

More information

INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS

INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS INTEGERS DIVISIBLE BY THE SUM OF THEIR PRIME FACTORS JEAN-MARIE DE KONINCK and FLORIAN LUCA Abstract. For each integer n 2, let β(n) be the sum of the distinct prime divisors of n and let B(x) stand for

More information

Math 412: Number Theory Lecture 3: Prime Decomposition of

Math 412: Number Theory Lecture 3: Prime Decomposition of Math 412: Number Theory Lecture 3: Prime Decomposition of Integers Gexin Yu gyu@wm.edu College of William and Mary Prime numbers Definition: a (positive) integer p is prime if p has no divisor other than

More information

Summary Slides for MATH 342 June 25, 2018

Summary Slides for MATH 342 June 25, 2018 Summary Slides for MATH 342 June 25, 2018 Summary slides based on Elementary Number Theory and its applications by Kenneth Rosen and The Theory of Numbers by Ivan Niven, Herbert Zuckerman, and Hugh Montgomery.

More information

Chapter 8. Introduction to Number Theory

Chapter 8. Introduction to Number Theory Chapter 8 Introduction to Number Theory CRYPTOGRAPHY AND NETWORK SECURITY 1 Index 1. Prime Numbers 2. Fermat`s and Euler`s Theorems 3. Testing for Primality 4. Discrete Logarithms 2 Prime Numbers 3 Prime

More information

198 VOLUME 46/47, NUMBER 3

198 VOLUME 46/47, NUMBER 3 LAWRENCE SOMER Abstract. Rotkiewicz has shown that there exist Fibonacci pseudoprimes having the forms p(p + 2), p(2p 1), and p(2p + 3), where all the terms in the products are odd primes. Assuming Dickson

More information

On repdigits as product of consecutive Lucas numbers

On repdigits as product of consecutive Lucas numbers Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 24, 2018, No. 3, 5 102 DOI: 10.7546/nntdm.2018.24.3.5-102 On repdigits as product of consecutive Lucas numbers

More information

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY ORMAL UMBERS AD UIFORM DISTRIBUTIO WEEKS -3 OPE PROBLEMS I UMBER THEORY SPRIG 28, TEL AVIV UIVERSITY Contents.. ormal numbers.2. Un-natural examples 2.3. ormality and uniform distribution 2.4. Weyl s criterion

More information

4 Linear Recurrence Relations & the Fibonacci Sequence

4 Linear Recurrence Relations & the Fibonacci Sequence 4 Linear Recurrence Relations & the Fibonacci Sequence Recall the classic example of the Fibonacci sequence (F n ) n=1 the relations: F n+ = F n+1 + F n F 1 = F = 1 = (1, 1,, 3, 5, 8, 13, 1,...), defined

More information

Theory of Numbers Problems

Theory of Numbers Problems Theory of Numbers Problems Antonios-Alexandros Robotis Robotis October 2018 1 First Set 1. Find values of x and y so that 71x 50y = 1. 2. Prove that if n is odd, then n 2 1 is divisible by 8. 3. Define

More information

FIBONACCI DIOPHANTINE TRIPLES. Florian Luca and László Szalay Universidad Nacional Autonoma de México, Mexico and University of West Hungary, Hungary

FIBONACCI DIOPHANTINE TRIPLES. Florian Luca and László Szalay Universidad Nacional Autonoma de México, Mexico and University of West Hungary, Hungary GLASNIK MATEMATIČKI Vol. 436300, 53 64 FIBONACCI DIOPHANTINE TRIPLES Florian Luca and László Szalay Universidad Nacional Autonoma de México, Mexico and University of West Hungary, Hungary Abstract. In

More information

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k RALF BUNDSCHUH AND PETER BUNDSCHUH Dedicated to Peter Shiue on the occasion of his 70th birthday Abstract. Let F 0 = 0,F 1 = 1, and F n = F n 1 +F

More information

A Remark on Prime Divisors of Lengths of Sides of Heron Triangles

A Remark on Prime Divisors of Lengths of Sides of Heron Triangles A Remark on Prime Divisors of Lengths of Sides of Heron Triangles István Gaál, István Járási, Florian Luca CONTENTS 1. Introduction 2. Proof of Theorem 1.1 3. Proof of Theorem 1.2 4. Proof of Theorem 1.3

More information

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1 MATH 4400 SOLUTIONS TO SOME EXERCISES 1.1.3. If a b and b c show that a c. 1. Chapter 1 Solution: a b means that b = na and b c that c = mb. Substituting b = na gives c = (mn)a, that is, a c. 1.2.1. Find

More information

Even perfect numbers among generalized Fibonacci sequences

Even perfect numbers among generalized Fibonacci sequences Even perfect numbers among generalized Fibonacci sequences Diego Marques 1, Vinicius Vieira 2 Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil Abstract A positive integer

More information

#A12 INTEGERS 11 (2011) ON THE NUMBER OF FACTORIZATIONS OF AN INTEGER

#A12 INTEGERS 11 (2011) ON THE NUMBER OF FACTORIZATIONS OF AN INTEGER #A12 INTEGERS 11 (2011) ON THE NUMBER OF FACTORIZATIONS OF AN INTEGER R. Balasubramanian The Institute of Mathematical Sciences, Chennai, India balu@imsc.res.in Florian Luca 1 Instituto de Matemáticas,

More information

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them.

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them. Fermat s Little Theorem Fermat s little theorem is a statement about primes that nearly characterizes them. Theorem: Let p be prime and a be an integer that is not a multiple of p. Then a p 1 1 (mod p).

More information

LOG-LIKE FUNCTIONS AND UNIFORM DISTRIBUTION MODULO ONE. 1. Introduction and results

LOG-LIKE FUNCTIONS AND UNIFORM DISTRIBUTION MODULO ONE. 1. Introduction and results uniform distribution theory DOI: 0478/udt-08 003 Unif Distrib Theory 3 (08), no, 93 0 LOG-LIKE FUNCTIONS AND UNIFORM DISTRIBUTION MODULO ONE Martin Rehberg Technische Hochschule Mittelhessen, Friedberg,

More information

On a divisibility relation for Lucas sequences

On a divisibility relation for Lucas sequences Journal of Number Theory 163 (2016) 1 18 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt On a divisibility relation for Lucas sequences Yuri F. Bilu a,1,

More information

Average value of the Euler function on binary palindromes

Average value of the Euler function on binary palindromes Average value of the Euler function on binary palindromes William D. Banks Department of Mathematics, University of Missouri Columbia, MO 652 USA bbanks@math.missouri.edu Igor E. Shparlinski Department

More information

On the largest prime factor of the Mersenne numbers

On the largest prime factor of the Mersenne numbers arxiv:0704.137v1 [math.nt] 10 Apr 007 On the largest prime factor of the Mersenne numbers Kevin Ford Department of Mathematics The University of Illinois at Urbana-Champaign Urbana Champaign, IL 61801,

More information

Running Modulus Recursions

Running Modulus Recursions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.6 Running Modulus Recursions Bruce Dearden and Jerry Metzger University of North Dakota Department of Mathematics Witmer Hall

More information

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a "

10 Problem 1. The following assertions may be true or false, depending on the choice of the integers a, b 0. a Math 4161 Dr. Franz Rothe December 9, 2013 13FALL\4161_fall13f.tex Name: Use the back pages for extra space Final 70 70 Problem 1. The following assertions may be true or false, depending on the choice

More information

On integer solutions to x 2 dy 2 = 1, z 2 2dy 2 = 1

On integer solutions to x 2 dy 2 = 1, z 2 2dy 2 = 1 ACTA ARITHMETICA LXXXII.1 (1997) On integer solutions to x 2 dy 2 = 1, z 2 2dy 2 = 1 by P. G. Walsh (Ottawa, Ont.) 1. Introduction. Let d denote a positive integer. In [7] Ono proves that if the number

More information

On Carmichael numbers in arithmetic progressions

On Carmichael numbers in arithmetic progressions On Carmichael numbers in arithmetic progressions William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu Carl Pomerance Department of Mathematics

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information

On Integers for Which the Sum of Divisors is the Square of the Squarefree Core

On Integers for Which the Sum of Divisors is the Square of the Squarefree Core 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 15 (01), Article 1.7.5 On Integers for Which the Sum of Divisors is the Square of the Squarefree Core Kevin A. Broughan Department of Mathematics University

More information

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n

O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n O N P O S I T I V E N U M B E R S n F O R W H I C H Q(n) D I V I D E S F n Florian Luca IMATE de la UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacan, Mexico e-mail: fluca@matmor.unain.inx

More information

Two Diophantine Approaches to the Irreducibility of Certain Trinomials

Two Diophantine Approaches to the Irreducibility of Certain Trinomials Two Diophantine Approaches to the Irreducibility of Certain Trinomials M. Filaseta 1, F. Luca 2, P. Stănică 3, R.G. Underwood 3 1 Department of Mathematics, University of South Carolina Columbia, SC 29208;

More information

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C p-stability OF DEGENERATE SECOND-ORDER RECURRENCES Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C. 20064 Walter Carlip Department of Mathematics and Computer

More information

A Readable Introduction to Real Mathematics

A Readable Introduction to Real Mathematics Solutions to selected problems in the book A Readable Introduction to Real Mathematics D. Rosenthal, D. Rosenthal, P. Rosenthal Chapter 7: The Euclidean Algorithm and Applications 1. Find the greatest

More information

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS #A40 INTEGERS 16 (2016) POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS Daniel Baczkowski Department of Mathematics, The University of Findlay, Findlay, Ohio

More information

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru

Number Theory Marathon. Mario Ynocente Castro, National University of Engineering, Peru Number Theory Marathon Mario Ynocente Castro, National University of Engineering, Peru 1 2 Chapter 1 Problems 1. (IMO 1975) Let f(n) denote the sum of the digits of n. Find f(f(f(4444 4444 ))). 2. Prove

More information

ON THE FIXED POINTS OF THE MAP x x x MODULO A PRIME. 1. Introduction 1.1. Motivation. For a prime p, we consider the properties of the map

ON THE FIXED POINTS OF THE MAP x x x MODULO A PRIME. 1. Introduction 1.1. Motivation. For a prime p, we consider the properties of the map ON THE FIXED POINTS OF THE MAP x x x MODULO A PRIME Abstract. In this paper, we show that for almost all primes p there is an integer solution x [2, p 1] to the congruence x x x (mod p). The solutions

More information

PERIODICITY OF SOME RECURRENCE SEQUENCES MODULO M

PERIODICITY OF SOME RECURRENCE SEQUENCES MODULO M INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A42 PERIODICITY OF SOME RECURRENCE SEQUENCES MODULO M Artūras Dubickas Department of Mathematics and Informatics, Vilnius University,

More information

On some inequalities between prime numbers

On some inequalities between prime numbers On some inequalities between prime numbers Martin Maulhardt July 204 ABSTRACT. In 948 Erdős and Turán proved that in the set of prime numbers the inequality p n+2 p n+ < p n+ p n is satisfied infinitely

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

Heron triangles with two fixed sides

Heron triangles with two fixed sides Heron triangles with two fixed sides Eugen J. Ionascu Columbus State University 4225 University Avenue Columbus, GA 31907 ionascu eugen@colstate.edu Florian Luca Instituto de Matemáticas Universidad Nacional

More information

ON THE SUM OF DIVISORS FUNCTION

ON THE SUM OF DIVISORS FUNCTION Annales Univ. Sci. Budapest., Sect. Comp. 40 2013) 129 134 ON THE SUM OF DIVISORS FUNCTION N.L. Bassily Cairo, Egypt) Dedicated to Professors Zoltán Daróczy and Imre Kátai on their 75th anniversary Communicated

More information

A combinatorial problem related to Mahler s measure

A combinatorial problem related to Mahler s measure A combinatorial problem related to Mahler s measure W. Duke ABSTRACT. We give a generalization of a result of Myerson on the asymptotic behavior of norms of certain Gaussian periods. The proof exploits

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

On the possible quantities of Fibonacci numbers that occur in some type of intervals

On the possible quantities of Fibonacci numbers that occur in some type of intervals On the possible quantities of Fibonacci numbers that occur in some type of intervals arxiv:1508.02625v1 [math.nt] 11 Aug 2015 Bakir FARHI Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes

More information

On Anti-Elite Prime Numbers

On Anti-Elite Prime Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 10 (2007), Article 07.9.4 On Anti-Elite Prime Numbers Tom Müller Institut für Cusanus-Forschung an der Universität und der Theologischen Fakultät Trier

More information

On the Diophantine equation k

On the Diophantine equation k On the Diophantine equation k j=1 jfp j = Fq n arxiv:1705.06066v1 [math.nt] 17 May 017 Gökhan Soydan 1, László Németh, László Szalay 3 Abstract Let F n denote the n th term of the Fibonacci sequence. Inthis

More information

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC #A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania lkjone@ship.edu Received: 9/17/10, Revised:

More information

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points.

All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. Math 152, Problem Set 2 solutions (2018-01-24) All variables a, b, n, etc are integers unless otherwise stated. Each part of a problem is worth 5 points. 1. Let us look at the following equation: x 5 1

More information

Houston Journal of Mathematics c 2050 University of Houston Volume 76, No. 1, Communicated by George Washington

Houston Journal of Mathematics c 2050 University of Houston Volume 76, No. 1, Communicated by George Washington Houston Journal of Mathematics c 2050 University of Houston Volume 76, No., 2050 SUMS OF PRIME DIVISORS AND MERSENNE NUMBERS WILLIAM D. BANKS AND FLORIAN LUCA Communicated by George Washington Abstract.

More information

Certain Diophantine equations involving balancing and Lucas-balancing numbers

Certain Diophantine equations involving balancing and Lucas-balancing numbers ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 0, Number, December 016 Available online at http://acutm.math.ut.ee Certain Diophantine equations involving balancing and Lucas-balancing

More information

arxiv: v1 [math.co] 11 Aug 2015

arxiv: v1 [math.co] 11 Aug 2015 arxiv:1508.02762v1 [math.co] 11 Aug 2015 A Family of the Zeckendorf Theorem Related Identities Ivica Martinjak Faculty of Science, University of Zagreb Bijenička cesta 32, HR-10000 Zagreb, Croatia Abstract

More information

1 i<j k (g ih j g j h i ) 0.

1 i<j k (g ih j g j h i ) 0. CONSECUTIVE PRIMES IN TUPLES WILLIAM D. BANKS, TRISTAN FREIBERG, AND CAROLINE L. TURNAGE-BUTTERBAUGH Abstract. In a stunning new advance towards the Prime k-tuple Conjecture, Maynard and Tao have shown

More information

ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS

ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS J. Aust. Math. Soc. 88 (2010), 313 321 doi:10.1017/s1446788710000169 ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS WILLIAM D. BANKS and CARL POMERANCE (Received 4 September 2009; accepted 4 January

More information

Fibonacci Diophantine Triples

Fibonacci Diophantine Triples Fibonacci Diophantine Triples Florian Luca Instituto de Matemáticas Universidad Nacional Autonoma de México C.P. 58180, Morelia, Michoacán, México fluca@matmor.unam.mx László Szalay Institute of Mathematics

More information

On the digital representation of smooth numbers

On the digital representation of smooth numbers On the digital representation of smooth numbers Yann BUGEAUD and Haime KANEKO Abstract. Let b 2 be an integer. Among other results, we establish, in a quantitative form, that any sufficiently large integer

More information

Discrete Structures Lecture Primes and Greatest Common Divisor

Discrete Structures Lecture Primes and Greatest Common Divisor DEFINITION 1 EXAMPLE 1.1 EXAMPLE 1.2 An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

More information

On Gauss sums and the evaluation of Stechkin s constant

On Gauss sums and the evaluation of Stechkin s constant On Gauss sums and the evaluation of Stechkin s constant William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bankswd@missouri.edu Igor E. Shparlinski Department of Pure

More information