Circuit quantum electrodynamics : beyond the linear dispersive regime

Size: px
Start display at page:

Download "Circuit quantum electrodynamics : beyond the linear dispersive regime"

Transcription

1 Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo June 23 th, 2008 Boissonneault, Gambetta and Blais, Phys. Rev. A (R) (2008)

2 1 Introduction Atom and cavity Cavity QED Charge qubit and coplanar resonator Circuit QED The linear dispersive limit Circuit VS cavity QED 2 Beyond linear dispersive Understanding the dispersive transformation The dispersive limit Dissipation in the system Dissipation in the transformed basis 3 Results Reduction of the SNR Measurement induced heat bath The case of the transmon 4 Conclusion Conclusion

3 Atom and cavity... Energy ω 01 = ω a Two-levels system Hamiltonian H = ωa σz σz = «

4 Atom and cavity x y z Energy... L Two-levels system Hamiltonian H = ωa σz σz = 2 ω 01 = ω a «Cavity Hamiltonian H = X k ω k a k a k + 1 «2

5 Atom and cavity x y z Energy... L Two-levels system Hamiltonian H = ωa σz σz = 2 ω 01 = ω a «Cavity Hamiltonian H = X k ω k a k a k + 1 «2

6 Atom and cavity ω r = ω 1 ω 2 Energy Response κ = ω r/q... Input frequency, rf Two-levels system Hamiltonian H = ωa σz σz = 2 ω 01 = ω a «Cavity Hamiltonian H = X k Single-mode : ω k a k a k + 1 «2 H = ω ra a

7 Cavity QED g

8 Cavity QED g Atom-cavity interaction H I = D E g(a + a)σ x g(a σ + aσ + ) g(z) = d 0 r ω V ǫ 0 sinkz

9 Cavity QED g Atom-cavity interaction H I = D E g(a + a)σ x g(a σ + aσ + ) Jaynes-Cummings Hamiltonian g(z) = d 0 r ω V ǫ 0 sinkz H = ωa 2 σz + ωra a + g(a σ + aσ + ) Jaynes and Cummings, Proc. IEEE (1963) Raimond, Brune and Haroche, Rev. Mod. Phys (2001) Mabuchi and Doherty, Science (2002)

10 Charge qubit and coplanar resonator Classical Hamiltonian Vg C g E J C J Vg C g n E J C J E C = H = 4E C (n n g) 2 E J cos δ E J = I 0Φ 0 2π e 2 CgVg, ng = 2(C g + C J ) 2e

11 Charge qubit and coplanar resonator Classical Hamiltonian Vg C g E J C J Vg C g n E J C J E C = H = 4E C (n n g) 2 E J cos δ E J = I 0Φ 0 2π e 2 CgVg, ng = 2(C g + C J ) 2e Quantum Hamiltonian H = X n 4E C (n n g) 2 n n X n E J ( n n h.c.) 2 Restricting to n g [0,1] : H = ω aσ z/2 Shnirman, Schön and Hermon, Phys. Rev. Lett (1997) Bouchiat et al., Physica Scripta T (1998) Nakamura, Pashkin and Tsai, Nature (London) (1999)

12 Charge qubit and coplanar resonator Classical Hamiltonian Vg C g E J C J Vg C g n E J C J E C = H = 4E C (n n g) 2 E J cos δ E J = I 0Φ 0 2π e 2 CgVg, ng = 2(C g + C J ) 2e Energie [Arb. Units] EJ/4EC=0.1 EJ Gate charge, n g = C g V g /2e Quantum Hamiltonian H = X n X n 4E C (n n g) 2 n n E J ( n n h.c.) 2 Restricting to n g [0,1] : H = ω aσ z/2 Shnirman, Schön and Hermon, Phys. Rev. Lett (1997) Bouchiat et al., Physica Scripta T (1998) Nakamura, Pashkin and Tsai, Nature (London) (1999)

13 Charge qubit and coplanar resonator

14 Charge qubit and coplanar resonator L r C r Classical Hamiltonian H = Φ2 2L r CrV 2 ω r = s 1 L rc r

15 Charge qubit and coplanar resonator L r C r Classical Hamiltonian H = Φ2 2L r CrV 2 ω r = s 1 L rc r Quantum Hamiltonian r ωr V = (a + a), 2C r H = ω r a a + 1 «2 r ωr Φ = i (a a) 2L r Quantum Fluctuations in Electrical Circuits, M. H. Devoret, Les Houches Session LXIII, Quantum Fluctuations p (1995).

16 Circuit QED Measurement output C g E J CJ Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator

17 Circuit QED Measurement output C g E J CJ Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator Parameters g : Qubit-cavity interaction ω a : Qubit frequency ω r : Resonator frequency = ω a ω r : Detuning H = ωa 2 σz + ωra a + g(a σ + aσ + ) Blais et al., Phys. Rev. A (2004) Wallraff et al., Nature (2004) Wallraff et al., Phys. Rev. Lett (2005) Leek et al., Science (2007) Schuster et al., Nature (2007) Houck et al., Nature (2007) Majer et al., Nature (2007)

18 Circuit QED C g E J CJ Parameters g : Qubit-cavity interaction ω a : Qubit frequency ω r : Resonator frequency = ω a ω r : Detuning H = ωa 2 σz + ωra a + g(a σ + aσ + ) Blais et al., Phys. Rev. A (2004) Wallraff et al., Nature (2004) Wallraff et al., Phys. Rev. Lett (2005) Leek et al., Science (2007) Schuster et al., Nature (2007) Houck et al., Nature (2007) Majer et al., Nature (2007)

19 The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator

20 The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Linear dispersive H D = (ω a + χ ) σz 2 + (ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull Valid if n n crit., where n crit. = 1/4λ 2. Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator 2CP T ransmi ssio n (arb. units) κ Δ ~ 2π 1GHz 2χ κ Phase -2χ κ ωr CP ωr + CP ω a

21 The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Linear dispersive H D = (ω a + χ ) σz 2 + (ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull Valid if n n crit., where n crit. = 1/4λ 2. Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator 2CP T ransmi ssio n (arb. units) κ Δ ~ 2π 1GHz 2χ κ Phase -2χ κ ωr CP ωr + CP ω a

22 The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Linear dispersive H D = (ω a + χ ) σz 2 + (ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator Valid if n n crit., where n crit. = 1/4λ 2. Rabi π-pulse Wallraff et al., Phys. Rev. Lett (2005) 2CP T ransmi ssio n (arb. units) κ ωr CP Δ ~ 2π 1GHz ωr + CP ω a 2χ κ Phase -2χ κ Averaged times. SNR for single-shot is 0.1.

23 Circuit VS cavity QED Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r Hood et al., Science (2000) Raimond, Brune and Haroche, Rev. Mod. Phys (2001) Blais et al., Phys. Rev. A (2004)

24 Circuit VS cavity QED Motivation Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r Hood et al., Science (2000) Raimond, Brune and Haroche, Rev. Mod. Phys (2001) Blais et al., Phys. Rev. A (2004) Circuit QED is harder than cavity QED on the dispersive limit (n crit. is smaller)

25 Circuit VS cavity QED Motivation Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r Hood et al., Science (2000) Raimond, Brune and Haroche, Rev. Mod. Phys (2001) Blais et al., Phys. Rev. A (2004) Circuit QED is harder than cavity QED on the dispersive limit (n crit. is smaller) The SNR is low, we want to measure harder... how does higher order terms affect measurement?

26 Circuit VS cavity QED Motivation Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r Hood et al., Science (2000) Raimond, Brune and Haroche, Rev. Mod. Phys (2001) Blais et al., Phys. Rev. A (2004) Circuit QED is harder than cavity QED on the dispersive limit (n crit. is smaller) The SNR is low, we want to measure harder... how does higher order terms affect measurement? Must consider higher order corrections in perturbation theory

27 Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +)

28 Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H

29 Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H X θ n = arctan(2g n/ )

30 Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H Diagonalization Rotation around Y axis In all subspaces E n E 0 = { g,0 } E n = { g, n, e, n 1 } { g n, e n } X θ n = arctan(2g n/ ) Z Z D θ n D H n D X X

31 Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H Diagonalization Rotation around Y axis In all subspaces E n E 0 = { g,0 } E n = { g, n, e, n 1 } { g n, e n } The qubit is now part photon and vice-versa X θ n = arctan(2g n/ ) Z Z D θ n D H n X X D

32 Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H Diagonalization Rotation around Y axis In all subspaces E n E 0 = { g,0 } E n = { g, n, e, n 1 } { g n, e n } The qubit is now part photon and vice-versa X θ n = arctan(2g n/ ) 2g n/ Z D Z θ n D H n X X D

33 The dispersive limit Dispersive limit Jaynes-Cummings hamiltonian H = ω ra a + ω a σ z 2 + g(a σ + aσ + ) Exact transformation : D Small parameter λ = g/ 4λ 2 n 1

34 The dispersive limit Dispersive limit Jaynes-Cummings hamiltonian H = ω ra a + ω a σ z 2 + g(a σ + aσ + ) Exact transformation : D Small parameter λ = g/ 4λ 2 n 1 Result at order λ H D = (ω a + χ ) σz 2 +(ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull T ransmi ssio n (arb. units) κ ωr CP 2CP Δ ~ 2π 1GHz ωr + CP ω a 2χ κ Phase -2χ κ

35 The dispersive limit Dispersive limit Jaynes-Cummings hamiltonian H = ω ra a + ω a σ z 2 + g(a σ + aσ + ) Exact transformation : D Small parameter λ = g/ 4λ 2 n 1 Result at order λ 2 H D = (ω a + χ ) σz 2 + [ωr + (χ ζa a)σ z ]a a χ = χ(1 λ 2 ), ζ = λ 2 χ The cavity pull decrease : CP = χ ζ a a Result at order λ H D = (ω a + χ ) σz 2 +(ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull T ransmi ssio n (arb. units) κ 2CP Δ ~ 2π 1GHz 2χ κ Phase -2χ κ ωr CP ωr + CP ω a

36 Dissipation in the system κ γ ϕ γ 1 Model for dissipation Coupling to a bath H κ = R p 0 gκ(ω)[b κ(ω) + b κ(ω)][a + a]dω H γ = R p 0 gγ(ω)[b γ(ω) + b γ(ω)]σ xdω Parameters κ : Rate of photon loss γ 1 : Transverse decay rate

37 Dissipation in the system κ γ ϕ Energie [Arb. Units] EJ/4EC=0.1 δn g γ Gate charge, n g = C g V g /2e Model for dissipation Coupling to a bath H κ = R p 0 gκ(ω)[b κ(ω) + b κ(ω)][a + a]dω H γ = R p 0 gγ(ω)[b γ(ω) + b γ(ω)]σ xdω Parameters κ : Rate of photon loss γ 1 : Transverse decay rate

38 Dissipation in the system κ γ ϕ Energie [Arb. Units] EJ/4EC=0.1 δn g γ Gate charge, n g = C g V g /2e Model for dissipation Coupling to a bath H κ = R p 0 gκ(ω)[b κ(ω) + b κ(ω)][a + a]dω H γ = R p 0 gγ(ω)[b γ(ω) + b γ(ω)]σ xdω Dephasing H ϕ = ηf(t)σ z Parameters κ : Rate of photon loss γ 1 : Transverse decay rate γ ϕ : Pure dephasing rate

39 Dissipation in the transformed basis Z H n θ n γ 1 γ ϕ X

40 Dissipation in the transformed basis Z θ n γ 1 γ ϕ H n X Transformation of system-bath hamiltonian a D a + λσ + O `λ2 D σ σ + λaσ z + O `λ2 D σ z σz 2λ(a σ + aσ + ) + O `λ2 Z D Z D H n θ n γ ϕeff γ γ ϕeff γ γ, X X D

41 Dissipation in the transformed basis Z D Z Z θ n γ 1 H γ ϕ D n H n X Transformation of system-bath hamiltonian a D a + λσ + O `λ2 D σ σ + λaσ z + O `λ2 D σ z σz 2λ(a σ + aσ + ) + O `λ2 Method Transform the system-bath hamiltonian Trace out heat bath and cavity degrees of freedom (Gambetta et al., Phys. Rev. A (2008)) θ n γ ϕeff γ γ ϕeff γ γ, X X D

42 Dissipation in the transformed basis Z D Z Z θ n γ 1 H γ ϕ D n H n X Transformation of system-bath hamiltonian a D a + λσ + O `λ2 D σ σ + λaσ z + O `λ2 D σ z σz 2λ(a σ + aσ + ) + O `λ2 Method Transform the system-bath hamiltonian Trace out heat bath and cavity degrees of freedom (Gambetta et al., Phys. Rev. A (2008)) New rates (assuming white noises) θ n γ ϕeff γ γ γ, X X D γ = γ 1 ˆ1 2λ 2 ` n γκ + 2λ 2 γ ϕ n γ = 2λ 2 γ ϕ n γ κ = λ 2 κ γ ϕeff

43 Reduction of the SNR Parameters for the SNR Number of measurement photons SNR Num. phot.

44 Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ SNR κ Num. phot.

45 Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η κ η Num. phot. SNR

46 Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull κ η Num. phot. Info per phot. SNR

47 Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull Mixing rate : γ +γ = γ 1 ˆ1 2λ 2 ` n γκ+4λ 2 γ ϕ n SNR κ η Num. phot. Info per phot. Mixing rate

48 Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull Mixing rate : γ +γ = γ 1 ˆ1 2λ 2 ` n γκ+4λ 2 γ ϕ n SNR κ η Num. phot. Info per phot. Mixing rate SNR Cooper-Pair Box Linear With corrections Conclusion SNR levels off with non-linear effects! Explains low experimental SNR Applies to all dispersive homodyne measurement n/n crit. /2π = 1.7 GHz, g/2π = 170 MHz κ/2π = 34 MHz, γ 1 /2π = 0.1 MHz γ ϕ = 0.1 MHz, η = 1/80 n crit. = 1/4λ 2 = 25

49 Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull Mixing rate : γ +γ = γ 1 ˆ1 2λ 2 ` n γκ+4λ 2 γ ϕ n SNR Conclusion κ η Num. phot. Info per phot. Mixing rate SNR levels off with non-linear effects! Explains low experimental SNR Applies to all dispersive homodyne measurement SNR Cooper-Pair Box Linear With corrections Transmon n/n crit. /2π = 1.7 GHz, g/2π = 170 MHz κ/2π = 34 MHz, γ 1 /2π = 0.1 MHz γ ϕ = 0.1 MHz, η = 1/80 n crit. = 1/4λ 2 = 25

50 Measurement induced heat bath Mixing rates Downward rate : γ ( n) Upward rate : γ ( n) Heat bath with temperature T( n) = ( ω r/k B )/log(1 + 1/ n) σ z Time [µs]

51 Measurement induced heat bath Mixing rates Downward rate : γ ( n) Upward rate : γ ( n) Heat bath with temperature T( n) = ( ω r/k B )/log(1 + 1/ n) σ z σ z Time [µs] Increasing power

52 Measurement induced heat bath Mixing rates Downward rate : γ ( n) Upward rate : γ ( n) Heat bath with temperature T( n) = ( ω r/k B )/log(1 + 1/ n) σ z σ z σ z Time [µs] Increasing power

53 The case of the transmon C g Vg E J C J Energie [Arb. Units] EJ/4EC=0.1 EJ Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A (2007)

54 The case of the transmon C g C g Vg E J C J Vg C S Energie [Arb. Units] EJ/4EC=0.1 EJ Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A (2007)

55 The case of the transmon C g C g C g Vg E J C J Vg C S Vg C S Energie [Arb. Units] EJ/4EC=0.1 EJ Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A (2007)

56 The case of the transmon C g C g C g Vg E J C J Vg C S Vg C S Energie [Arb. Units] EJ/4EC=0.1 EJ Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A (2007)

57 Conclusion Main results Simple model describing the physics of measurement Side-effect of measuring harder : you heat your qubit (even with photons that can t be directly absorbed) Side-effect of measuring harder : each photon you add carries less information than the previous one Measuring harder bigger SNR Coming soon The transmon (3 level system) (Koch et al., Phys. Rev. A (2007)) Taking advantage of the non-linearity Comparison with experiments More information : Boissonneault, Gambetta and Blais, Phys. Rev. A (R) (2008) FQRNT

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Jay Gambetta, 1 Alexandre Blais, 1,2 D. I. Schuster, 1 A. Wallraff, 1,3 L. Frunzio, 1 J. Majer, 1 M. H. Devoret,

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Aug 2006

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Aug 2006 Resolving photon number states in a superconducting circuit arxiv:cond-mat/0608693v1 [cond-mat.mes-hall] 30 Aug 2006 D. I. Schuster, 1 A. A. Houck, 1 J. A. Schreier, 1 A. Wallraff, 1, 2 J. M. Gambetta,

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates

Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates PHYSICAL REVIEW A 79, 0389 009 Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates Maxime Boissonneault, J. M. Gambetta, and Alexandre Blais Département de Physique

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

Quantum-information processing with circuit quantum electrodynamics

Quantum-information processing with circuit quantum electrodynamics PHYSICAL REVIEW A 75, 339 7 Quantum-information processing with circuit quantum electrodynamics Alexandre Blais, 1, Jay Gambetta, 1 A Wallraff, 1,3 D I Schuster, 1 S M Girvin, 1 M H Devoret, 1 and R J

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Solid State Physics IV -Part II : Macroscopic Quantum Phenomena Koji Usami (Dated: January 6, 015) In this final lecture we study the Jaynes-Cummings model in which an atom (a two level system) is coupled

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics Peng Xue, 1 Barry C. Sanders, 1 Alexandre Blais, 2 and Kevin Lalumière 2 1 Institute for Quantum Information

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation PHYSICAL REVIEW A 69, 062320 (2004) Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation Alexandre Blais, 1 Ren-Shou Huang, 1,2 Andreas Wallraff,

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Elementary Tutorial on Loss Mechanisms in Circuit QED. Steven M. Girvin Yale University

Elementary Tutorial on Loss Mechanisms in Circuit QED. Steven M. Girvin Yale University Elementary Tutorial on Loss Mechanisms in Circuit QED Steven M. Girvin Yale University 1 Hard to believe the JJ losses are so small 2 Qubits, Cavities, Lumped-Element Oscillators G C tot L Geometric, kinetic,

More information

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 31 May 2010 Single-shot qubit readout in circuit Quantum Electrodynamics François 1 Mallet, Florian R. 1 Ong, Agustin 1 Palacios-Laloy, François 1 Nguyen, Patrice 1 Bertet, Denis 1 Vion * and Daniel 1 Esteve 1 Quantronics

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom Igor Diniz, Etienne Dumur, Olivier Buisson, Alexia Auffèves To cite this version: Igor Diniz, Etienne Dumur, Olivier

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Dressed relaxation and dephasing in a strongly driven two-level system

Dressed relaxation and dephasing in a strongly driven two-level system PHYSICAL REVIEW B 81, 0450 010 Dressed relaxation and dephasing in a strongly driven two-level system C. M. Wilson,* G. Johansson, T. Duty, F. Persson, M. Sandberg, and P. Delsing Department of Microtechnology

More information

Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box ircuit Quantum Electrodynamics: oherent oupling of a Single Photon to a ooper Pair Box A. Wallraff, D. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf

More information

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED Commun. Theor. Phys. 56 (011 35 39 Vol. 56, No. 3, September 15, 011 Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED WU

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11505 I. DEVICE PARAMETERS The Josephson (E J and charging energy (E C of the transmon qubit were determined by qubit spectroscopy which yielded transition frequencies ω 01 /π =5.4853

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

Photon shot noise dephasing in the strong-dispersive limit of circuit QED

Photon shot noise dephasing in the strong-dispersive limit of circuit QED PHYSICAL REVIEW B 86, 180504(R) (2012) Photon shot noise dephasing in the strong-dispersive limit of circuit QED A. P. Sears, A. Petrenko, G. Catelani, L. Sun, Hanhee Paik, G. Kirchmair, L. Frunzio, L.

More information

Perturbative analysis of two-qubit gates on transmon qubits

Perturbative analysis of two-qubit gates on transmon qubits Perturbative analysis of two-qubit gates on transmon qubits von Susanne Richer Masterarbeit in Physik vorgelegt der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen im September

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

arxiv: v1 [quant-ph] 6 Oct 2011

arxiv: v1 [quant-ph] 6 Oct 2011 Hybrid Qubit gates in circuit QED: A scheme for quantum bit encoding and information processing O. P. de Sá Neto 1, 1,, and M. C. de Oliveira 1 Instituto de Física Gleb Wataghin, Universidade Estadual

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

arxiv: v1 [cond-mat.supr-con] 29 Dec 2013

arxiv: v1 [cond-mat.supr-con] 29 Dec 2013 High Fidelity Qubit Readout with the Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier D. Hover, S. Zhu, T. Thorbeck, G.J. Ribeill, and R. McDermott Department of Physics, University

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Quantum simulation scheme of two-dimensional xy-model Hamiltonian with controllable coupling

Quantum simulation scheme of two-dimensional xy-model Hamiltonian with controllable coupling Noname manuscript No. (will be inserted by the editor) Quantum simulation scheme of two-dimensional xy-model Hamiltonian with controllable coupling Mun Dae Kim Received: date / Accepted: date arxiv:1901.04350v1

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Controllable cross-kerr interaction between microwave photons in circuit quantum electrodynamics

Controllable cross-kerr interaction between microwave photons in circuit quantum electrodynamics Controllable cross-kerr interaction between microwave photons in circuit quantum electrodynamics Wu Qin-Qin ( ) a)b), Liao Jie-Qiao( ) a), and Kuang Le-Man( ) a) a) Laboratory of Low-Dimensional Quantum

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island PHYSICAL REVIEW B, VOLUME 63, 054514 Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island Florian Marquardt* and C. Bruder Departement

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Stopping single photons in one-dimensional circuit quantum electrodynamics systems

Stopping single photons in one-dimensional circuit quantum electrodynamics systems Stopping single photons in one-dimensional circuit quantum electrodynamics systems Jung-Tsung Shen, M. L. Povinelli, Sunil Sandhu, and Shanhui Fan* Ginzton Laboratory, Stanford University, Stanford, California

More information

Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics

Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics Diploma Thesis by Barbara Gabriele Ursula Englert October 008 Supervised by Prof. Dr. Rudolf Gross and Prof. Dr.

More information

arxiv: v1 [quant-ph] 23 Oct 2014

arxiv: v1 [quant-ph] 23 Oct 2014 International Journal of Quantum Information c World Scientific Publishing Company arxiv:4380v [quant-ph] 23 Oct 204 ENTANGLEMENT GENERATION IN THE ULTRA-STRONGLY COUPLED RABI MODEL MATTEO BINA Dipartimento

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME

THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME TITUS SANDU National Institute for Research and Development in Microtechnologies-IMT 126A, Erou Iancu Nicolae Street, Bucharest, 077190, Romania E-mail: titus.sandu@imt.ro

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Mechanical quantum resonators

Mechanical quantum resonators Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,

More information

Nonlinear Oscillators and Vacuum Squeezing

Nonlinear Oscillators and Vacuum Squeezing Nonlinear Oscillators and Vacuum Squeezing David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

OPTICAL cavity quantum electrodynamics (QED) in the

OPTICAL cavity quantum electrodynamics (QED) in the 608 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 48, NO. 2, APRIL 1999 Quantum Manipulation and Measurement of Single Atoms in Optical Cavity QED Jun Ye, Christina J. Hood, Theresa Lynn,

More information

Quantum Limits on Measurement

Quantum Limits on Measurement Quantum Limits on Measurement Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Introduction to Cavity QED

Introduction to Cavity QED Introduction to Cavity QED Fabian Grusdt March 9, 2011 Abstract This text arose in the course of the Hauptseminar Experimentelle Quantenoptik in WS 2010 at the TU Kaiserslautern, organized by Prof. Ott

More information

Quantum Many Body Physics with Strongly Interacting Matter and Light. Marco Schiro Princeton Center for Theoretical Science

Quantum Many Body Physics with Strongly Interacting Matter and Light. Marco Schiro Princeton Center for Theoretical Science Quantum Many Body Physics with Strongly Interacting Matter and Light Marco Schiro Princeton Center for Theoretical Science Nice, INLN Condensed Matter Seminar July 5 2013 Interacting Light and Matter Far

More information

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Ĥ = Ĥ(p, q : Λ), Λ: control parameter { e.g. charge qubit Λ = V g gate voltage phase qubit Λ = I bias current

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTAR NFORMATON doi:10.1038/nature10786 FOUR QUBT DEVCE f 3 V 2 V 1 The cqed device used in this experiment couples four transmon qubits to a superconducting coplanar waveguide microwave cavity

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

arxiv: v1 [cond-mat.mes-hall] 15 Jun 2010

arxiv: v1 [cond-mat.mes-hall] 15 Jun 2010 arxiv:1006.935v1 [cond-mat.mes-hall] 15 Jun 010 Bose-Hubbard dynamics of polaritons in a chain of circuit QED cavities Submitted to: New J. Phys. Martin Leib and Michael J. Hartmann Technische Universität

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED

Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED arxiv:8.9v1 [cond-mat.supr-con] 1 May 8 Frank Deppe 1,,,, Matteo Mariantoni 1,, E. P. Menzel 1, A. Marx 1, S. Saito, K.

More information

arxiv: v1 [quant-ph] 13 Dec 2017

arxiv: v1 [quant-ph] 13 Dec 2017 Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime arxiv:171.539v1 [quant-ph] 13 Dec 17 F. Yoshihara, 1, T. Fuse, 1 Z. Ao, S. Ashhab, 3 K. Kakuyanagi, 4 S.

More information

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics J. M. Fink, M. Baur, R. Bianchetti, S. Filipp, M. Göppl, P. J. Leek, L. Steffen, A. Blais and A. Wallraff Department

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Single photon nonlinear optics in photonic crystals

Single photon nonlinear optics in photonic crystals Invited Paper Single photon nonlinear optics in photonic crystals Dirk Englund, Ilya Fushman, Andrei Faraon, and Jelena Vučković Ginzton Laboratory, Stanford University, Stanford, CA 94305 ABSTRACT We

More information

Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling

Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling C. E. López, 1, F. Lastra, 1 G. Romero, 3 E. Solano, 3, 4 and J. C. Retamal 1, 1 Departamento de Física, Universidad de Santiago

More information

Entangled States and Quantum Algorithms in Circuit QED

Entangled States and Quantum Algorithms in Circuit QED Entangled States and Quantum Algorithms in Circuit QED Applied Physics + Physics Yale University PI s: Rob Schoelkopf Michel Devoret Steven Girvin Expt. Leo DiCarlo Andrew Houck David Schuster Hannes Majer

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Principle Concepts behind IBM Q D. Stancil, Quantum Computing Seminar, 15 Feb 2018

Principle Concepts behind IBM Q D. Stancil, Quantum Computing Seminar, 15 Feb 2018 Priniple Conepts behind IBM Q D. Stanil, Quantum Computing Seminar, 15 Feb 018 V. Bouhiat, et al, Quantum Coherene with a Single Cooper Pair, Physia Sripta, Vol. T76, 165-170 (1998) A. Blais, et al, Cavity

More information

arxiv: v1 [quant-ph] 16 May 2007

arxiv: v1 [quant-ph] 16 May 2007 Light-shift-induced photonic nonlinearities F.G.S.L. Brandão,, M.J. Hartmann,, and M.B. Plenio, QOLS, Blackett Laboratory, Imperial College London, London SW7 AZ, UK IMS, Imperial College London, 53 Prince

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03 Decoherence and Relaxation in Driven Circuit QED Systems Alexander Shnirman Arkady Fedorov Julian Hauss Valentina Brosco Stefan André Michael Marthaler Gerd Schön experiments Evgeni Il ichev et al. Univ.

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

Implementation of Grover quantum search algorithm with two transmon qubits via circuit QED

Implementation of Grover quantum search algorithm with two transmon qubits via circuit QED Quant. Phys. Lett. 6, No. 1, 9-35 (017) 9 Quantum Physics Letters An International Journal http://dx.doi.org/10.18576/qpl/060105 Implementation of Grover quantum search algorithm with two transmon qubits

More information

Demonstration of conditional gate operation using superconducting charge qubits

Demonstration of conditional gate operation using superconducting charge qubits Demonstration of conditional gate operation using superconducting charge qubits T. Yamamoto, Yu. A. Pashkin, * O. Astafiev, Y. Nakamura, & J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki

More information

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS Chaire de Physique Mésoscopique Michel Devoret Année 2008, 13 mai - 24 juin CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS Première leçon / First Lecture This College de France document is

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" QUANTUM COHERENCE IN SOLID STATE SYSTEMS QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS Michel Devoret, Applied Physics, Yale University, USA and

More information